1
|
Nazir U, Fu Z, Zheng X, Zafar MH, Yang Z, Wang Z, Yang H. Transcriptomic analysis of ileal adaptations and growth responses in growing hens supplemented with alanyl-glutamine dipeptide. Poult Sci 2024; 103:104479. [PMID: 39500264 PMCID: PMC11570710 DOI: 10.1016/j.psj.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The growing phase of laying hens is crucial for growth and development due to its direct impact on their productivity during laying phase. During initial growth phase, intestinal tract undergoes rapid development which requires plenty of nutrients to help laying hens grow and mature. This study investigated the effect of Alanyl-Glutamine (Aln-Gln) levels on growth performance, ileal morphology and transcriptomic analysis of growing Hy-line brown hens. A total of 480 day old Hy-line brown chicks having similar body weight (BW) were randomly divided to be fed diets having 0%, 0.1%, 0.2% and 0.3% Aln-Gln for 6-wks (8 replicates/group, 15 birds/replicate). One bird from every pen was slaughtered and morphological parameters of ileum were evaluated. Results taken on day 42 revealed an improved average daily gain (ADG), final body weight (FBW) and feed-to-gain ratio (F/G) in the birds that consumed 0.2% and 0.3% Aln-Gln supplemented diet (P < 0.05). Ileal morphological assays showed that villus height, villus width and villus to crypts ratio (V/C) were significantly increased at 42 days of age in birds fed diets with 0.2% Aln-Gln (P<0.05). The RNA sequencing (RNA-Seq) was executed to identify differentially expressed genes (DEGs) among groups that found 2265 DEGs (1256 up-regulated; 1009 down-regulated) in ileum tissue. According to the Kyoto Encyclopedia of Genes (KEGG) and Genomic Pathway Enrichment Analysis, majority of DEGs indicated change in metabolic pathways. Genes related to growth factors, intestinal morphology and protein metabolism were up-regulated in test groups as compared to control group. In conclusion, addition of Aln-Gln to the diet improved growth performance and ileum development in growing hens; transcriptomic analysis revealed up-regulation of genes related to growth and intestinal morphology.
Collapse
Affiliation(s)
- Usman Nazir
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Zhenming Fu
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Xucheng Zheng
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Muhamamd Hammad Zafar
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhiyue Wang
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Haiming Yang
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China.
| |
Collapse
|
2
|
Yu M, Chen H, Chen C, Zhao C, Zhou Q, Xie L, Wang T. Hyperglycemia-depleted glutamine contributes to the pathogenesis of diabetic corneal endothelial dysfunction. Exp Eye Res 2024; 249:110124. [PMID: 39396694 DOI: 10.1016/j.exer.2024.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Diabetic mellitus (DM) causes various complications, including the corneal endothelial dysfunction that leads to corneal edema and vision loss, especially in the DM patients with intraocular surgeries. However, the pathogenic mechanism of hyperglycemia-caused corneal endothelial dysfunction remains incomplete understood. Here we firstly screened and identified the glutamine contents of aqueous humor (AH) were significantly reduced in the type 2 diabetic patients and type 1 and type 2 diabetic mice. To explore the potential therapeutic effects of glutamine (Gln) supplement on the protection of diabetic corneal endothelial dysfunction, we performed the anterior chamber perfusion with the addition of L-alanyl-L-glutamine (Ala-Gln), and confirmed that Ala-Gln supplement not only accelerated the resolution of corneal edema and recovery of corneal thickness, but also preserved the regular arrangement and barrier-pump function of cornea. Mechanistically, we revealed that the supplements of Ala-Gln protect corneal endothelial cells (CECs) from the deleterious effects of high glucose-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Overall, these results indicate the Gln depletion plays an important role in the diabetic corneal endothelial dysfunction, while the Ala-Gln supplement during intraocular surgery provide an effective prevention strategy through regulating the redox homeostasis and mitochondrial function of corneal endothelium.
