1
|
Wątły J, Szarszoń K, Mikołajczyk A, Grelich-Mucha M, Matera-Witkiewicz A, Olesiak-Bańska J, Rowińska-Żyrek M. Zn(II) Induces Fibril Formation and Antifungal Activity in Shepherin I, An Antimicrobial Peptide from Capsella bursa-pastoris. Inorg Chem 2023; 62:19786-19794. [PMID: 37983127 DOI: 10.1021/acs.inorgchem.3c03409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Shepherin I is a glycine- and histidine-rich antimicrobial peptide from the root of a shepherd's purse, whose antimicrobial activity was suggested to be enhanced by the presence of Zn(II) ions. We describe Zn(II) and Cu(II) complexes of this peptide, aiming to understand the correlation between their metal binding mode, structure, morphology, and biological activity. We observe a logical sequence of phenomena, each of which is the result of the previous one: (i) Zn(II) coordinates to shepherin I, (ii) causes a structural change, which, in turn, (iii) results in fibril formation. Eventually, this chain of structural changes has a (iv) biological consequence: The shepherin I-Zn(II) fibrils are highly antifungal. What is of particular interest, both fibril formation and strong anticandidal activity are only observed for the shepherin I-Zn(II) complex, linking its structural rearrangement that occurs after metal binding with its morphology and biological activity.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Klaudia Szarszoń
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aleksandra Mikołajczyk
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wrocław Medical University Biobank, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Manuela Grelich-Mucha
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb, Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wrocław Medical University Biobank, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb, Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
2
|
Xu K, Zhao X, Tan Y, Wu J, Cai Y, Zhou J, Wang X. A systematical review on antimicrobial peptides and their food applications. BIOMATERIALS ADVANCES 2023; 155:213684. [PMID: 37976831 DOI: 10.1016/j.bioadv.2023.213684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Food safety issues are a major concern in food processing and packaging industries. Food spoilage is caused by microbial contamination, where antimicrobial peptides (APs) provide solutions by eliminating microorganisms. APs such as nisin have been successfully and commonly used in food processing and preservation. Here, we discuss all aspects of the functionalization of APs in food applications. We briefly review the natural sources of APs and their native functions. Recombinant expression of APs in microorganisms and their yields are described. The molecular mechanisms of AP antibacterial action are explained, and this knowledge can further benefit the design of functional APs. We highlight current utilities and challenges for the application of APs in the food industry, and address rational methods for AP design that may overcome current limitations.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - XinYi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Junheng Wu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yiqing Cai
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China..
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Bellotti D, Leveraro S, Hecel A, Remelli M. Investigation of metal interactions with YrpE protein of Bacillus subtilis by a polyhistidine peptide model. Anal Biochem 2023; 680:115315. [PMID: 37689096 DOI: 10.1016/j.ab.2023.115315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The use of model peptides that can simulate the behaviour of a protein domain is a very successful analytical method to study the metal coordination sites in biological systems. Here we study zinc and copper binding ability of the sequence HTHEHSHDHSHAH, which serves as model for the metal interactions with YrpE, a putative metal-binding protein of the ZinT family identified in Bacillus subtilis. Compared to other ZinT proteins secreted by Gram-negative bacteria, the metal-coordination properties of YrpE N-terminal histidine-rich domain have not been yet characterized. Different independent analytical methods, aimed at providing information on the stability and structure of the formed species, have been employed, including potentiometric titrations, electrospray ionization mass spectrometry, UV-Vis spectrophotometry, circular dichroism and electron paramagnetic resonance spectroscopy. The obtained speciation models and equilibrium constants allowed to compare the metal-binding ability of the investigated polyhistidine sequence with that of other well-known histidine-rich peptides. Our thermodynamic results revealed that the YrpE domain HTHEHSHDHSHAH forms more stable metal complexes than other His-rich domains of similar ZinT proteins. Moreover, the studied peptide, containing the alternated (-XH-)n motif, proved to be even more effective than the His6-tag (widely used in immobilized metal ion affinity chromatography) in binding zinc ions.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy; Faculty of Chemistry, University of Wrocław, 50-383, Wrocław, Poland.
| | - Silvia Leveraro
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, 50-383, Wrocław, Poland.
