1
|
Jakobsen S, Pedersen M, Nielsen CU. Structure-activity relationship of amino acid analogs to probe the binding pocket of sodium-coupled neutral amino acid transporter SNAT2. Amino Acids 2024; 56:64. [PMID: 39427053 PMCID: PMC11490426 DOI: 10.1007/s00726-024-03424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The sodium-coupled neutral amino acid transporter SNAT2 (SLC38A2) has been shown to have important physiological functions and is implicated in various diseases like cancer. However, few compounds targeting this transporter have been identified and little is known about the structural requirements for SNAT2 binding. In this study, the aim was to establish the basic structure-activity relationship for SNAT2 using amino acid analogs. These analogs were first studied for their ability to inhibit SNAT2-mediated 3H-glycine uptake in hyperosmotically treated PC-3 cells. Then to identify substrates a FLIPR membrane potential assay and o-phthalaldehyde derivatization of intracellular amino with subsequent quantification using HPLC-Fl was used. The results showed that ester derivatives of the C-terminus maintained SNAT2 affinity, suggesting that the negative charge was less important. On the other hand, the positive charge at the N-terminus of the substrate and the ability to donate at least two hydrogen bonds to the binding site appeared important for SNAT2 recognition of the amine. Side chain charged amino acids generally had no affinity for SNAT2, but their non-charged derivatives were able to inhibit SNAT2-mediated 3H-glycine uptake, while also showing that amino acids of a notable length still had affinity for SNAT2. Several amino acid analogs appeared to be novel substrates of SNAT2, while γ-benzyl L-glutamate seemed to be inefficiently translocated by SNAT2. Elaborating on this structure could lead to the discovery of non-translocated inhibitors of SNAT2. Thus, the present study provides valuable insights into the basic structural binding requirements for SNAT2 and can aid the future discovery of compounds that target SNAT2.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Maria Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark.
| |
Collapse
|
2
|
Kang YJ, Song W, Lee SJ, Choi SA, Chae S, Yoon BR, Kim HY, Lee JH, Kim C, Cho JY, Kim HJ, Lee WW. Inhibition of BCAT1-mediated cytosolic leucine metabolism regulates Th17 responses via the mTORC1-HIF1α pathway. Exp Mol Med 2024; 56:1776-1790. [PMID: 39085353 PMCID: PMC11372109 DOI: 10.1038/s12276-024-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 08/02/2024] Open
Abstract
Branched-chain amino acids (BCAAs), particularly leucine, are indispensable AAs for immune regulation through metabolic rewiring. However, the molecular mechanism underlying this phenomenon remains unclear. Our investigation revealed that T-cell receptor (TCR)-activated human CD4+ T cells increase the expression of BCAT1, a cytosolic enzyme responsible for BCAA catabolism, and SLC7A5, a major BCAA transporter. This upregulation facilitates increased leucine influx and catabolism, which are particularly crucial for Th17 responses. Activated CD4+ T cells induce an alternative pathway of cytosolic leucine catabolism, generating a pivotal metabolite, β-hydroxy β-methylbutyric acid (HMB), by acting on BCAT1 and 4-hydroxyphenylpyruvate dioxygenase (HPD)/HPD-like protein (HPDL). Inhibition of BCAT1-mediated cytosolic leucine metabolism, either with BCAT1 inhibitor 2 (Bi2) or through BCAT1, HPD, or HPDL silencing using shRNA, attenuates IL-17 production, whereas HMB supplementation abrogates this effect. Mechanistically, HMB contributes to the regulation of the mTORC1-HIF1α pathway, a major signaling pathway for IL-17 production, by increasing the mRNA expression of HIF1α. This finding was corroborated by the observation that treatment with L-β-homoleucine (LβhL), a leucine analog and competitive inhibitor of BCAT1, decreased IL-17 production by TCR-activated CD4+ T cells. In an in vivo experimental autoimmune encephalomyelitis (EAE) model, blockade of BCAT1-mediated leucine catabolism, either through a BCAT1 inhibitor or LβhL treatment, mitigated EAE severity by decreasing HIF1α expression and IL-17 production in spinal cord mononuclear cells. Our findings elucidate the role of BCAT1-mediated cytoplasmic leucine catabolism in modulating IL-17 production via HMB-mediated regulation of mTORC1-HIF1α, providing insights into its relevance to inflammatory conditions.
Collapse
Affiliation(s)
- Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Woorim Song
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Su Jeong Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung Ah Choi
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sihyun Chae
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and Hospital, Seoul, 03080, Republic of Korea
| | - Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hee Young Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Ho Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Chulwoo Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and Hospital, Seoul, 03080, Republic of Korea
| | - Hyun Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Seoul National University Cancer Research Institute, Institue of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul National University Hospital Biomedical Research Institute, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Gröner B, Hoffmann C, Endepols H, Urusova EA, Brugger M, Neumaier F, Timmer M, Neumaier B, Zlatopolskiy BD. Radiosynthesis and Preclinical Evaluation of m-[ 18F]FET and [ 18F]FET-OMe as Novel [ 18F]FET Analogs for Brain Tumor Imaging. Mol Pharm 2024; 21:2795-2812. [PMID: 38747353 DOI: 10.1021/acs.molpharmaceut.3c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
O-([18F]Fluoroethyl)-l-tyrosine ([18F]FET) is actively transported into the brain and cancer cells by LAT1 and possibly other amino acid transporters, which enables brain tumor imaging by positron emission tomography (PET). However, tumor delivery of this probe in the presence of competing amino acids may be limited by a relatively low affinity for LAT1. The aim of the present work was to evaluate the meta-substituted [18F]FET analog m-[18F]FET and the methyl ester [18F]FET-OMe, which were designed to improve tumor delivery by altering the physicochemical, pharmacokinetic, and/or transport properties. Both tracers could be prepared with good radiochemical yields of 41-56% within 66-90 min. Preclinical evaluation with [18F]FET as a reference tracer demonstrated reduced in vitro uptake of [18F]FET-OMe by U87 glioblastoma cells and no advantage for in vivo tumor imaging. In contrast, m-[18F]FET showed significantly improved in vitro uptake and accelerated in vivo tumor accumulation in an orthotopic glioblastoma model. As such, our work identifies m-[18F]FET as a promising alternative to [18F]FET for brain tumor imaging that deserves further evaluation with regard to its transport properties and in vivo biodistribution.
Collapse
Affiliation(s)
- Benedikt Gröner
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Chris Hoffmann
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Heike Endepols
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Elizaveta A Urusova
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Melanie Brugger
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
| | - Felix Neumaier
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Marco Timmer
- Faculty of Medicine and University Hospital Cologne, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| |
Collapse
|
4
|
Zhang C, Wang Y, Guo X, Wang Z, Xiao J, Liu Z. SLC7A5 correlated with malignancies and immunotherapy response in bladder cancer. Cancer Cell Int 2024; 24:182. [PMID: 38790003 PMCID: PMC11127462 DOI: 10.1186/s12935-024-03365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Metabolic reprogramming contributes to bladder cancer development. This study aimed to understand the role of SLC7A5 in bladder cancer. METHODS We systematically analyzed the correlation between SLC7A5 and bladder cancer through various approaches, including bioinformatics, western blotting, cell cycle analysis, cell proliferation assays, and invasion experiments. We also investigated the immunological features within the tumor microenvironment (TME), encompassing cancer immune cycles, immune modulators, immune checkpoints, tumor-infiltrating immune cells (TIIC), T cell inflammation scores, and treatment responses. Additionally, for a comprehensive assessment of the expression patterns and immunological roles of SLC7A5, pan-cancer analysis was performed using cancer genomics datasets. RESULTS SLC7A5 was associated with adverse prognosis in bladder cancer patients, activating the Wnt pathway and promoting bladder cancer cell cycle progression, proliferation, migration, and invasion. Based on the evidence that SLC7A5 positively correlated with immunomodulators, TIIC, the cancer immune cycle, immune checkpoint and T cell inflammation scores, we also found that SLC7A5 was associated with the inflammatory tumor immune microenvironment. EGFR-targeted therapy, cancer immunotherapy, and radiation therapy were effective for patients with high SLC7A5 expression in bladder cancer. Low SLC7A5 patients were, however, sensitive to targeted therapies and anti-angiogenic therapy, such as blocking β-catenin network, PPAR-γ and FGFR3 signaling. Anti-SLC7A5 combined with cancer immunotherapy may have greater effectiveness than either therapy alone. Furthermore, we observed specific overexpression of SLC7A5 in TME of various cancers. CONCLUSION SLC7A5 can predict therapeutic response to immunotherapy, radiotherapy and chemotherapy in bladder cancer patients. Targeting SLC7A5 in combination with immunotherapy may be a potentially appropriate treatment option.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiatong Xiao
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhi Liu
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Wiriyasermkul P, Moriyama S, Suzuki M, Kongpracha P, Nakamae N, Takeshita S, Tanaka Y, Matsuda A, Miyasaka M, Hamase K, Kimura T, Mita M, Sasabe J, Nagamori S. <sc>A</sc> multi-hierarchical approach reveals <sc>d</sc>-serine as a hidden substrate of sodium-coupled monocarboxylate transporters. eLife 2024; 12:RP92615. [PMID: 38650461 PMCID: PMC11037918 DOI: 10.7554/elife.92615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Satomi Moriyama
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Masataka Suzuki
- Department of Pharmacology, Keio University School of MedicineTokyoJapan
| | - Pornparn Kongpracha
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Nodoka Nakamae
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Saki Takeshita
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Yoko Tanaka
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| | - Akina Matsuda
- Department of Pharmacology, Keio University School of MedicineTokyoJapan
| | - Masaki Miyasaka
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Tomonori Kimura
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Reverse Translational Research Project, Center for Rare Disease Research, National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
| | | | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of MedicineTokyoJapan
| | - Shushi Nagamori
- Center for SI Medical Research, The Jikei University School of MedicineTokyoJapan
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical UniversityNaraJapan
| |
Collapse
|
6
|
Chen S, Jin C, Ohgaki R, Xu M, Okanishi H, Kanai Y. Structure-activity characteristics of phenylalanine analogs selectively transported by L-type amino acid transporter 1 (LAT1). Sci Rep 2024; 14:4651. [PMID: 38409393 PMCID: PMC10897196 DOI: 10.1038/s41598-024-55252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
L-type amino acid transporter 1 (LAT1) is a transmembrane protein responsible for transporting large neutral amino acids. While numerous LAT1-targeted compound delivery for the brain and tumors have been investigated, their LAT1 selectivity often remains ambiguous despite high LAT1 affinity. This study assessed the LAT1 selectivity of phenylalanine (Phe) analogs, focusing on their structure-activity characteristics. We discovered that 2-iodo-L-phenylalanine (2-I-Phe), with an iodine substituent at position 2 in the benzene ring, markedly improves LAT1 affinity and selectivity compared to parent amino acid Phe, albeit at the cost of reduced transport velocity. L-Phenylglycine (Phg), one carbon shorter than Phe, was found to be a substrate for LAT1 with a lower affinity, exhibiting a low level of selectivity for LAT1 equivalent to Phe. Notably, (R)-2-amino-1,2,3,4-tetrahydro-2-naphthoic acid (bicyclic-Phe), with an α-methylene moiety akin to the α-methyl group in α-methyl-L-phenylalanine (α-methyl-Phe), a known LAT1-selective compound, showed similar LAT1 transport maximal velocity to α-methyl-Phe, but with higher LAT1 affinity and selectivity. In vivo studies revealed tumor-specific accumulation of bicyclic-Phe, underscoring the importance of LAT1-selectivity in targeted delivery. These findings emphasize the potential of bicyclic-Phe as a promising LAT1-selective component, providing a basis for the development of LAT1-targeting compounds based on its structural framework.