Collapse
Affiliation(s)
- Mengmeng Yu
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Huilin Chen
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Can Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Eye Hospital of Shandong First Medical University, Jinan, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Eye Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Nazir U, Fu Z, Zheng X, Zafar MH, Chen Y, Yang Z, Wang Z, Yang H. Effects of Alanyl-Glutamine Dipeptide Supplementation on Growth Performance, Nutrient Digestibility, Digestive Enzyme Activity, Immunity, and Antioxidant Status in Growing Laying Hens. Animals (Basel) 2024; 14:2934. [PMID: 39457865 PMCID: PMC11503830 DOI: 10.3390/ani14202934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Alanyl-glutamine (Aln-Gln), a highly soluble and stable Glutamine-dipeptide, is known to improve the performance of poultry birds. This study aimed to investigate the effect of Aln-Gln during the rearing period on growth performance, nutrient digestibility, digestive enzyme activity, immunity, antioxidant status and relative gene expression of Hy-Line brown hens. A total of 480 healthy day-old Hy-line brown chicks with similar body weights were randomly divided into four dietary groups (8 replicates/group and 15 birds/replicate). Groups A, B, C and D were fed diets containing 0%, 0.1%, 0.2% and 0.3% Aln-Gln, respectively, for 6 weeks. The body weight (BW) and average daily gain (ADG) were higher in hens fed test diets compared with the control (p < 0.05). The feed conversion ratio (FCR) was better in test groups as compared to the control group (p < 0.05). The ADFI showed no significant difference between the groups. Dietary treatments had no effect on dry matter (DM), organic matter (OM) and crude fiber (CF) digestibility. The Aln-Gln also improved gross energy (GE) and crude protein (CP) digestibility (p < 0.05). It has also increased IgG levels in groups C and D. IgM levels were similar to the control in B, C and D. The Aln-Gln increased IL-1 in B and C, IL-2 in C and D, and IL-6 in all test groups (p < 0.05). The supplementation of Aln-Gln had no effect on serum antioxidant indices like CAT, MDA, GSH-PX, GSH, and SOD in 42-day-old growing hens. Aln-Gln supplementation had no significant effect (p > 0.05) on the activity of amylase and lipase, however, a significant improvement (p < 0.05) in the activities of trypsin and chymotrypsin was observed in the test groups. Supplemented Aln-Gln levels in the birds' diets led to an increase in the expression of genes related to growth factors (IGF-1, IGFBP-5), immune markers (IL-1, IL-2, IL-6) and antioxidant status (GSH-Px1), as compared to control group. Aln-Gln supplementation in Hy-Line brown hens during their growing period improved growth, nutrient digestibility, immunity and digestive enzymes activity. These findings suggest that Aln-Gln is a promising dietary additive for enhancing poultry performance.
Collapse
Affiliation(s)
- Usman Nazir
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhenming Fu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xucheng Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Hammad Zafar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuanjing Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Fan L, Liu X, Deng Y, Zheng X. Preparation of Glutamine-Enriched Fermented Feed from Corn Gluten Meal and Its Functionality Evaluation. Foods 2023; 12:4336. [PMID: 38231836 PMCID: PMC10706031 DOI: 10.3390/foods12234336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
China faces a persistent deficiency in feed protein resources. Enhancing the utilization efficiency of indigenous feed protein resources emerges as a viable strategy to alleviate the current deficit in protein feed supply. Corn gluten meal (CGM), characterized by a high proportion of crude protein and glutamine, is predominantly employed in animal feed. Nonetheless, the water-insolubility of CGM protein hampers its protein bioavailability when utilized as feed material. The aim of this study was to augment protein bioavailability, liberate glutamine peptides from CGM, and produce glutamine-enriched CGM fermented feed. We executed a co-fermentation protocol using Bacillus subtilis A5, Lactobacillus 02002, and acid protease to generate the CGM fermented feed. Subsequent in vivo experiments with broilers were conducted to assess the efficacy of the fermented product. The findings revealed that the soluble protein, glutamine, small peptides, and lactic acid contents in the fermented feed increased by 69.1%, 700%, 47.6%, and 125.9%, respectively. Incorporating 15% and 30% CGM fermented feed into the diet markedly enhanced the growth performance and intestinal health of broilers, positively modulated the cecal microbiota structure, and augmented the population of beneficial bacteria, specifically Lactobacillus. These results furnish both experimental and theoretical foundations for deploying CGM fermented feed as an alternative protein feed resource.