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
4
|
Wegermann CA, Pirota V, Monzani E, Casella L, Costa LAS, Novato WTG, Machini MT, da Costa Ferreira AM. Interaction studies of oxindole-derivatives with β-amyloid peptides inhibiting its aggregation induced by metal ions. J Inorg Biochem 2023; 245:112227. [PMID: 37156056 DOI: 10.1016/j.jinorgbio.2023.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Some hydrazones and Schiff bases derived from isatin, an endogenous oxindole formed in the metabolism of tryptophan, were obtained to investigate their effects on in vitro aggregation of β-amyloid peptides (Aβ), macromolecules implicated in Alzheimer's disease. Some hydrazone ligands, prepared by condensation reactions of isatin with hydrazine derivatives, showed a large affinity binding to the synthetic peptides Aβ, particularly to Aβ1-16. Measurements by NMR spectroscopy indicated that those interactions occur mainly at the metal binding site of the peptide, involving His6, His13, and His14 residues, and that hydrazone E-diastereoisomer interacts preferentially with the amyloid peptides. Experimental results were consistent with simulations using a docking approach, where it is demonstrated that the amino acid residues Glu3, His6, His13, and His14 are those that mostly interact with the ligands. Further, these oxindole-derived ligands can efficiently chelate copper(II) and zinc(II) ions, forming moderate stable [ML] 1:1 species. The corresponding formation constants were determined by UV/Vis spectroscopy, by titrations of the ligands with increasing amounts of metal salts, and the obtained log K values were in the range 2.74 to 5.11. Both properties, good affinity for amyloid peptides, and reasonably good capacity of chelating biometal ions, like copper and zinc, can explain the efficient inhibition of Aβ fragments aggregation, as shown by experiments carried out with the oxindole derivatives in the presence of metal ions.
Collapse
Affiliation(s)
- Camila Anchau Wegermann
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Valentina Pirota
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Enrico Monzani
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Luigi Casella
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Luiz Antônio Sodré Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, MG, Brazil.
| | - Willian Tássio Gomes Novato
- NQTCM, Núcleo de Química Teórica e Computacional de Macaé, Instituto Multidisciplinar de Química, CM UFRJ Macaé, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | - M Teresa Machini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Donaghy C, Javellana JG, Hong YJ, Djoko K, Angeles-Boza AM. The Synergy between Zinc and Antimicrobial Peptides: An Insight into Unique Bioinorganic Interactions. Molecules 2023; 28:2156. [PMID: 36903402 PMCID: PMC10004757 DOI: 10.3390/molecules28052156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of innate immunity across all species. AMPs have become the focus of attention in recent years, as scientists are addressing antibiotic resistance, a public health crisis that has reached epidemic proportions. This family of peptides represents a promising alternative to current antibiotics due to their broad-spectrum antimicrobial activity and tendency to avoid resistance development. A subfamily of AMPs interacts with metal ions to potentiate antimicrobial effectiveness, and, as such, they have been termed metalloAMPs. In this work, we review the scientific literature on metalloAMPs that enhance their antimicrobial efficacy when combined with the essential metal ion zinc(II). Beyond the role played by Zn(II) as a cofactor in different systems, it is well-known that this metal ion plays an important role in innate immunity. Here, we classify the different types of synergistic interactions between AMPs and Zn(II) into three distinct classes. By better understanding how each class of metalloAMPs uses Zn(II) to potentiate its activity, researchers can begin to exploit these interactions in the development of new antimicrobial agents and accelerate their use as therapeutics.