Collapse
Affiliation(s)
- Sihui Chen
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chunhuan Jin
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Patel W, Shankar RG, Smith MA, Snodgrass HR, Pirmohamed M, Jorgensen AL, Alfirevic A, Dickens D. Role of Transporters and Enzymes in Metabolism and Distribution of 4-Chlorokynurenine (AV-101). Mol Pharm 2024; 21:550-563. [PMID: 38261609 PMCID: PMC10848289 DOI: 10.1021/acs.molpharmaceut.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
4-Chlorokynurenine (4-Cl-KYN, AV-101) is a prodrug of a NMDA receptor antagonist and is in clinical development for potential CNS indications. We sought to further understand the distribution and metabolism of 4-Cl-KYN, as this information might provide a strategy to enhance the clinical development of this drug. We used excretion studies in rats, in vitro transporter assays, and pharmacogenetic analysis of clinical trial data to determine how 4-Cl-KYN and metabolites are distributed. Our data indicated that a novel acetylated metabolite (N-acetyl-4-Cl-KYN) did not affect the uptake of 4-Cl-KYN across the blood-brain barrier via LAT1. 4-Cl-KYN and its metabolites were found to be renally excreted in rodents. In addition, we found that N-acetyl-4-Cl-KYN inhibited renal and hepatic transporters involved in excretion. Thus, this metabolite has the potential to limit the excretion of a range of compounds. Our pharmacogenetic analysis found that a SNP in N-acetyltransferase 8 (NAT8, rs13538) was linked to levels of N-acetyl-4-Cl-KYN relative to 4-Cl-KYN found in the plasma and that a SNP in SLC7A5 (rs28582913) was associated with the plasma levels of the active metabolite, 7-Cl-KYNA. Thus, we have a pharmacogenetics-based association for plasma drug level that could aid in the drug development of 4-Cl-KYN and have investigated the interaction of a novel metabolite with drug transporters.
Collapse
Affiliation(s)
- Waseema Patel
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - Ravi G. Shankar
- Institute
of Population Health, University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Mark A. Smith
- Vistagen
Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
- Medical
College of Georgia, 1120
15th St, Augusta, Georgia 30912, United States
| | - H. Ralph Snodgrass
- Formerly
at Vistagen Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
| | - Munir Pirmohamed
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - Andrea L. Jorgensen
- Institute
of Population Health, University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Ana Alfirevic
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - David Dickens
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| |
Collapse
|
8
|
Jakobsen S, Nielsen CU. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024; 16:197. [PMID: 38399253 PMCID: PMC10893028 DOI: 10.3390/pharmaceutics16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
9
|
Shi Z, Kaneda-Nakashima K, Ohgaki R, Xu M, Okanishi H, Endou H, Nagamori S, Kanai Y. Inhibition of cancer-type amino acid transporter LAT1 suppresses B16-F10 melanoma metastasis in mouse models. Sci Rep 2023; 13:13943. [PMID: 37626086 PMCID: PMC10457391 DOI: 10.1038/s41598-023-41096-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the leading cause of mortality in cancer patients. L-type amino acid transporter 1 (LAT1, SLC7A5) is a Na+-independent neutral amino acid transporter highly expressed in various cancers to support their growth. Although high LAT1 expression is closely associated with cancer metastasis, its role in this process remains unclear. This study aimed to investigate the effect of LAT1 inhibition on cancer metastasis using B16-F10 melanoma mouse models. Our results demonstrated that nanvuranlat (JPH203), a high-affinity LAT1-selective inhibitor, suppressed B16-F10 cell proliferation, migration, and invasion. Similarly, LAT1 knockdown reduced cell proliferation, migration, and invasion. LAT1 inhibitors and LAT1 knockdown diminished B16-F10 lung metastasis in a lung metastasis model. Furthermore, nanvuranlat and LAT1 knockdown suppressed lung, spleen, and lymph node metastasis in an orthotopic metastasis model. We discovered that the LAT1 inhibitor reduced the cell surface expression of integrin αvβ3. Our findings revealed that the downregulation of the mTOR signaling pathway, induced by LAT1 inhibitors, decreased the expression of integrin αvβ3, contributing to the suppression of metastasis. These results highlight the critical role of LAT1 in cancer metastasis and suggest that LAT1 inhibition may serve as a potential target for anti-metastasis cancer therapy.
Collapse
Affiliation(s)
- Zitong Shi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuko Kaneda-Nakashima
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- MS-CORE, FRC, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Division of Science, Institute for Radiation Sciences, Osaka University, 2-4, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd, Yokohama, Kanagawa, 230-0046, Japan
| | - Shushi Nagamori
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Zhao X, Sakamoto S, Wei J, Pae S, Saito S, Sazuka T, Imamura Y, Anzai N, Ichikawa T. Contribution of the L-Type Amino Acid Transporter Family in the Diagnosis and Treatment of Prostate Cancer. Int J Mol Sci 2023; 24:ijms24076178. [PMID: 37047148 PMCID: PMC10094571 DOI: 10.3390/ijms24076178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The L-type amino acid transporter (LAT) family contains four members, LAT1~4, which are important amino acid transporters. They mainly transport specific amino acids through cell membranes, provide nutrients to cells, and are involved in a variety of metabolic pathways. They regulate the mTOR signaling pathway which has been found to be strongly linked to cancer in recent years. However, in the field of prostate cancer (PCa), the LAT family is still in the nascent stage of research, and the importance of LATs in the diagnosis and treatment of prostate cancer is still unknown. Therefore, this article aims to report the role of LATs in prostate cancer and their clinical significance and application. LATs promote the progression of prostate cancer by increasing amino acid uptake, activating the mammalian target of rapamycin (mTOR) pathway and downstream signals, mediating castration-resistance, promoting tumor angiogenesis, and enhancing chemotherapy resistance. The importance of LATs as diagnostic and therapeutic targets for prostate cancer was emphasized and the latest research results were introduced. In addition, we introduced selective LAT1 inhibitors, including JPH203 and OKY034, which showed excellent inhibitory effects on the proliferation of various tumor cells. This is the future direction of amino acid transporter targeting therapy drugs.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Jiaxing Wei
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Sangjon Pae
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shinpei Saito
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomokazu Sazuka
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yusuke Imamura
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
11
|
Tahara T, Takatani S, Tsuji M, Shibata N, Hosaka N, Inoue M, Ohno M, Ozaki D, Mawatari A, Watanabe Y, Doi H, Onoe H. Characteristic Evaluation of a 11C-Labeled Leucine Analog, l-α-[5- 11C]methylleucine, as a Tracer for Brain Tumor Imaging by Positron Emission Tomography. Mol Pharm 2023; 20:1842-1849. [PMID: 36802622 DOI: 10.1021/acs.molpharmaceut.2c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Amino acid transporters are upregulated in many cancer cells, and system L amino acid transporters (LAT1-4), in particular, LAT1, which preferentially transports large, neutral, and branched side-chain amino acids, are considered a primary target for cancer positron emission tomography (PET) tracer development. Recently, we developed a 11C-labeled leucine analog, l-α-[5-11C]methylleucine ([5-11C]MeLeu), via a continuous two-step reaction of Pd0-mediated 11C-methylation and microfluidic hydrogenation. In this study, we evaluated the characteristics of [5-11C]MeLeu and also compared the sensitivity to brain tumors and inflammation with l-[11C]methionine ([11C]Met) to determine its potential for brain tumor imaging. Competitive inhibition experiments, protein incorporation, and cytotoxicity experiments of [5-11C]MeLeu were performed in vitro. Further, metabolic analyses of [5-11C]MeLeu were performed using a thin-layer chromatogram. The accumulation of [5-11C]MeLeu in tumor and inflamed regions of the brain was compared with [11C]Met and 11C-labeled (S)-ketoprofen methyl ester by PET imaging, respectively. Transporter assay with various inhibitors revealed that [5-11C]MeLeu is mainly transported via system L amino acid transporters, especially LAT1, into A431 cells. The protein incorporation assay and metabolic assay in vivo demonstrated that [5-11C]MeLeu was neither used for protein synthesis nor metabolized. These results indicate that MeLeu is very stable in vivo. Furthermore, the treatment of A431 cells with various concentrations of MeLeu did not change their viability, even at high concentrations (∼10 mM). In brain tumors, the tumor-to-normal ratio of [5-11C]MeLeu was more elevated than that of [11C]Met. However, the accumulation levels of [5-11C]MeLeu were lower than those of [11C]Met (the standardized uptake value (SUV) of [5-11C]MeLeu and [11C]Met was 0.48 ± 0.08 and 0.63 ± 0.06, respectively). In brain inflammation, no significant accumulation of [5-11C]MeLeu was observed at the inflamed brain area. These data suggested that [5-11C]MeLeu was identified as a stable and safe agent for PET tracers and could help detect brain tumors, which overexpress the LAT1 transporter.