Collapse
Affiliation(s)
- Lei Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
| | - Xiaolan Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Yongping Deng
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Xiqun Zheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
5
|
Zhang X, Liu D, Ye Z, Chen X, Chen H, Ye M. Gastroprotective effect of the Lachnum polysaccharide and polysaccharide-dipeptide conjugates against gastric ulcer. Food Chem Toxicol 2023; 174:113661. [PMID: 36803919 DOI: 10.1016/j.fct.2023.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Polysaccharides from Lachnum have many important biological activities. The LEP2a-dipeptide derivative (LAG) was obtained by carboxymethyl modification and alanyl-glutamine modification of LEP2a, an extracellular polysaccharide component of Lachnum. Mice with acute gastric ulcers were treated with 50 (low doses) and 150 (high doses) mg/kg, and their therapeutic effects were evaluated from the aspects of pathological damage to gastric tissue, oxidative stress response and inflammatory signal cascade reaction. High doses of LAG and LEP2a significantly inhibited pathological damage to the gastric mucosa, increased the activities of SOD and GSH-Px, and decreased the levels of MDA, and MPO. LEP-2A and LAG could also inhibit the production of proinflammatory factors and reduce the inflammatory response. They significantly decreased the levels of IL-6, IL-1β and TNF-α, while upregulated the level of PGE2 at high doses. LAG and LEP2a inhibited the protein expression of p-JNK, p-ERK, p-P38, p-IKK, p-IKB α and p-NF-KBP65. LAG and LEP2a protect the gastric mucosa in mice with ulcers by improving oxidative stress, blocking the MAPK/NF-κB pathway and inhibiting the production of inflammatory factors, and the anti-ulcer activity of LAG is superior to that of LEP2a.
Collapse
Affiliation(s)
- Xinmiao Zhang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dong Liu
- Department of Horticulture and Landscape, Anqing Vocational and Technical College, Anqing, 246003, China.
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xue Chen
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
6
|
Production of Corn Protein Hydrolysate with Glutamine-Rich Peptides and Its Antagonistic Function in Ulcerative Colitis In Vivo. Foods 2022; 11:foods11213359. [PMID: 36359970 PMCID: PMC9657542 DOI: 10.3390/foods11213359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis is a typical chronic inflammatory disease of the gastrointestinal tract, which has become a serious hazard to human health. The purpose of the present study was to evaluate the antagonistic effect of corn protein hydrolysate with glutamine-rich peptides on ulcerative colitis. The sequential hydrolysis of corn gluten meal by Alcalase and Protamex was conducted to prepare the hydrolysate, and then the mouse ulcerative colitis model induced by dextran sulfate sodium was applied to evaluate its biological activities. The results indicated that the hydrolysate significantly improved weight loss (p < 0.05), reduced the colonic shortening and the disease activity index, diminished the infiltration of inflammatory cells in the colonic tissue, and reduced the permeability of the colonic mucosa in mice. In addition, the hydrolysate decreased the contents of pro-inflammatory factors IL-1β, IL-6, and TNF-α, increased the anti-inflammatory factor IL-10 and oxidative stress markers GSH-Px and SOD in the animal tests. Moreover, the hydrolysate also regulated the abundance and diversity of the intestinal microbiota, improved the microbiota structure, and increased the content of beneficial bacteria including Lactobacillus and Pediococcus. These results indicated that the hydrolysate might be used as an alternative natural product for the prevention of ulcerative colitis and could be further developed into a functional food.