Collapse
Affiliation(s)
- Caroline Donaghy
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | - Young-Jin Hong
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Karrera Djoko
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
6
|
Ryazantsev DY, Khodzhaev EY, Kuvarina AE, Barashkova AS, Rogozhin EA. The Antifungal and Reactivation Activities of a Novel Glycine/Histidine-Rich Linear Peptide from Dog-Grass (Elytrigia repens (L.) Desv. Ex Nevski) Ears. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s000368382301009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Evaluation the Therapeutic Index of Recombinant Antimicrobial S3 Tetramer-Peptides Expressed in E. coli. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Nunes LGP, Reichert T, Machini MT. His-Rich Peptides, Gly- and His-Rich Peptides: Functionally Versatile Compounds with Potential Multi-Purpose Applications. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
In silico design of antimicrobial oligopeptides based on 3D-QSAR modeling and bioassay evaluation. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02789-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AEL, Sharma GD, Sharma M, Bhargava A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2020; 35:256-277. [PMID: 32940412 DOI: 10.1002/ptr.6823] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Keshav Lalit Ameta
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | | | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
11
|
Okita H, Kato Y, Masuzawa T, Arai K, Takeo S, Sato K, Mase N, Oyoshi T, Narumi T. Stereoselective synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres and their application to 14-mer RGG peptidomimetics. RSC Adv 2020; 10:29373-29377. [PMID: 35521116 PMCID: PMC9055925 DOI: 10.1039/d0ra06554d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres is realized by organocuprate-mediated single electron transfer reduction.
Collapse
Affiliation(s)
- Hikari Okita
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Yuna Kato
- Department of Engineering
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Tatsuki Masuzawa
- Department of Chemistry
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Kosuke Arai
- Department of Engineering
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Sayuri Takeo
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Kohei Sato
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Takanori Oyoshi
- Department of Chemistry
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Tetsuo Narumi
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| |
Collapse
|
12
|
Design, synthesis and valued properties of surfactin oversimplified analogues. Amino Acids 2019; 52:25-33. [PMID: 31781907 DOI: 10.1007/s00726-019-02806-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
Abstract
Surfactins are important lipopeptides produced by Bacillus subtilis that present strong surface activity. These biosurfactants find applications in various fields, from environmental remediation to medicine. The use of surfactins in remediation is hampered by production costs; the medical applications are also reframed because of the hemolytic activity of the cyclic peptide. To reduce costs and working time, the present work focused on the design, chemical synthesis and characterization of simple linear variants of surfactins having only L-amino acids and lauric acid at the N-terminal. Carboxyl-free and amidated analogues with negative, null and positive net charges at physiological pH were successfully obtained. The synthetic isoforms of surfactins showed high surface activity and ability to inhibit both growth and adhesion of Streptococcus mutans cells. Therefore, these properties make these low-cost synthetic peptides relevant and promising new compounds for science, industry and, mainly, dental care.
Collapse
|
13
|
Tyagi A, Pankaj V, Singh S, Roy S, Semwal M, Shasany AK, Sharma A. PlantAFP: a curated database of plant-origin antifungal peptides. Amino Acids 2019; 51:1561-1568. [PMID: 31612325 DOI: 10.1007/s00726-019-02792-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
Emerging infectious diseases (EIDs) are a severe problem caused by fungi in human and plant species across the world. They pose a worldwide threat to food security as well as human health. Fungal infections are increasing now day by day worldwide, and the current antimycotic drugs are not effective due to the emergence of resistant strains. Therefore, it is an urgent need for the finding of new plant-origin antifungal peptides (PhytoAFPs). Huge numbers of peptides were extracted from different plant species which play a protective role against fungal infection. Hundreds of plant-origin peptides with antifungal activity have already been reported. So there is a requirement of a dedicated platform which systematically catalogs plant-origin peptides along with their antifungal properties. PlantAFP database is a resource of experimentally verified plant-origin antifungal peptides, collected from research articles, patents, and public databases. The current release of PlantAFP database contains 2585 peptide entries among which 510 are unique peptides. Each entry provides comprehensive information of a peptide that includes its peptide sequence, peptide name, peptide class, length of the peptide, molecular mass, antifungal activity, and origin of peptides. Besides this primary information, PlantAFP stores peptide sequences in SMILES format. In order to facilitate the user, many tools have been integrated into this database that includes BLAST search, peptide search, SMILES search, and peptide-mapping is also included in the database. PlantAFP database is accessible at http://bioinformatics.cimap.res.in/sharma/PlantAFP/.