Collapse
Affiliation(s)
- Tsuyoshi Tahara
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of In Vivo Imaging, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima 770-8503, Japan
| | - Shuhei Takatani
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mieko Tsuji
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nina Shibata
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nami Hosaka
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Ohno
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daiki Ozaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Aya Mawatari
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Doi
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hirotaka Onoe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
12
|
Hosseini M, Iraji zad A, Vossoughi M, Hosseini M. L-lysine biodetector based on a TOCNFs-coated Quartz Crystal Microbalance (QCM). Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Hutchinson K, Silva DB, Bohlke J, Clausen C, Thomas AA, Bonomi M, Schlessinger A. Describing inhibitor specificity for the amino acid transporter LAT1 from metainference simulations. Biophys J 2022; 121:4476-4491. [PMID: 36369754 PMCID: PMC9748366 DOI: 10.1016/j.bpj.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The human L-type amino acid transporter 1 (LAT1; SLC7A5) is a membrane transporter of amino acids, thyroid hormones, and drugs such as the Parkinson's disease drug levodopa (L-Dopa). LAT1 is found in the blood-brain barrier, testis, bone marrow, and placenta, and its dysregulation has been associated with various neurological diseases, such as autism and epilepsy, as well as cancer. In this study, we combine metainference molecular dynamics simulations, molecular docking, and experimental testing, to characterize LAT1-inhibitor interactions. We first conducted a series of molecular docking experiments to identify the most relevant interactions between LAT1's substrate-binding site and ligands, including both inhibitors and substrates. We then performed metainference molecular dynamics simulations using cryoelectron microscopy structures in different conformations of LAT1 with the electron density map as a spatial restraint, to explore the inherent heterogeneity in the structures. We analyzed the LAT1 substrate-binding site to map important LAT1-ligand interactions as well as newly described druggable pockets. Finally, this analysis guided the discovery of previously unknown LAT1 ligands using virtual screening and cellular uptake experiments. Our results improve our understanding of LAT1-inhibitor recognition, providing a framework for rational design of future lead compounds targeting this key drug target.
Collapse
Affiliation(s)
- Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, California
| | - Joshua Bohlke
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Chase Clausen
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Massimiliano Bonomi
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
14
|
Graff J, Müller J, Sadurní A, Rubin M, Cuissa IAC, Keller C, Hartmann M, Singer S, Gertsch J, Altmann KH. The Evaluation of L-Tryptophan Derivatives as Inhibitors of the LType Amino Acid Transporter LAT1 (SLC7A5). ChemMedChem 2022; 17:e202200308. [PMID: 35895286 PMCID: PMC9545129 DOI: 10.1002/cmdc.202200308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Indexed: 11/07/2022]
Abstract
A series of derivatives of the substrate amino acid l‐tryptophan have been investigated for inhibition of the L‐type amino acid transporter LAT1 (SLC7A5), which is an emerging target in anticancer drug discovery. Of the four isomeric 4‐, 5‐, 6‐, or 7‐benzyloxy‐l‐tryptophans, the 5‐substituted derivative was the most potent, with an IC50 of 19 μM for inhibition of [3H]‐l‐leucine uptake into HT‐29 human colon carcinoma cells. The replacement of the carboxy group in 5‐benzyloxy‐l‐tryptophan by a bioisosteric tetrazole moiety led to a complete loss in potency. Likewise, the corresponding tetrazolide derived from l‐tryptophan itself was found to be neither a substrate nor an inhibitor of the transporter. Increasing the steric bulk at the 5‐position, while reasonably well tolerated in some cases, did not result in an improvement in potency. At the same time, none of these derivatives was found to be a substrate for LAT1‐mediated transport.
Collapse
Affiliation(s)
- Julien Graff
- ETH Zurich: Eidgenossische Technische Hochschule Zurich, Department of Chemistry and Applied Biosciences, SWITZERLAND
| | - Jennifer Müller
- ETH Zürich: Eidgenossische Technische Hochschule Zurich, Chenistry and Applied Biosciences, SWITZERLAND
| | - Anna Sadurní
- ETH Zürich: Eidgenossische Technische Hochschule Zurich, Chemistry and Applied Biosciences, SWITZERLAND
| | - Matthias Rubin
- University of Bern: Universitat Bern, Institute for Biochemistry and Molecular Medicine, SWITZERLAND
| | | | - Claudia Keller
- ETH Zürich: Eidgenossische Technische Hochschule Zurich, Chemistry and Applied Biosciences, SWITZERLAND
| | - Marco Hartmann
- ETH Zurich: Eidgenossische Technische Hochschule Zurich, Chemistry and Applied Biosciences, SWITZERLAND
| | - Simon Singer
- University of Bern: Universitat Bern, Institute for Biochemistry and Molecular Medicine, SWITZERLAND
| | - Jürg Gertsch
- University of Bern: Universitat Bern, Institute for Biochemistry and Molecular Medicine, SWITZERLAND
| | - Karl-Heinz Altmann
- ETH Zurich, Deptm. of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1- 5/10, 8093, Zurich, SWITZERLAND
| |
Collapse
|
15
|
Khavinson V, Linkova N, Kozhevnikova E, Dyatlova A, Petukhov M. Transport of Biologically Active Ultrashort Peptides Using POT and LAT Carriers. Int J Mol Sci 2022; 23:ijms23147733. [PMID: 35887081 PMCID: PMC9323678 DOI: 10.3390/ijms23147733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ultrashort peptides (USPs), consisting of 2–7 amino-acid residues, are a group of signaling molecules that regulate gene expression and protein synthesis under normal conditions in various diseases and ageing. USPs serve as a basis for the development of drugs with a targeted mechanism of action. The purpose of this review is to systematize the available data on USP transport involving POT and LAT transporters in various organs and tissues under normal, pathological and ageing conditions. The carriers of the POT family (PEPT1, PEPT2, PHT1, PHT2) transport predominantly di- and tripeptides into the cell. Methods of molecular modeling and physicochemistry have demonstrated the ability of LAT1 to transfer not only amino acids but also some di- and tripeptides into the cell and out of it. LAT1 and 2 are involved in the regulation of the antioxidant, endocrine, immune and nervous systems’ functions. Analysis of the above data allows us to conclude that, depending on their structure, di- and tripeptides can be transported into the cells of various tissues by POT and LAT transporters. This mechanism is likely to underlie the tissue specificity of peptides, their geroprotective action and effectiveness in the case of neuroimmunoendocrine system disorders.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Correspondence: or ; Tel.: +7-(921)-9110800
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- The Laboratory “Problems of Aging”, Belgorod National Research University, 308015 Belgorod, Russia
| | - Ekaterina Kozhevnikova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Mikhael Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Peter the Great St. Petersburg Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
16
|
Ca 2+-mediated higher-order assembly of heterodimers in amino acid transport system b 0,+ biogenesis and cystinuria. Nat Commun 2022; 13:2708. [PMID: 35577790 PMCID: PMC9110406 DOI: 10.1038/s41467-022-30293-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.
Collapse
|
17
|
Kongpracha P, Wiriyasermkul P, Isozumi N, Moriyama S, Kanai Y, Nagamori S. Simple but efficacious enrichment of integral membrane proteins and their interactions for in-depth membrane proteomics. Mol Cell Proteomics 2022; 21:100206. [PMID: 35085786 PMCID: PMC9062332 DOI: 10.1016/j.mcpro.2022.100206] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples. Fractionation of membranes improves the identification of membrane proteins. Membranes washed with urea or alkaline increase identified transmembrane proteins. Urea wash increases the detection of multispanning transmembrane proteins. Proteomics of urea-washed membranes keeps more protein–protein interactions.
Collapse
Affiliation(s)
- Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan
| | - Pattama Wiriyasermkul
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan
| | - Noriyoshi Isozumi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satomi Moriyama
- Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Collaborative Research for Biomolecular Dynamics, Nara Medical University, Nara, Japan.
| |
Collapse
|
18
|
Wang Y, Qin L, Chen W, Chen Q, Sun J, Wang G. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur J Med Chem 2021; 226:113806. [PMID: 34517305 DOI: 10.1016/j.ejmech.2021.113806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Poor selectivity, potential systemic toxicity and drug resistance are the main challenges associated with chemotherapeutic drugs. MCT1 and MCT4 and LAT1 play vital roles in tumour metabolism and growth by taking up nutrients and are thus potential targets for tumour therapy. An increasing number of studies have shown the feasibility of including these transporters as components of tumour-targeting therapy. Here, we summarize the recent progress in MCT1-, MCT4-and LAT1-based therapeutic strategies. First, protein structures, expression, relationships with cancer, and substrate characteristics are introduced. Then, different drug targeting and delivery strategies using these proteins have been reviewed, including designing protein inhibitors, prodrugs and nanoparticles. Finally, a dual targeted strategy is discussed because these proteins exert a synergistic effect on tumour proliferation. This article concentrates on tumour treatments targeting MCT1, MCT4 and LAT1 and delivery techniques for improving the antitumour effect. These innovative tactics represent current state-of-the-art developments in transporter-based antitumour drugs.