Collapse
|
7
|
Wu Z, Li Y, Fang Y, Zhang J, Yang T, Zhu H, Tao G, Ding Z, Zhang L, Shi G. Adenylation domains of nonribosomal peptide synthetase: A potential biocatalyst for synthesis of dipeptides and their derivatives. Enzyme Microb Technol 2022; 160:110089. [DOI: 10.1016/j.enzmictec.2022.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/10/2023]
|
8
|
Zhou Y, Zuo A, Li Y, Zhang Y, Yi Z, Zhao D, Tang J, Qu F, Cao S, Mao Z, Jin J, Liu Z. Molecular characterization of adenosine monophosphate deaminase 1 and its regulatory mechanism for inosine monophosphate formation in triploid crucian carp. Front Physiol 2022; 13:970939. [PMID: 36111156 PMCID: PMC9468423 DOI: 10.3389/fphys.2022.970939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Inosine monophosphate (IMP) is the main flavoring substance in aquatic animal, and adenosine monophosphate deaminase1 (AMPD1) gene is a key gene in IMP formation. At present, the research on the mechanism of AMPD1 regulating IMP formation in aquatic animal is still blank. In this study, in order to study the mechanism of AMPD1 regulating IMP formation in fish, the full open reading frame (ORF) of AMPD1 which was 2160bp was obtained for the first time in triploid crucian carp (Carassius auratus). It encoded 719 amino acids with a molecular mass of 82.97 kDa, and the theoretical isoelectric point value was 6.31. The homology analysis showed that the homology of triploid crucian carp and diploid Carassius auratus was the highest, up to 99%. And the phylogenetic tree showed that triploid crucian carp was grouped with diploid Carassius auratus, Culter alburnus, and Danio rerio. And real-time fluorescence quantitative results showed that AMPD1 was expressed specifically in muscle of triploid crucian carp (p < 0.05). The results of detection the localization of AMPD1 in cells indicated that the AMPD1 was mainly localized in cytoplasm and cell membrane. Further, we examined the effects of glutamate which was the promotor of IMP formation on the expression of AMPD1 and the formation of IMP in vivo and in vitro experiments, the results showed that 3% glutamate and 2 mg/ml glutamate could significantly promote AMPD1 expression and IMP formation in triploid crucian carp muscle tissue and muscle cells (p < 0.05). Then we inhibited the expression of AMPD1 in vivo and in vitro experiments, we found the formation of IMP in muscle tissue and muscle cells of triploid crucian carp all were inhibited and they affected the gene expression of AMPK-mTOR signaling pathway. The all results showed that AMPD1 mediated glutamate through AMPK-mTOR signaling pathway to regulate the formation of fish IMP.
Collapse
Affiliation(s)
- Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Anli Zuo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yingjie Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yu Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zilin Yi
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
9
|
Xia J, Fan H, Yang J, Song T, Pang L, Deng H, Ren Z, Deng J. Research progress on diarrhoea and its mechanism in weaned piglets fed a high-protein diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1277-1287. [PMID: 34719816 DOI: 10.1111/jpn.13654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022]
Abstract
In order to pursue faster growth and development of weaned piglets, increased dietary protein (CP) levels were favoured by the pig industry and the feed industry. The digestive organs of piglets were not fully developed at weaning, and the digestive absorption capacity of protein was limited. High-protein diets can cause allergic reactions in piglets, destroy intestinal structural integrity, reduce immunity, and cause intestinal flora imbalance. Undigested proteins were prone to produce toxic substances, such as ammonia and biogenic amines, after fermentation in the hindgut, which negatively affects the health of the intestine and eventually causes reduced growth performance and diarrhoea in piglets. This review revealed the mechanism of diarrhoea caused by high-protein diets in weaned piglets and provided ideas for preventing diarrhoea in weaned piglets.
Collapse
Affiliation(s)
- Jiangying Xia
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoyue Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ju Yang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianhao Song
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianfeng Pang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huidan Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihua Ren
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junliang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Molinari GS, Wojno M, McCracken VJ, Kwasek K. The use of dipeptide supplementation as a means of mitigating the negative effects of dietary soybean meal on Zebrafish Danio rerio. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110958. [PMID: 33865992 DOI: 10.1016/j.cbpa.2021.110958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Soybean meal (SBM) inclusion in aquaculture diets has been found to negatively affect growth and induce intestinal inflammation in fish. The objective of this study was to determine the effect of health-promoting dipeptide supplementation into SBM-based feeds on growth performance, intestinal health, and muscle free amino acid composition, an indicator of dietary amino acid availability, in a zebrafish model. There were five treatment groups in this study. The first group ((+) Control) received a fishmeal-based diet. The second group ((-) Control) received SBM-based diet. The last three groups (Ala-Glu, Car, and Ans) were fed SBM-based diets, supplemented with alanyl-glutamine, carnosine, and anserine respectively. The Ala-Glu and Car groups experienced a significantly higher weight gain than the (-) Control group, weighing 35.38% and 33.96% more, respectively at the conclusion of the study. There were no significant differences in gene expression among the groups, but Ala-Glu had the highest expression of both nutrient absorption genes measured, PepT1 and fabp2. Ala-Glu had significantly longer intestinal villi, and a significantly higher villus length-to-width ratio than the (-) Control group. The Car group had a significantly higher post-prandial tissue concentration of lysine, compared to the (-) Control group. The increase in villus surface area and expression of nutrient absorption genes represent an improvement in intestinal absorptive capacity in the Ala-Glu group. The results from this study provide support for the use of alanyl-glutamine and carnosine supplementation as a means of improving growth performance of zebrafish fed with a high level SBM-based diet.