Collapse
Affiliation(s)
- Atul Tyagi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India.
| | - Vaishali Pankaj
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226010, India
| | - Sanjay Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and communication, Brno University of Technology-Techicka-10, 61600, Brno, Czech Republic
| | - Manoj Semwal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India.
| |
Collapse
|
14
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
15
|
Pizzolato-Cezar LR, Okuda-Shinagawa NM, Machini MT. Combinatory Therapy Antimicrobial Peptide-Antibiotic to Minimize the Ongoing Rise of Resistance. Front Microbiol 2019; 10:1703. [PMID: 31447797 PMCID: PMC6695574 DOI: 10.3389/fmicb.2019.01703] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Luis R Pizzolato-Cezar
- Peptide Chemistry Laboratory, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Nancy M Okuda-Shinagawa
- Peptide Chemistry Laboratory, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - M Teresa Machini
- Peptide Chemistry Laboratory, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the Innate Immune System of Plants. Part II. Biosynthesis, Biological Functions, and Possible Practical Applications. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the Innate Immune System of Plants. Part I. Structure, Biological Activity, and Mechanisms of Action. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Tan L, Bai L, Wang L, He L, Li G, Du W, Shen T, Xiang Z, Wu J, Liu Z, Hu M. Antifungal activity of spider venom-derived peptide lycosin-I against Candida tropicalis. Microbiol Res 2018; 216:120-128. [DOI: 10.1016/j.micres.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
|
19
|
Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. PHYTOCHEMISTRY 2018; 154:94-105. [PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
Collapse
Affiliation(s)
- Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Zakaria H Prodhan
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Sudhangshu K Biswas
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng-Foh Le
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia.
| | - Shamala D Sekaran
- Faculty of Medicine, MAHSA University, Saujana Putra Campus, 42610, Jenjarum, Selangor, Malaysia.
| |
Collapse
|
20
|
Cho HS, Soundrarajan N, Le Van Chanh Q, Jeon H, Cha SY, Kang M, Ahn B, Hong K, Song H, Kim JH, Oh KS, Park C. The novel cathelicidin of naked mole rats, Hg-CATH, showed potent antimicrobial activity and low cytotoxicity. Gene 2018; 676:164-170. [PMID: 29981419 DOI: 10.1016/j.gene.2018.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
We performed the in silico genome-wide identification of antimicrobial peptides against the available genome sequence of the naked mole rat Heterocephalus glaber (H. glaber). Our results showed the presence of Hg-CATH, the single cathelicidin containing the antimicrobial domain in H. glaber. We chemically synthesized a 25 amino-acid peptide (ΔHg-CATH) corresponding to the predicted antimicrobial-active core region of Hg-CATH, and evaluated its antibacterial activity against seven bacterial strains. The ΔHg-CATH peptide exhibited strong bactericidal activity against gram-negative bacteria, including a multi-drug resistant strain, while showing low toxicity towards mammalian cells, including erythrocytes. Scanning electron microscopy images of bacterial cells treated with ΔHg-CATH showed disruption of their membranes due to the formation of toroidal pores. Identifying novel antimicrobial peptides, such as Hg-CATH, may be important for identifying candidate peptides for the control of multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Quy Le Van Chanh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se-Yeoun Cha
- Department of Infectious and Avian Diseases, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - ByeongYong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Soo Oh
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul 05029, Republic of Korea.
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
Łoboda D, Kozłowski H, Rowińska-Żyrek M. Antimicrobial peptide–metal ion interactions – a potential way of activity enhancement. NEW J CHEM 2018. [DOI: 10.1039/c7nj04709f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We discuss the potential correlation between the antimicrobial peptide–metal binding mode, structure, thermodynamics and mode of action.