Collapse
Affiliation(s)
- Yang Wang
- Personnel Department, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Liuxin Qin
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Weiwei Chen
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Qing Chen
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Jin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
19
|
Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells. Biomolecules 2021; 11:biom11091314. [PMID: 34572527 PMCID: PMC8467208 DOI: 10.3390/biom11091314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Amino acids are critical for mammalian target of rapamycin complex 1 (mTORC1) activation on the lysosomal surface. Amino acid transporters SLC38A9 and SLC36A1 are the members of the lysosomal amino acid sensing machinery that activates mTORC1. The current study aims to clarify the interaction of SLC38A9 and SLC36A1. Here, we discovered that leucine increased expressions of SLC38A9 and SLC36A1, leading to mTORC1 activation. SLC38A9 interacted with SLC36A1 and they enhanced each other's expression levels and locations on the lysosomal surface. Additionally, the interacting proteins of SLC38A9 in C2C12 cells were identified to participate in amino acid sensing mechanism, mTORC1 signaling pathway, and protein synthesis, which provided a resource for future investigations of skeletal muscle mass.
Collapse
|
20
|
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther 2021; 230:107964. [PMID: 34390745 DOI: 10.1016/j.pharmthera.2021.107964] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Cancer cells require a massive supply of nutrients, including sugars and amino acids-the upregulation of transporters for each nutrient contributes to meet the demand. Distinct from glucose transporters, amino acid transporters include ones whose expression is specific to cancer cells. For example, LAT1 (SLC7A5) displays protein expression mostly limited to the plasma membrane of cancer cells. The exceptions are the placental barrier and the blood-brain barrier, where immunohistochemical and mass spectrometric studies have shown LAT1 expression, although their levels are supposed to be lower than those in cancers. The expression of LAT1 has been reported in cancers from various tissue origins, where high LAT1 expression is related to the poor prognosis of patients. LAT1 is essential for cancer cell growth because the pharmacologic inhibition and knockdown/knockout of LAT1 suppress the proliferation of cancer cells and the growth of xenograft tumors. The inhibition of LAT1 suppresses protein synthesis by downregulating the mTORC1 signaling pathway and mobilizing the general amino acid control (GAAC) pathway in cancer cells. LAT1 is, thus, a candidate molecular target for the diagnosis and therapeutics of cancers. 18F-labeled 3-fluoro-l-α-methyl-tyrosine (FAMT) is used as a LAT1-specific PET probe for cancer detection due to the LAT1 specificity of α-methyl aromatic amino acids. FAMT accumulation is cancer-specific and avoids non-cancer lesions, including inflammation, confirming the cancer-specific expression of LAT1 in humans. Due to the cancer-specific nature, LAT1 can also be used for cancer-specific delivery of anti-tumor agents such as l-para-boronophenylalanine used for boron neutron capture therapy and α-emitting nuclide-labeled LAT1 substrates developed for nuclear medicine treatment. Based on the importance of LAT1 in cancer progression, high-affinity LAT1-specific inhibitors have been developed for anti-tumor drugs. JPH203 (KYT0353) is such a compound designed based on the structure-activity relationship of LAT1 ligands. It is one of the highest-affinity inhibitors with less affecting other transporters. It suppresses tumor growth in vivo without significant toxicity in preclinical studies at doses enough to suppress tumor growth. In the phase-I clinical trial, JPH203 appeared to provide promising activity. Because the mechanisms of action of LAT1 inhibitors are novel, with or without combination with other anti-tumor drugs, they could contribute to the treatment of cancers that do not respond to current therapy. The LAT1-specific PET probe could also be used as companion diagnostics of the LAT1-targeting therapies to select patients to whom therapeutic benefits could be expected. Recently, the cryo-EM structure of LAT1 has been solved, which would facilitate the understanding of the mechanisms of the dynamic interaction of ligands and the binding site, and further designing new compounds with higher activity.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Nicolàs-Aragó A, Fort J, Palacín M, Errasti-Murugarren E. Rush Hour of LATs towards Their Transport Cycle. MEMBRANES 2021; 11:602. [PMID: 34436365 PMCID: PMC8399266 DOI: 10.3390/membranes11080602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
The mammalian SLC7 family comprises the L-amino acid transporters (LATs) and the cationic amino acid transporters (CATs). The relevance of these transporters is highlighted by their involvement in several human pathologies, including inherited rare diseases and acquired diseases, such as cancer. In the last four years, several crystal or cryo-EM structures of LATs and CATs have been solved. These structures have started to fill our knowledge gap that previously was based on the structural biology of remote homologs of the amino acid-polyamine-organocation (APC) transporters. This review recovers this structural and functional information to start generating the molecular bases of the transport cycle of LATs. Special attention is given to the known transporter conformations within the transport cycle and the molecular bases for substrate interaction and translocation, including the asymmetric interaction of substrates at both sides of the plasma membrane.
Collapse
Affiliation(s)
- Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
| | - Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
| |
Collapse
|
22
|
Churchill GC, Strupp M, Factor C, Bremova-Ertl T, Factor M, Patterson MC, Platt FM, Galione A. Acetylation turns leucine into a drug by membrane transporter switching. Sci Rep 2021; 11:15812. [PMID: 34349180 PMCID: PMC8338929 DOI: 10.1038/s41598-021-95255-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Small changes to molecules can have profound effects on their pharmacological activity as exemplified by the addition of the two-carbon acetyl group to make drugs more effective by enhancing their pharmacokinetic or pharmacodynamic properties. N-acetyl-D,L-leucine is approved in France for vertigo and its L-enantiomer is being developed as a drug for rare and common neurological disorders. However, the precise mechanistic details of how acetylation converts leucine into a drug are unknown. Here we show that acetylation of leucine switches its uptake into cells from the L-type amino acid transporter (LAT1) used by leucine to organic anion transporters (OAT1 and OAT3) and the monocarboxylate transporter type 1 (MCT1). Both the kinetics of MCT1 (lower affinity compared to LAT1) and the ubiquitous tissue expression of MCT1 make it well suited for uptake and distribution of N-acetyl-L-leucine. MCT1-mediated uptake of a N-acetyl-L-leucine as a prodrug of leucine bypasses LAT1, the rate-limiting step in activation of leucine-mediated signalling and metabolic process inside cells such as mTOR. Converting an amino acid into an anion through acetylation reveals a way for the rational design of drugs to target anion transporters.
Collapse
Affiliation(s)
- Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK.
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig Maximilians University, Munich, Germany
| | - Cailley Factor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Inselspital, Bern, BE, Switzerland
- Center for Rare Diseases, University Hospital Inselspital Bern, Bern, BE, Switzerland
| | - Mallory Factor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| |
Collapse
|
23
|
Wiriyasermkul P, Moriyama S, Kongpracha P, Nagamori S. [Drug Discovery Targeting an Amino Acid Transporter for Diagnosis and Therapy]. YAKUGAKU ZASSHI 2021; 141:501-510. [PMID: 33790117 DOI: 10.1248/yakushi.20-00204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nutrients are essential for all living organisms. Because growing cancer cells have strong metabolic demands, nutrient transporters are constitutively increased to facilitate the nutrient uptake. Among these nutrient transporters, L-type amino acid transporter 1 (LAT1), which transports large neutral amino acids including essential amino acids, is critical for cancer growth. Therefore, LAT1 has been considered as an attractive target for diagnosis and therapy of cancers. We have developed several lines of compounds for cancer diagnosis and therapy. To diagnose cancer by using positron emission tomography (PET) probes, we have created amino acid derivatives which are selectively transported by LAT1 and accumulated in cancer cells. In addition to amino acid derivatives as the LAT1 inhibitors, we also have made non-amino acid small compounds as anti-cancer drugs which inhibit LAT1 function and suppress tumor growth. The LAT1 targeting anti-cancer drug showed low toxicity but strong effects on various types of cancer cells in animal models. The novel PET probe is approved for clinical research and the new anti-cancer drug has been under clinical trial. Small compounds targeting the amino acid transporter bring us new tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Pornparn Kongpracha
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Shushi Nagamori
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| |
Collapse
|
24
|
Takatani S, Tahara T, Tsuji M, Ozaki D, Shibata N, Hashizume Y, Suzuki M, Onoe H, Watanabe Y, Doi H. Synthesis of L-[5- 11 C]Leucine and L-α-[5- 11 C]Methylleucine via Pd 0 -mediated 11 C-Methylation and Microfluidic Hydrogenation: Potentiality of Leucine PET Probes for Tumor Imaging. ChemMedChem 2021; 16:3271-3279. [PMID: 34128324 DOI: 10.1002/cmdc.202100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 11/06/2022]
Abstract
The efficient synthesis of L-[5-11 C]leucine and L-α-[5-11 C]methylleucine has been investigated using a continuous two-step sequence of rapid reactions consisting of Pd0 -mediated 11 C-methylation and microfluidic hydrogenation. The synthesis of L-[5-11 C]leucine and L-α-[5-11 C]methylleucine was accomplished within 40 min with a decay-corrected radiochemical yield of 15-38 % based on [11 C]CH3 I, radiochemical purity of 95-99 %, and chemical purity of 95-99 %. The Pd impurities in the injectable solution measured using inductively coupled plasma mass spectrometry met the international criteria for human use. Positron emission tomography scanning after an intravenous injection of L-[5-11 C]leucine or L-α-[5-11 C]methyl leucine in A431 tumor-bearing mice was performed. As a result, L-α-[5-11 C]methylleucine was found to be a potentially useful probe for visualizing the tumor. Tissue distribution analysis showed that the accumulation value of L-α-[5-11 C]methylleucine in tumor tissue was high [12±3% injected dose/g tissue (%ID/g)].