Collapse
Affiliation(s)
- D. Łoboda
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - H. Kozłowski
- Public Higher Medical Professional School in Opole
- 45-060 Opole
- Poland
| | | |
Collapse
|
22
|
Okuda-Shinagawa NM, Moskalenko YE, Junqueira HC, Baptista M, Marques CM, Machini MT. Fluorescent and Photosensitizing Conjugates of Cell-Penetrating Peptide TAT(47-57): Design, Microwave-Assisted Synthesis at 60 °C, and Properties. ACS OMEGA 2017; 2:8156-8166. [PMID: 30023576 PMCID: PMC6044864 DOI: 10.1021/acsomega.7b01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/30/2017] [Indexed: 05/04/2023]
Abstract
Conjugates based on cell-penetrating peptides (CPPs) are scientifically relevant owing to their structural complexity; their ability to enter cells and deliver drugs, labels, antioxidants, bioactive compounds, or DNA fragments; and, consequently, their potential for application in research and biomedicine. In this study, carboxyamidated fluorescently labeled conjugates FAM-GG-TAT(47-57)-NH2 and FAM-PEG6-TAT(47-57)-NH2 and photosensitizer-labeled conjugate Chk-PEG6-TAT(47-57)-NH2 [where TAT(47-57) is the CPP, 5(6)-carboxyfluorescein is the (FAM) fluorophore, chlorin k (Chk) is the photosensitizer, and the dipeptide glycyl-glycine (GG) or hexaethylene glycol (PEG6) is the spacer] were originally designed, prepared, and fully characterized. Practically, all chemical reactions of the synthetic steps (peptide synthesis, spacer incorporation, and conjugation) were microwave-assisted at 60 °C using optimized protocols to give satisfying yields and high-quality products. Detailed analyses of the conjugates using spectrofluorimetry and singlet oxygen detection showed that they display photophysical properties typical of FAM or Chk. Anticandidal activity assays showed that not only this basic property of TAT(47-57) was preserved in the conjugates but also that the minimal inhibitory concentration was slightly reduced for cells incubated with PS-bearing conjugate Chk-PEG6-TAT(47-57)-NH2. Overall, these results indicated that the synthetic approach on-resin assisted by microwaves at 60 °C is simple, straightforward, selective, metal-free, sufficiently fast, cleaner, and more cost-effective than those previously used for preparing this type of macromolecule. Furthermore, such new data show that microwaves at 60 °C and/or conjugation did not harm the integrity of the conjugates' constituents. Therefore, FAM-GG-TAT(47-57)-NH2, FAM-PEG6-TAT(47-57)-NH2, and Chk-PEG6-TAT(47-57)-NH2 have high potential for practical applications in biochemistry, biophysics, and therapeutics.
Collapse
Affiliation(s)
- Nancy M. Okuda-Shinagawa
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, Butantã, 05508-000 São
Paulo, SP, Brazil
| | - Yulia E. Moskalenko
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, Butantã, 05508-000 São
Paulo, SP, Brazil
| | - Helena C. Junqueira
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, Butantã, 05508-000 São
Paulo, SP, Brazil
| | - Maurício
S. Baptista
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, Butantã, 05508-000 São
Paulo, SP, Brazil
| | - Carlos M. Marques
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, Butantã, 05508-000 São
Paulo, SP, Brazil
- Institut
Charles Sadron, Université de Strasbourg,
UPR22-CNRS, 23, rue du
Loess, BP 84047, 67034 Strasbourg Cedex 2, Strasbourg, France
| | - M. Terêsa Machini
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, Butantã, 05508-000 São
Paulo, SP, Brazil
| |
Collapse
|
23
|
Zhu Z, Chen H, Li S, Yang X, Bittner E, Cai C. Tripodal Amine Ligands for Accelerating Cu-Catalyzed Azide-Alkyne Cycloaddition: Efficiency and Stability against Oxidation and Dissociation. Catal Sci Technol 2017; 7:2474-2485. [PMID: 29129990 PMCID: PMC5679428 DOI: 10.1039/c7cy00587c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ancillary ligands, especially the tripodal ligands such as tris(triazolylmethyl)amines, have been widely used to accelerate the Cu-catalyzed azide-alkyne cycloaddition (CuAAC, a "click" reaction). However, the relationship between the activity of these Cu(I) complexes and their stability against air oxidation and ligand dissociation/exchange was seldom studied, which is critical for the applications of CuAAC in many biological systems. In this work, we synthesized twenty-one Cu(I) tripodal ligands varying in chelate arm length (five to seven atoms), donor groups (triazolyl, pyridyl and phenyl), and steric hindrance. The effects of these variables on the CuAAC reaction, air oxidation, and ligand dissociation were evaluated. Reducing the chelate arm length to five atoms, decreasing steric hindrance, or using a relatively weakly-binding ligand can significantly increase the CuAAC reactivity of the Cu(I) complexes, but the concomitant higher degree of oxidation cannot be avoided, which leads to rapid degradation of a histidine-containing peptide as a model of proteins. The oxidation of the peptide can be reduced by attaching oligo(ethylene glycol) chains to the ligands as sacrificing reagents. Using electrospray ionization mass spectrometry (ESI-MS), we directly observed the tri- and di-copper(I)-acetylide complexes in CuAAC reaction in the [5,5,5] ligand system and a small amount of di-Cu(I)-acetylide in the [5,5,6] ligand system. Only the mono-Cu(I) ligand adducts were observed in the [6,6,6] and [5,6,6] ligand systems.
Collapse
Affiliation(s)
- Zhiling Zhu
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Haoqing Chen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Siheng Li
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Xunmo Yang
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Eric Bittner
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| |
Collapse
|
24
|
Luo Y, McLean DTF, Linden GJ, McAuley DF, McMullan R, Lundy FT. The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro. Front Microbiol 2017; 8:544. [PMID: 28408902 PMCID: PMC5374219 DOI: 10.3389/fmicb.2017.00544] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/03/2022] Open
Abstract
Amongst the recognized classes of naturally occurring antimicrobials, human host defense peptides are an important group with an advantage (given their source) that they should be readily translatable to medicinal products. It is also plausible that truncated versions will display some of the biological activities of the parent peptide, with the benefit that they are less costly to synthesize using solid-phase chemistry. The host defense peptide, LL-37, and two truncated mimetics, KE-18 and KR-12, were tested for their inhibitory effects and antibiofilm properties against Candida albicans, Staphylococcus aureus, and Escherichia coli, microorganisms commonly implicated in biofilm-related infections such as ventilator-associated pneumonia (VAP). Using in silico prediction tools, the truncated peptides KE-18 and KR-12 were selected for minimum inhibitory concentration (MIC) and antibiofilm testing on the basis of their favorable cationicity, hydrophobic ratio, and amphipathicity compared with the parent peptide. Two methods were analyzed for determining peptide efficacy against biofilms; a crystal violet assay and an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. The biocidal activities (measured by MIC) and antibiofilm activities (measured by a crystal violet assay) appeared to be independent. LL-37 had no biocidal action against C. albicans (MIC > 250 μg/ml) but significant effects in both biofilm-prevention and biofilm-inhibition assays. KE-18 and KR-12 yielded superior MIC values against all three microorganisms. Only KE-18 had a significant effect in the biofilm-prevention assay, which persisted even at sub-MICs. Neither of the truncated peptides were active in the biofilm-inhibition assay. KE-18 was shown to bind lipopolysaccharide as effectively as LL-37 and to bind lipoteichoic acid more effectively. None of the peptides showed hemolytic activity against human erythrocytes at the concentrations tested. KE-18 should be considered for further development as a natural peptide-derived therapeutic for prevention of multi-species biofilm-related infections such as VAP.