Collapse
Affiliation(s)
- Shuhei Takatani
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mieko Tsuji
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Daiki Ozaki
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Nina Shibata
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yoshinobu Hashizume
- RIKEN Program for Drug Discovery and Medical Technology Platforms, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masaaki Suzuki
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,National Center for Geriatrics and Gerontology 35 Gengo, Morioka Obu, Aichi, 474-8511, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, (Japan)
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
25
|
Kaya E, Smith DA, Smith C, Morris L, Bremova-Ertl T, Cortina-Borja M, Fineran P, Morten KJ, Poulton J, Boland B, Spencer J, Strupp M, Platt FM. Acetyl-leucine slows disease progression in lysosomal storage disorders. Brain Commun 2020; 3:fcaa148. [PMID: 33738443 PMCID: PMC7954382 DOI: 10.1093/braincomms/fcaa148] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acetyl-dl-leucine is a derivative of the branched chain amino acid leucine. In observational clinical studies, acetyl-dl-leucine improved symptoms of ataxia, in particular in patients with the lysosomal storage disorder, Niemann-Pick disease type C1. Here, we investigated acetyl-dl-leucine and its enantiomers acetyl-l-leucine and acetyl-d-leucine in symptomatic Npc1-/- mice and observed improvement in ataxia with both individual enantiomers and acetyl-dl-leucine. When acetyl-dl-leucine and acetyl-l-leucine were administered pre-symptomatically to Npc1-/- mice, both treatments delayed disease progression and extended life span, whereas acetyl-d-leucine did not. These data are consistent with acetyl-l-leucine being the neuroprotective enantiomer. Altered glucose and antioxidant metabolism were implicated as one of the potential mechanisms of action of the l-enantiomer in Npc1-/- mice. When the standard of care drug miglustat and acetyl-dl-leucine were used in combination significant synergy resulted. In agreement with these pre-clinical data, when Niemann-Pick disease type C1 patients were evaluated after 12 months of acetyl-dl-leucine treatment, rates of disease progression were slowed, with stabilization or improvement in multiple neurological domains. A beneficial effect of acetyl-dl-leucine on gait was also observed in this study in a mouse model of GM2 gangliosidosis (Sandhoff disease) and in Tay-Sachs and Sandhoff disease patients in individual-cases of off-label-use. Taken together, we have identified an unanticipated neuroprotective effect of acetyl-l-leucine and underlying mechanisms of action in lysosomal storage diseases, supporting its further evaluation in clinical trials in lysosomal disorders.
Collapse
Affiliation(s)
- Ecem Kaya
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Claire Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tatiana Bremova-Ertl
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.,Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, 81377 München, Germany
| | - Mario Cortina-Borja
- Population, Policy and Practice Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Fineran
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital OX3 9DU, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital OX3 9DU, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, Western Gateway Building, College of Medicine and Health, University College Cork, Cork, T12XF62, Ireland
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9RH UK
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, 81377 München, Germany
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
26
|
Quan L, Ohgaki R, Hara S, Okuda S, Wei L, Okanishi H, Nagamori S, Endou H, Kanai Y. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:266. [PMID: 33256804 PMCID: PMC7702703 DOI: 10.1186/s13046-020-01762-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor angiogenesis is regarded as a rational anti-cancer target. The efficacy and indications of anti-angiogenic therapies in clinical practice, however, are relatively limited. Therefore, there still exists a demand for revealing the distinct characteristics of tumor endothelium that is crucial for the pathological angiogenesis. L-type amino acid transporter 1 (LAT1) is well known to be highly and broadly upregulated in tumor cells to support their growth and proliferation. In this study, we aimed to establish the upregulation of LAT1 as a novel general characteristic of tumor-associated endothelial cells as well, and to explore the functional relevance in tumor angiogenesis. METHODS Expression of LAT1 in tumor-associated endothelial cells was immunohistologically investigated in human pancreatic ductal adenocarcinoma (PDA) and xenograft- and syngeneic mouse tumor models. The effects of pharmacological and genetic ablation of endothelial LAT1 were examined in aortic ring assay, Matrigel plug assay, and mouse tumor models. The effects of LAT1 inhibitors and gene knockdown on cell proliferation, regulation of translation, as well as on the VEGF-A-dependent angiogenic processes and intracellular signaling were investigated in in vitro by using human umbilical vein endothelial cells. RESULTS LAT1 was highly expressed in vascular endothelial cells of human PDA but not in normal pancreas. Similarly, high endothelial LAT1 expression was observed in mouse tumor models. The angiogenesis in ex/in vivo assays was suppressed by abrogating the function or expression of LAT1. Tumor growth in mice was significantly impaired through the inhibition of angiogenesis by targeting endothelial LAT1. LAT1-mediated amino acid transport was fundamental to support endothelial cell proliferation and translation initiation in vitro. Furthermore, LAT1 was required for the VEGF-A-dependent migration, invasion, tube formation, and activation of mTORC1, suggesting a novel cross-talk between pro-angiogenic signaling and nutrient-sensing in endothelial cells. CONCLUSIONS These results demonstrate that the endothelial LAT1 is a novel key player in tumor angiogenesis, which regulates proliferation, translation, and pro-angiogenic VEGF-A signaling. This study furthermore indicates a new insight into the dual functioning of LAT1 in tumor progression both in tumor cells and stromal endothelium. Therapeutic inhibition of LAT1 may offer an ideal option to potentiate anti-angiogenic therapies.
Collapse
Affiliation(s)
- Lili Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Saori Hara
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Ling Wei
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.,Present address: School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Minato-ku, 634-8521, Tokyo, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd, Yokohama, 230-0046, Kanagawa, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
27
|
Oda K, Lee Y, Wiriyasermkul P, Tanaka Y, Takemoto M, Yamashita K, Nagamori S, Nishizawa T, Nureki O. Consensus mutagenesis approach improves the thermal stability of system x c - transporter, xCT, and enables cryo-EM analyses. Protein Sci 2020; 29:2398-2407. [PMID: 33016372 PMCID: PMC7679960 DOI: 10.1002/pro.3966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
System xc− is an amino acid antiporter that imports L‐cystine into cells and exports intracellular L‐glutamate, at a 1:1 ratio. As L‐cystine is an essential precursor for glutathione synthesis, system xc− supports tumor cell growth through glutathione‐based oxidative stress resistance and is considered as a potential therapeutic target for cancer treatment. System xc− consists of two subunits, the light chain subunit SLC7A11 (xCT) and the heavy chain subunit SLC3A2 (also known as CD98hc or 4F2hc), which are linked by a conserved disulfide bridge. Although the recent structures of another SLC7 member, L‐type amino acid transporter 1 (LAT1) in complex with CD98hc, have provided the structural basis toward understanding the amino acid transport mechanism, the detailed molecular mechanism of xCT remains unknown. To revealthe molecular mechanism, we performed single‐particle analyses of the xCT‐CD98hc complex. As wild‐type xCT‐CD98hc displayed poor stability and could not be purified to homogeneity, we applied a consensus mutagenesis approach to xCT. The consensus mutated construct exhibited increased stability as compared to the wild‐type, and enabled the cryoelectron microscopy (cryo‐EM) map to be obtained at 6.2 Å resolution by single‐particle analysis. The cryo‐EM map revealed sufficient electron density to assign secondary structures. In the xCT structure, the hash and arm domains are well resolved, whereas the bundle domain shows some flexibility. CD98hc is positioned next to the xCT transmembrane domain. This study provides the structural basis of xCT, and our consensus‐based strategy could represent a good choice toward solving unstable protein structures.
Collapse
Affiliation(s)
- Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yongchan Lee
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Pattama Wiriyasermkul
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, Nara, Japan
| | - Yoko Tanaka
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, Nara, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shushi Nagamori
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, Nara, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
28
|
Colas C. Toward a Systematic Structural and Functional Annotation of Solute Carriers Transporters-Example of the SLC6 and SLC7 Families. Front Pharmacol 2020; 11:1229. [PMID: 32973497 PMCID: PMC7466448 DOI: 10.3389/fphar.2020.01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
SLC transporters are emerging key drug targets. One important step for drug development is the profound understanding of the structural determinants defining the substrate selectivity of each transporter. Recently, the improvement of computational power and experimental methods such as X-ray and cryo-EM crystallography permitted to conduct structure-based studies on specific transporters having important pharmacological impact. However, a lot remains to be discovered regarding their dynamics, transport modulation and ligand recognition. A detailed functional characterization of transporters would provide opportunities to develop new compounds targeting these key drug targets. Here, we are giving an overview of two major human LeuT-fold families, SLC6 and SLC7, with an emphasis on the most relevant members of each family for drug development. We gather the most recent understanding on the structural determinants of selectivity within and across the two families. We then use this information to discuss the benefits of a more generalized structural and functional annotation of the LeuT fold and the implications of such mapping for drug discovery.
Collapse
Affiliation(s)
- Claire Colas
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| |
Collapse
|
29
|
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020; 37:88. [PMID: 32377929 PMCID: PMC7203094 DOI: 10.1007/s11095-020-02826-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.
Collapse
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120, Heidelberg, Germany.
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
30
|
Beneficial Effects of Acetyl-DL-Leucine (ADLL) in a Mouse Model of Sandhoff Disease. J Clin Med 2020; 9:jcm9041050. [PMID: 32276303 PMCID: PMC7230825 DOI: 10.3390/jcm9041050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sandhoff disease is a rare neurodegenerative lysosomal storage disease associated with the storage of GM2 ganglioside in late endosomes/lysosomes. Here, we explored the efficacy of acetyl-DL-leucine (ADLL), which has been shown to improve ataxia in observational studies in patients with Niemann-Pick Type C1 and other cerebellar ataxias. We treated a mouse model of Sandhoff disease (Hexb-/-) (0.1 g/kg/day) from 3 weeks of age with this orally available drug. ADLL produced a modest but significant increase in life span, accompanied by improved motor function and reduced glycosphingolipid (GSL) storage in the forebrain and cerebellum, in particular GA2. ADLL was also found to normalize altered glucose and glutamate metabolism, as well as increasing autophagy and the reactive oxygen species (ROS) scavenger, superoxide dismutase (SOD1). Our findings provide new insights into metabolic abnormalities in Sandhoff disease, which could be targeted with new therapeutic approaches, including ADLL.