Collapse
Affiliation(s)
- Yu Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Denise T F McLean
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Danny F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Ronan McMullan
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| |
Collapse
|
25
|
Games PD, daSilva EQG, Barbosa MDO, Almeida-Souza HO, Fontes PP, deMagalhães-Jr MJ, Pereira PRG, Prates MV, Franco GR, Faria-Campos A, Campos SVA, Baracat-Pereira MC. Computer aided identification of a Hevein-like antimicrobial peptide of bell pepper leaves for biotechnological use. BMC Genomics 2016; 17:999. [PMID: 28105928 PMCID: PMC5249031 DOI: 10.1186/s12864-016-3332-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Antimicrobial peptides from plants present mechanisms of action that are different from those of conventional defense agents. They are under-explored but have a potential as commercial antimicrobials. Bell pepper leaves ('Magali R') are discarded after harvesting the fruit and are sources of bioactive peptides. This work reports the isolation by peptidomics tools, and the identification and partially characterization by computational tools of an antimicrobial peptide from bell pepper leaves, and evidences the usefulness of records and the in silico analysis for the study of plant peptides aiming biotechnological uses. RESULTS Aqueous extracts from leaves were enriched in peptide by salt fractionation and ultrafiltration. An antimicrobial peptide was isolated by tandem chromatographic procedures. Mass spectrometry, automated peptide sequencing and bioinformatics tools were used alternately for identification and partial characterization of the Hevein-like peptide, named HEV-CANN. The computational tools that assisted to the identification of the peptide included BlastP, PSI-Blast, ClustalOmega, PeptideCutter, and ProtParam; conventional protein databases (DB) as Mascot, Protein-DB, GenBank-DB, RefSeq, Swiss-Prot, and UniProtKB; specific for peptides DB as Amper, APD2, CAMP, LAMPs, and PhytAMP; other tools included in ExPASy for Proteomics; The Bioactive Peptide Databases, and The Pepper Genome Database. The HEV-CANN sequence presented 40 amino acid residues, 4258.8 Da, theoretical pI-value of 8.78, and four disulfide bonds. It was stable, and it has inhibited the growth of phytopathogenic bacteria and a fungus. HEV-CANN presented a chitin-binding domain in their sequence. There was a high identity and a positive alignment of HEV-CANN sequence in various databases, but there was not a complete identity, suggesting that HEV-CANN may be produced by ribosomal synthesis, which is in accordance with its constitutive nature. CONCLUSIONS Computational tools for proteomics and databases are not adjusted for short sequences, which hampered HEV-CANN identification. The adjustment of statistical tests in large databases for proteins is an alternative to promote the significant identification of peptides. The development of specific DB for plant antimicrobial peptides, with information about peptide sequences, functional genomic data, structural motifs and domains of molecules, functional domains, and peptide-biomolecule interactions are valuable and necessary.
Collapse
Affiliation(s)
- Patrícia Dias Games
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | | | - Meire de Oliveira Barbosa
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | | | - Patrícia Pereira Fontes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | - Marcos Jorge deMagalhães-Jr
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG 36570-900 Brazil
| | | | - Maura Vianna Prates
- Embrapa Genetic Resources & Biotechnology, Brazilian Agricultural Research Corporation, Brasília, DF 70770-900 Brazil
| | - Gloria Regina Franco
- Department of Biochemistry and Immunology-ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901 Brazil
| | - Alessandra Faria-Campos
- Department of Computer Science-ICEX, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901 Brazil
| | - Sérgio Vale Aguiar Campos
- Department of Computer Science-ICEX, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901 Brazil
| | | |
Collapse
|
26
|
Verdon J, Coutos-Thevenot P, Rodier MH, Landon C, Depayras S, Noel C, La Camera S, Moumen B, Greve P, Bouchon D, Berjeaud JM, Braquart-Varnier C. Armadillidin H, a Glycine-Rich Peptide from the Terrestrial Crustacean Armadillidium vulgare, Displays an Unexpected Wide Antimicrobial Spectrum with Membranolytic Activity. Front Microbiol 2016; 7:1484. [PMID: 27713732 PMCID: PMC5031766 DOI: 10.3389/fmicb.2016.01484] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, there are currently 15 distinct AMP families published so far in the literature, mainly isolated from members of the Decapoda order. Up to now, armadillidin is the sole non-decapod AMP isolated from the haemocytes of Armadillidium vulgare, a crustacean isopod. Its first description demonstrated that armadillidin is a linear glycine-rich (47%) cationic peptide with an antimicrobial activity directed toward Bacillus megaterium. In the present work, we report identification of armadillidin Q, a variant of armadillidin H (earlier known as armadillidin), from crude haemocyte extracts of A. vulgare using LC-MS approach. We demonstrated that both armadillidins displayed broad spectrum antimicrobial activity against several Gram-positive and Gram-negative bacteria, fungi, but were totally inactive against yeasts. Membrane permeabilization assays, only performed with armadillidin H, showed that the peptide is membrane active against bacterial and fungal strains leading to deep changes in cell morphology. This damaging activity visualized by electronic microscopy correlates with a rapid decrease of cell viability leading to highly blebbed cells. In contrast, armadillidin H does not reveal cytotoxicity toward human erythrocytes. Furthermore, no secondary structure could be defined in this study [by circular dichroism (CD) and nuclear magnetic resonance (NMR)] even in a membrane mimicking environment. Therefore, armadillidins represent interesting candidates to gain insight into the biology of glycine-rich AMPs.