Collapse
|
31
|
Pocasap P, Weerapreeyakul N, Timonen J, Järvinen J, Leppänen J, Kärkkäinen J, Rautio J. Tyrosine-Chlorambucil Conjugates Facilitate Cellular Uptake through L-Type Amino Acid Transporter 1 (LAT1) in Human Breast Cancer Cell Line MCF-7. Int J Mol Sci 2020; 21:ijms21062132. [PMID: 32244913 PMCID: PMC7139360 DOI: 10.3390/ijms21062132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
l-type amino acid transporter 1 (LAT1) is an amino acid transporter that is overexpressed in several types of cancer and, thus, it can be a potential target for chemotherapy. The objectives of this study were to (a) synthesize LAT1-targeted chlorambucil derivatives and (b) evaluate their LAT1-mediated cellular uptake as well as antiproliferative activity in vitro in the human breast cancer MCF-7 cell line. Chlorambucil was conjugated to l-tyrosine—an endogenous LAT1 substrate—via either ester or amide linkage (compounds 1 and 2, respectively). While chlorambucil itself did not bind to LAT1, its derivatives 1 and 2 bound to LAT1 with a similar affinity as with l-tyrosine and their respective cellular uptake was significantly higher than that of chlorambucil in MCF-7. The results of our cellular uptake study are indicative of antiproliferative activity, as a higher intracellular uptake of chlorambucil derivatives resulted in greater cytotoxicity than chlorambucil by itself. LAT1 thus contributes to intracellular uptake of chlorambucil derivatives and, therefore, increases antiproliferative activity. The understanding gained from our research can be used in the development of LAT1-targeted anticancer drugs and prodrugs for site-selective and enhanced chemotherapeutic activity.
Collapse
Affiliation(s)
- Piman Pocasap
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (N.W.); (J.R.)
| | - Juri Timonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jukka Leppänen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jussi Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
- Correspondence: (N.W.); (J.R.)
| |
Collapse
|
32
|
Zhang L, Sui C, Yang W, Luo Q. Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci 2020; 15:192-206. [PMID: 32373199 PMCID: PMC7193455 DOI: 10.1016/j.ajps.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Amino acid transporters, which play a vital role in transporting amino acids for the biosynthesis of mammalian cells, are highly expressed in types of tumors. Increasing studies have shown the feasibility of amino acid transporters as a component of tumor-targeting therapy. In this review, we focus on tumor-related amino acid transporters and their potential use in tumor-targeting therapy. Firstly, the expression characteristics of amino acid transporters in cancer and their relationship with tumor growth are reviewed. Secondly, the recognition requirements are discussed, focusing on the "acid-base" properties, conformational isomerism and structural analogues. Finally, recent developments in amino acid transporter-targeting drug delivery strategies are highlighted, including prodrugs and nanocarriers, with special attention to the latest findings of molecular mechanisms and targeting efficiency of transporter-mediated endocytosis. We aim to offer related clues that might lead to valuable tumor-targeting strategies by the utilization of amino acid transporters.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chengguang Sui
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenhan Yang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| |
Collapse
|
33
|
Barthelemy C, André B. Ubiquitylation and endocytosis of the human LAT1/SLC7A5 amino acid transporter. Sci Rep 2019; 9:16760. [PMID: 31728037 PMCID: PMC6856120 DOI: 10.1038/s41598-019-53065-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
The human L-type amino acid transporter 1 (LAT1), also known as SLC7A5, catalyzes the transport of large neutral amino acids across the plasma membrane. As the main transporter of several essential amino acids, notably leucine, LAT1 plays an important role in mTORC1 activation. Furthermore, it is overexpressed in various types of cancer cells, where it contributes importantly to sustained growth. Despite the importance of LAT1 in normal and tumor cells, little is known about the mechanisms that might control its activity, for example by promoting its downregulation via endocytosis. Here we report that in HeLa cells, activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) triggers efficient endocytosis and degradation of LAT1. Under these conditions we found LAT1 downregulation to correlate with increased LAT1 ubiquitylation. This modification was considerably reduced in cells depleted of the Nedd4-2 ubiquitin ligase. By systematically mutagenizing the residues of the LAT1 cytosolic tails, we identified a group of three close lysines (K19, K25, K30) in the N-terminal tail that are important for PMA-induced ubiquitylation and downregulation. Our study thus unravels a mechanism of induced endocytosis of LAT1 elicited by Nedd4-2-mediated ubiquitylation of the transporter's N-terminal tail.
Collapse
Affiliation(s)
- Céline Barthelemy
- Molecular Physiology of the Cell, Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium.
| |
Collapse
|
34
|
Role of L-Type Amino Acid Transporter 1 (LAT1) for the Selective Cytotoxicity of Sesamol in Human Melanoma Cells. Molecules 2019; 24:molecules24213869. [PMID: 31717859 PMCID: PMC6865181 DOI: 10.3390/molecules24213869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/18/2022] Open
Abstract
Sesamol is effective against melanoma cells with less damage to normal cells. The underlying selective cytotoxicity of sesamol in melanoma vs. non-cancerous cells is undefined. Melanoma cells differ from normal cells by over-expression of the L-type amino acid transporter 1 (LAT1). We sought to clarify the transport mechanism on selective cytotoxicity of sesamol in melanoma cells. A human melanoma cell line (SK-MEL-2) and African monkey epithelial cell line (Vero) were used to study the cellular uptake and cytotoxicity of sesamol. The intracellular concentration of sesamol was quantified by UV-HPLC. The cytotoxicity was determined by neutral red uptake assay. Sesamol showed a higher distribution volume and uptake clearance in SK-MEL-2 than Vero cells. Sesamol was distributed by both carrier-mediated and passive transport by having greater carrier-mediated transport into SK-MEL-2 cells than Vero cells. Higher mRNA expression and function of LAT1 over LAT2 were evident in SK-MEL-2 cells compared to Vero cells. Sesamol uptake and sesamol cytotoxicity were inhibited by the LAT1 inhibitor, suggesting LAT1 had a role in sesamol transport and its bioactivity in melanoma. The LAT1-mediated transport of sesamol is indicative of how it engages cytotoxicity in melanoma cells with promising therapeutic benefits.
Collapse
|
35
|
Rigorous sampling of docking poses unveils binding hypothesis for the halogenated ligands of L-type Amino acid Transporter 1 (LAT1). Sci Rep 2019; 9:15061. [PMID: 31636293 PMCID: PMC6803698 DOI: 10.1038/s41598-019-51455-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
L-type Amino acid Transporter 1 (LAT1) plays a significant role in the growth and propagation of cancer cells by facilitating the cross-membrane transport of essential nutrients, and is an attractive drug target. Several halogen-containing L-phenylalanine-based ligands display high affinity and high selectivity for LAT1; nonetheless, their molecular mechanism of binding remains unclear. In this study, a combined in silico strategy consisting of homology modeling, molecular docking, and Quantum Mechanics-Molecular Mechanics (QM-MM) simulation was applied to elucidate the molecular basis of ligand binding in LAT1. First, a homology model of LAT1 based on the atomic structure of a prokaryotic homolog was constructed. Docking studies using a set of halogenated ligands allowed for deriving a binding hypothesis. Selected docking poses were subjected to QM-MM calculations to investigate the halogen interactions. Collectively, the results highlight the dual nature of the ligand-protein binding mode characterized by backbone hydrogen bond interactions of the amino acid moiety of the ligands and residues I63, S66, G67, F252, G255, as well as hydrophobic interactions of the ligand’s side chains with residues I139, I140, F252, G255, F402, W405. QM-MM optimizations indicated that the electrostatic interactions involving halogens contribute to the binding free energy. Importantly, our results are in good agreement with the recently unraveled cryo-Electron Microscopy structures of LAT1.
Collapse
|
36
|
L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nat Commun 2019; 10:1807. [PMID: 31000719 PMCID: PMC6472337 DOI: 10.1038/s41467-019-09837-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/02/2019] [Indexed: 11/26/2022] Open
Abstract
L-amino acid transporters (LATs) play key roles in human physiology and are implicated in several human pathologies. LATs are asymmetric amino acid exchangers where the low apparent affinity cytoplasmic side controls the exchange of substrates with high apparent affinity on the extracellular side. Here, we report the crystal structures of an LAT, the bacterial alanine-serine-cysteine exchanger (BasC), in a non-occluded inward-facing conformation in both apo and substrate-bound states. We crystallized BasC in complex with a nanobody, which blocks the transporter from the intracellular side, thus unveiling the sidedness of the substrate interaction of BasC. Two conserved residues in human LATs, Tyr 236 and Lys 154, are located in equivalent positions to the Na1 and Na2 sites of sodium-dependent APC superfamily transporters. Functional studies and molecular dynamics (MD) calculations reveal that these residues are key for the asymmetric substrate interaction of BasC and in the homologous human transporter Asc-1. L-Amino acid Transporters (LATs) are asymmetric amino acid exchangers. Here the authors determine the crystal structure of a prokaryotic LAT, the alanine-serine-cysteine exchanger (BasC) and identify key residues for asymmetric substrate interaction in both BasC and the homologous human transporter Asc-1 through functional studies.
Collapse
|
37
|
Nodwell MB, Yang H, Merkens H, Malik N, Čolović M, Björn Wagner, Martin RE, Bénard F, Schaffer P, Britton R. 18F-Branched-Chain Amino Acids: Structure-Activity Relationships and PET Imaging Potential. J Nucl Med 2019; 60:1003-1009. [PMID: 30683769 DOI: 10.2967/jnumed.118.220483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
The large, neutral L-type amino acid transporters (LAT1-LAT4) are sodium-independent transporters that are widely distributed throughout the body. LAT expression levels are increased in many types of cancer, and their expression increases as cancers progress, leading to high expression levels in high-grade tumors and metastases. Because of the key role and overexpression of LAT in many types of cancer, radiolabeled LAT substrates are promising candidates for nuclear imaging of malignancies that are not well revealed by conventional radiotracers. The goal of this study was to examine the structure-activity relationships of a series of 18F-labeled amino acids that were predicted to be substrates of the LAT transport system. Methods: Using a photocatalytic radical fluorination, we prepared a series of 11 fluorinated branched-chain amino acids and evaluated them and their nonfluorinated parents in a cell-based LAT affinity assay. We radiofluorinated selected branched-chain amino acids via the same radical fluorination reaction and evaluated tumor uptake in U-87 glioma xenograft-bearing mice. Results: Structure-activity relationship trends observed in a LAT affinity assay were maintained in further in vitro studies, as well as in vivo using a U-87 xenograft model. LAT1 uptake was tolerant of fluorinated amino acid stereochemistry and chain length. PET imaging and biodistribution studies showed that the tracer (S)-5-18F-fluorohomoleucine had rapid tumor uptake, favorable in vivo kinetics, and good stability. Conclusion: By using an in vitro affinity assay, we could predict LAT-mediated cancer cell uptake in a panel of fluorinated amino acids. These predictions were consistent when applied to different cell lines and murine tumor models, and several new tracers may be suitable for further development as oncologic PET imaging agents.
Collapse
Affiliation(s)
- Matthew B Nodwell
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Noeen Malik
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada.,Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Milena Čolović
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Björn Wagner
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; and
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
38
|
Singh N, Scalise M, Galluccio M, Wieder M, Seidel T, Langer T, Indiveri C, Ecker GF. Discovery of Potent Inhibitors for the Large Neutral Amino Acid Transporter 1 (LAT1) by Structure-Based Methods. Int J Mol Sci 2018; 20:ijms20010027. [PMID: 30577601 PMCID: PMC6337383 DOI: 10.3390/ijms20010027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022] Open
Abstract
The large neutral amino acid transporter 1 (LAT1) is a promising anticancer target that is required for the cellular uptake of essential amino acids that serve as building blocks for cancer growth and proliferation. Here, we report a structure-based approach to identify chemically diverse and potent inhibitors of LAT1. First, a homology model of LAT1 that is based on the atomic structures of the prokaryotic homologs was constructed. Molecular docking of nitrogen mustards (NMs) with a wide range of affinity allowed for deriving a common binding mode that could explain the structure−activity relationship pattern in NMs. Subsequently, validated binding hypotheses were subjected to molecular dynamics simulation, which allowed for extracting a set of dynamic pharmacophores. Finally, a library of ~1.1 million molecules was virtually screened against these pharmacophores, followed by docking. Biological testing of the 30 top-ranked hits revealed 13 actives, with the best compound showing an IC50 value in the sub-μM range.
Collapse
Affiliation(s)
- Natesh Singh
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Mariafrancesca Scalise
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Michele Galluccio
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Cesare Indiveri
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
39
|
Sawa R, Nishida H, Yamamoto Y, Wake I, Kai N, Kikkawa U, Okimura Y. Growth hormone and Insulin-like growth factor-I (IGF-I) modulate the expression of L-type amino acid transporters in the muscles of spontaneous dwarf rats and L6 and C2C12 myocytes. Growth Horm IGF Res 2018; 42-43:66-73. [PMID: 30273774 DOI: 10.1016/j.ghir.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/10/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Branched-chain amino acids (BCAAs) have been reported to inhibit several types of muscle atrophy via the activation of the mechanistic target of rapamycin complex 1 (mTORC1). However, we previously found that BCAA did not activate mTORC1 in growth hormone (GH)-deficient spontaneous dwarf rats (SDRs), and that GH restored the stimulatory effect of BCAAs toward the mTORC1. The objective of this study was to determine whether GH or Insulin-like growth factor-I (IGF-I) stimulated the expression of L-type amino acid transporters (LATs) that delivered BCAAs, and whether LATs were involved in the mTORC1 activation. DESIGN After the continuous administration of GH, cross-sectional areas (CSAs) of muscle fibers and LAT mRNA levels in the skeletal muscles of SDRs were compared to those from the SDRs that received normal saline. The effect of GH and IGF-I on LAT mRNA levels were determined in L6 and C2C12 myocytes. The effects of 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), a blocker for LATs, and LAT1 siRNA on mTORC1 activation and cell functions were examined in C2C12 cells. RESULTS GH increased LAT1 and LAT4 mRNA levels in accordance with the increase in CSAs of muscle fibers in SDRs. IGF-I, and not GH, increased LAT1 mRNA levels in cultured L6 myocytes. IGF-I also increased LAT1 mRNA level in another myocyte line, C2C12. Furthermore, IGF-I reduced LAT3 and LAT4 mRNA levels in both cell lines. GH reduced LAT3 and LAT4 mRNA levels in L6 cells. BCH decreased basal C2C12 cell proliferation and reduced IGF-I-induced phosphorylation of 4E-BP1 and S6K, both of which are mTORC1 targets, but LAT1 siRNA did not affect the phosphorylation. This suggests that BCH may exert its effect via other pathway than LAT1. CONCLUSIONS IGF-I increased LAT1 mRNA level in myocytes. However, the role of LAT1 in IGF-I-induced mTORC1 activation and cell functions remains unclear.
Collapse
Affiliation(s)
- Ran Sawa
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Hikaru Nishida
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Yu Yamamoto
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ikumi Wake
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Noriko Kai
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan
| | - Ushio Kikkawa
- Division of Signal Functions, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiko Okimura
- Department of Nutrition and Food Science, Kobe Women's University Graduate School of Life Sciences, 2-1 Higashisuma-aoyama, Suma-ku, Kobe 654-8585, Japan.
| |
Collapse
|
40
|
Chien HC, Colas C, Finke K, Springer S, Stoner L, Zur AA, Venteicher B, Campbell J, Hall C, Flint A, Augustyn E, Hernandez C, Heeren N, Hansen L, Anthony A, Bauer J, Fotiadis D, Schlessinger A, Giacomini KM, Thomas AA. Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1). J Med Chem 2018; 61:7358-7373. [PMID: 30048132 DOI: 10.1021/acs.jmedchem.8b01007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The L-type amino acid transporter 1 (LAT1, SLC7A5) transports essential amino acids across the blood-brain barrier (BBB) and into cancer cells. To utilize LAT1 for drug delivery, potent amino acid promoieties are desired, as prodrugs must compete with millimolar concentrations of endogenous amino acids. To better understand ligand-transporter interactions that could improve potency, we developed structural LAT1 models to guide the design of substituted analogues of phenylalanine and histidine. Furthermore, we evaluated the structure-activity relationship (SAR) for both enantiomers of naturally occurring LAT1 substrates. Analogues were tested in cis-inhibition and trans-stimulation cell assays to determine potency and uptake rate. Surprisingly, LAT1 can transport amino acid-like substrates with wide-ranging polarities including those containing ionizable substituents. Additionally, the rate of LAT1 transport was generally nonstereoselective even though enantiomers likely exhibit different binding modes. Our findings have broad implications to the development of new treatments for brain disorders and cancer.
Collapse
Affiliation(s)
- Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Claire Colas
- Department of Pharmacological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Karissa Finke
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Seth Springer
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Laura Stoner
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Arik A Zur
- Department of Bioengineering and Therapeutic Sciences , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Brooklynn Venteicher
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Jerome Campbell
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Colton Hall
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Andrew Flint
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Evan Augustyn
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Christopher Hernandez
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Nathan Heeren
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Logan Hansen
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Abby Anthony
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Justine Bauer
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure , University of Bern , 3012 Bern , Switzerland
| | - Avner Schlessinger
- Department of Pharmacological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Allen A Thomas
- Department of Chemistry , University of Nebraska at Kearney , Kearney , Nebraska 68849 , United States
| |
Collapse
|
41
|
Kärkkäinen J, Gynther M, Kokkola T, Petsalo A, Auriola S, Lahtela-Kakkonen M, Laine K, Rautio J, Huttunen KM. Structural properties for selective and efficient l-type amino acid transporter 1 (LAT1) mediated cellular uptake. Int J Pharm 2018; 544:91-99. [DOI: 10.1016/j.ijpharm.2018.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/24/2022]
|
42
|
Barthelemy C, Barry AO, Twyffels L, André B. FTY720-induced endocytosis of yeast and human amino acid transporters is preceded by reduction of their inherent activity and TORC1 inhibition. Sci Rep 2017; 7:13816. [PMID: 29062000 PMCID: PMC5653847 DOI: 10.1038/s41598-017-14124-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
FTY720 is a sphingoid base analog that acts as an anticancer agent in animal models. Its effect on tumor cells stems largely from its ability to trigger endocytosis of several nutrient transporters. The observation that FTY720 similarly stimulates downregulation of amino acid permeases in yeast suggests that the cellular mechanisms it targets, which are still poorly characterized, are evolutionarily conserved. We here report that adding FTY720 to yeast cells results in rapid inhibition of the intrinsic activity of multiple permeases. This effect is associated with inhibition of the TORC1 kinase complex, which in turn promotes ubiquitin-dependent permease endocytosis. Further analysis of the Gap1 permease showed that FTY720 elicits its ubiquitylation via the same factors that promote this modification when TORC1 is inhibited by rapamycin. We also show that FTY720 promotes endocytosis of the LAT1/SLC7A5 amino acid transporter in HeLa cells, this being preceded by loss of its transport activity and by mTORC1 inhibition. Our data suggest that in yeast, TORC1 deactivation resulting from FTY720-mediated inhibition of membrane transport elicits permease endocytosis. The same process seems to occur in human cells even though our data and previous reports suggest that FTY720 promotes transporter endocytosis via an additional mechanism insensitive to rapamycin.