Collapse
Affiliation(s)
- Julien Verdon
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Pierre Coutos-Thevenot
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Marie-Helene Rodier
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Celine Landon
- Centre de Biophysique Moléculaire, CNRS UPR4301 Orléans, France
| | - Segolene Depayras
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Cyril Noel
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Sylvain La Camera
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Pierre Greve
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Christine Braquart-Varnier
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| |
Collapse
|
27
|
Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep 2016; 6:27258. [PMID: 27251456 PMCID: PMC4890124 DOI: 10.1038/srep27258] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/17/2016] [Indexed: 11/08/2022] Open
Abstract
Antimicrobial peptides (AMPs) have recently attracted a great deal of attention as promising antibiotic candidates, but some obstacles such as toxicity and high synthesis cost must be addressed before developing them further. For developing short peptides with improved cell selectivity, we designed a series of modified PMAP-36 analogues. Antimicrobial assays showed that decreasing chain length in a certain range retained the high antimicrobial activity of the parental peptide and reduced hemolysis. The 18-mer peptide RI18 exhibited excellent antimicrobial activity against both bacteria and fungi, and its hemolytic activity was observably lower than PMAP-36 and melittin. The selectivity indexes of RI18 against bacteria and fungi were improved approximately 19-fold and 108-fold, respectively, compared to PMAP-36. In addition, serum did not affect the antibacterial activity of RI18 against E. coli but inhibited the antifungal efficiency against C. albicans. Flow cytometry and electron microscopy observation revealed that RI18 killed microbial cells primarily by damaging membrane integrity, leading to whole cell lysis. Taken together, these results suggest that RI18 has potential for further therapeutic research against frequently-encountered bacteria and fungi. Meanwhile, modification of AMPs is a promising strategy for developing novel antimicrobials to overcome drug-resistance.
Collapse
|
28
|
Carvalho LAC, Remuzgo C, Perez KR, Machini MT. Hb40-61a: Novel analogues help expanding the knowledge on chemistry, properties and candidacidal action of this bovine α-hemoglobin-derived peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3140-9. [PMID: 26367061 DOI: 10.1016/j.bbamem.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 11/27/2022]
Abstract
This study expands the knowledge on chemical synthesis and properties of Hb40-61a as well as provides results of the first steps given towards knowing how it kills Candida cells. For the first time, this peptide, its all-D analogue (D-Hb40-61a) and its fluorescently labeled analogue (FAM-Hb40-61a) were successfully assembled on resin at 60°C using conventional heating in all steps. Purified and characterized, these peptides exhibited very low toxicity on human erythrocytes. Hb40-61a and D-Hb40-61a were equally active against Candida strains, ruling out sterically specific interactions on their working mechanism. Cell permeabilization assays confirmed progressive damage of the yeast plasma membrane with increasing concentrations of Hb40-61a. While experiment using the fluorescent probe DiBAC4(5) revealed that this synthetic hemocidin alters the yeast plasma membrane potential, test employing DPH indicated that Hb40-61a might affect its dynamics. Exposure of the yeast cells to FAM-Hb40-61a showed that the peptide accumulates in the cell membrane at the ½ MIC, but stains about 97% of the cells at the MIC. Such effect is salt-dependent and partially energy-dependent. These new findings indicate that the central target of Hb40-61a in Candida cells is the plasma membrane and that this synthetic hemocidin should be considered as a potential candidacidal for topic uses.
Collapse
Affiliation(s)
- L A C Carvalho
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - C Remuzgo
- Special Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | - K R Perez
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - M T Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
29
|
Biologically active and antimicrobial peptides from plants. BIOMED RESEARCH INTERNATIONAL 2015; 2015:102129. [PMID: 25815307 PMCID: PMC4359881 DOI: 10.1155/2015/102129] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/13/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022]
Abstract
Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.
Collapse
|