Collapse
Affiliation(s)
- Céline Barthelemy
- Molecular Physiology of the Cell, Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium
| | - Abdoulaye Oury Barry
- Molecular Physiology of the Cell, Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium.
| |
Collapse
|
43
|
Zhang Y, Wang P, Lin S, Mercier Y, Yin H, Song Y, Zhang X, Che L, Lin Y, Xu S, Feng B, De Wu, Fang Z. mTORC1 signaling-associated protein synthesis in porcine mammary glands was regulated by the local available methionine depending on methionine sources. Amino Acids 2017; 50:105-115. [PMID: 28983783 DOI: 10.1007/s00726-017-2496-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Mechanistic target of rapamycin complex1 (mTORC1) activation and protein synthesis varied with methionine sources; however, the related mechanisms are largely unknown. Porcine mammary epithelial cells (PMEC) and mammary tissue slices (MTS) were used to test whether methionine precursors differ in providing the available methionine and thus differ in mTORC1 signaling-associated protein synthesis. PMEC with methionine deprivation for 8 h and MTS from lactating sows were cultured for 24 and 2 h, respectively, with treatment media without methionine (negative control, NC) or supplemented with 0.6 mM (for PMEC) and 0.1 mM (for MTS) of L-methionine (L-MET), D-methionine (D-MET), DL-2-hydroxy-4-(methylthio) butyric acid (HMTBA), or keto-methyl(thio)butanoic acid (KMB). The measurements included: phosphorylation of mTORC1 signaling, fractional protein synthesis rate (FSR), amino acids (AA) profile, and enzyme activities. Compared with the NC treatment, activated mTORC1 signaling as manifested by higher (P < 0.05) protein abundance of phosphorylated-S6 Kinase 1 (P-S6K1) and phosphorylated-4E-binding Protein 1 (P-4E-BP1) in PMEC and MTS, and increased protein synthesis as indicated by higher (P < 0.05) FSR in MTS occurred in L-MET and HMTBA treatments rather than in D-MET treatment. Compared with the NC treatment, methionine concentration and ratio of methionine to lysine in MTS increased (P < 0.05) in L-MET and HMTBA treatments but not in D-MET treatment, and activities of enzymes responsible for conversion of D-MET and HMTBA to keto-methionine in mammary tissues were about 10 and 50%, respectively, of that in liver. Taken together, mTORC1 signaling-associated protein synthesis in porcine mammary glands was regulated by the local available methionine depending on methionine sources.
Collapse
Affiliation(s)
- Yalin Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Peng Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Sen Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | | | - Huajun Yin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yumo Song
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
44
|
Nakai N, Kawano F, Murakami T, Nakata K, Higashida K. Leucine supplementation after mechanical stimulation activates protein synthesis via L-type amino acid transporter 1 in vitro. J Cell Biochem 2017; 119:2094-2101. [PMID: 28856713 DOI: 10.1002/jcb.26371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/23/2017] [Indexed: 11/11/2022]
Abstract
Branched-chain amino acid supplements consumed following exercise are widely used to increase muscle mass. Although both exercise (ie, mechanical stimulation) and branched-chain amino acid leucine supplementation have been reported to stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTOR) signaling pathway independently, the mechanisms underlying their synergistic effects are largely unknown. Utilizing cultured differentiated C2C12 myotubes, we established a combination treatment model in which the cells were subjected to cyclic uniaxial mechanical stretching (4 h, 15%, 1 Hz) followed by stimulation with 2 mM leucine for 45 min. Phosphorylation of p70 S6 kinase (p70S6K), an mTOR-regulated marker of protein translation initiation, was significantly increased following mechanical stretching alone but returned to the baseline after 4 h. Leucine supplementation further increased p70S6K phosphorylation, with a greater increase observed in the stretched cells than in the non-stretched cells. Notably, the expression of L-type amino acid transporter 1 (LAT1), a stimulator of the mTOR pathway, was also increased by mechanical stretching, and siRNA-mediated knockdown partially attenuated leucine-induced p70S6K phosphorylation. These results suggest that mechanical stretching promotes LAT1 expression and, consequently, amino acid uptake, leading to enhanced leucine-induced activation of protein synthesis. LAT1 has been demonstrated to be a point of crosstalk between exercise- and nutrition-induced skeletal muscle growth.
Collapse
Affiliation(s)
- Naoya Nakai
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Nagano, Japan
| | - Taro Murakami
- Department of Nutrition, Shigakkan University, Ohbu, Aichi, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
| | - Kazuhiko Higashida
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| |
Collapse
|
45
|
Nodwell MB, Yang H, Čolović M, Yuan Z, Merkens H, Martin RE, Bénard F, Schaffer P, Britton R. 18F-Fluorination of Unactivated C-H Bonds in Branched Aliphatic Amino Acids: Direct Synthesis of Oncological Positron Emission Tomography Imaging Agents. J Am Chem Soc 2017; 139:3595-3598. [PMID: 28248493 DOI: 10.1021/jacs.6b11533] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A mild and selective photocatalytic C-H 18F-fluorination reaction has been developed that provides direct access to 18F-fluorinated amino acids. The biodistribution and uptake of three 18F-labeled leucine analogues via LAT1 mediated transport in several cancer cell lines is reported. Positron emission tomography imaging of mice bearing PC3 (prostate) or U87 (glioma) xenografts using 5-[18F]-fluorohomoleucine showed high tumor uptake and excellent tumor visualization, highlighting the utility of this strategy for rapid tracer discovery for oncology.
Collapse
Affiliation(s)
- Matthew B Nodwell
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF , Vancouver, British Columbia V6T 2A3, Canada
| | - Milena Čolović
- Department of Molecular Oncology, BC Cancer Agency , Vancouver, British Columbia V5Z 1L3 Canada
| | - Zheliang Yuan
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada.,Life Sciences Division, TRIUMF , Vancouver, British Columbia V6T 2A3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency , Vancouver, British Columbia V5Z 1L3 Canada
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency , Vancouver, British Columbia V5Z 1L3 Canada
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada.,Life Sciences Division, TRIUMF , Vancouver, British Columbia V6T 2A3, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S2, Canada
| |
Collapse
|
46
|
Kongpracha P, Nagamori S, Wiriyasermkul P, Tanaka Y, Kaneda K, Okuda S, Ohgaki R, Kanai Y. Structure-activity relationship of a novel series of inhibitors for cancer type transporter L-type amino acid transporter 1 (LAT1). J Pharmacol Sci 2017; 133:96-102. [PMID: 28242177 DOI: 10.1016/j.jphs.2017.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023] Open
Abstract
L-type amino acid transporter 1 (LAT1) is known as a cancer-type amino acid transporter. In cancer cells, LAT1 is responsible for the cellular uptake of many essential amino acids including leucine that activates mechanistic/mammalian target of rapamycin (mTOR), regulating cancer cell growth. In this study, we designed a novel series of LAT1 inhibitors, SKN101-105, based on the structure of triiodothyronine (T3), a known LAT1 blocker. The compounds consist of core structure of 2-amino-3-[3,5-dichloro-4-(naphthalene-1-methoxy)-phenyl]-propanoic acid and different modifications on the naphthalene. Among them, the compounds including SKN103 with a modified phenyl group at C-7 position of naphthalene inhibited LAT1-mediated leucine transport, whereas SKN102 with a phenyl group at C-6 position did not, indicating the importance of the position of substituents on the naphthalene for the interaction with LAT1. SKN103 was suggested to be a non-transportable blocker rather than a substrate of LAT1 and inhibited LAT1 in a competitive manner with the Ki value of 2.1 μM. SKN103 suppressed mTOR activity and the growth of cancer cells. Moreover, SKN103 in combination with cisplatin additively enhanced the growth inhibition in cancer cells. This study provides an additional insight into the structure-activity relationship of LAT1 ligands, which could lead to designing desirable LAT1 inhibitors.
Collapse
Affiliation(s)
- Pornparn Kongpracha
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shushi Nagamori
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Pattama Wiriyasermkul
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yoko Tanaka
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuko Kaneda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
47
|
El-Ghawet HA, Gadallah AA, El-Mansi AA, Amin AH, El-Sayyad HIH. Markers of Heart, Lung and Dorsal Aorta Damage of Mother Rats and Their Neonates Post Therapeutic Treatment with Doxorubicin, Cisplatin and 5-Flurouracil. Chin Med 2017. [DOI: 10.4236/cm.2017.83007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Zur AA, Chien HC, Augustyn E, Flint A, Heeren N, Finke K, Hernandez C, Hansen L, Miller S, Lin L, Giacomini KM, Colas C, Schlessinger A, Thomas AA. LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates. Bioorg Med Chem Lett 2016; 26:5000-5006. [PMID: 27624080 DOI: 10.1016/j.bmcl.2016.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/27/2016] [Accepted: 09/01/2016] [Indexed: 01/23/2023]
Abstract
Large neutral amino acid transporter 1 (LAT1) is a solute carrier protein located primarily in the blood-brain barrier (BBB) that offers the potential to deliver drugs to the brain. It is also up-regulated in cancer cells, as part of a tumor's increased metabolic demands. Previously, amino acid prodrugs have been shown to be transported by LAT1. Carboxylic acid bioisosteres may afford prodrugs with an altered physicochemical and pharmacokinetic profile than those derived from natural amino acids, allowing for higher brain or tumor levels of drug and/or lower toxicity. The effect of replacing phenylalanine's carboxylic acid with a tetrazole, acylsulfonamide and hydroxamic acid (HA) bioisostere was examined. Compounds were tested for their ability to be LAT1 substrates using both cis-inhibition and trans-stimulation cell assays. As HA-Phe demonstrated weak substrate activity, its structure-activity relationship (SAR) was further explored by synthesis and testing of HA derivatives of other LAT1 amino acid substrates (i.e., Tyr, Leu, Ile, and Met). The potential for a false positive in the trans-stimulation assay caused by parent amino acid was evaluated by conducting compound stability experiments for both HA-Leu and the corresponding methyl ester derivative. We concluded that HA's are transported by LAT1. In addition, our results lend support to a recent account that amino acid esters are LAT1 substrates, and that hydrogen bonding may be as important as charge for interaction with the transporter binding site.
Collapse
Affiliation(s)
- Arik A Zur
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94158, United States.
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94158, United States
| | - Evan Augustyn
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States
| | - Andrew Flint
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States
| | - Nathan Heeren
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States
| | - Karissa Finke
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States
| | - Christopher Hernandez
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States
| | - Logan Hansen
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States
| | - Sydney Miller
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States
| | - Lawrence Lin
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94158, United States
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94158, United States
| | - Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, United States.
| |
Collapse
|