Collapse
Affiliation(s)
- Giovanni S Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, 1125 Lincoln Dr, Carbondale, IL 62901, USA
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, 1125 Lincoln Dr, Carbondale, IL 62901, USA
| | - Vance J McCracken
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Dr, Edwardsville, IL 62025, USA
| | - Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, 1125 Lincoln Dr, Carbondale, IL 62901, USA.
| |
Collapse
|
11
|
Dietary Bioactive Peptide Alanyl-Glutamine Attenuates Dextran Sodium Sulfate-Induced Colitis by Modulating Gut Microbiota. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5543003. [PMID: 34046146 PMCID: PMC8128544 DOI: 10.1155/2021/5543003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disorder threatening human health. Di-peptide alanyl-glutamine (Ala-Gln) has various beneficial effects on gut health. However, its role and functional mechanism in treating IBD are still not clear. Therefore, the protective effects of Ala-Gln and glutamine (Gln) on dextran sulfate sodium- (DSS-) induced colitic mice were investigated in this study. The results showed that oral supplementation of Ala-Gln or Gln significantly attenuated the colitis symptoms in mice, including body weight loss, colon length, disease activity index, histological scores, and tissue apoptosis. The concentrations of interleukin- (IL-) 1β, IL-6, tumor necrosis factor-α, and myeloperoxidase were significantly decreased, while the concentrations of immunoglobulins (IgA, IgG, and IgM) and superoxide dismutase were significantly increased by Ala-Gln or Gln supplementation. The expression of occludin and peptide transporter 1 (PepT1) was significantly increased by Ala-Gln or Gln. Interestingly, Ala-Gln had better beneficial effects than Gln in alleviating colitis. In addition, 16S rDNA sequencing showed that the DSS-induced shifts of the microbiome (community diversity, evenness, richness, and composition) in the mouse colon were restored by Gln and Ala-Gln, including Lactobacillus, Bacteroides_acidifaciens, Bacteroidales, Firmicutes, Clostridia, Helicobacter, and Bacteroides. Correspondingly, the functions of the microflora metabolism pathways were also rescued by Ala-Gln, including fatty acid metabolism, membrane transporters, infectious diseases, and immune system. In conclusion, the results revealed that Ala-Gln can prevent colitis through PepT1, enhancing the intestinal barrier and modulating gut microbiota and microflora metabolites.
Collapse
|
12
|
Protective effect of glutamine and alanyl-glutamine against zearalenone-induced intestinal epithelial barrier dysfunction in IPEC-J2 cells. Res Vet Sci 2021; 137:48-55. [PMID: 33932823 DOI: 10.1016/j.rvsc.2021.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, has a negative effect on porcine intestine. Glutamine (Gln) and alanyl-glutamine (Ala-Gln) are nutrients with potential preservation functions similar to those of the intestinal epithelial barrier. The protective role of Gln and Ala-Gln on ZEN-induced intestinal barrier dysfunction was evaluated in this study. Additionally, the ability of Gln and Ala-Gln to protect the intestinal barrier was investigated. Our results showed that lactate dehydrogenase (LDH) activity, paracellular permeability and reactive oxygen species (ROS) level were increased by ZEN, while the glutathione (GSH) level was decreased by ZEN. Gln and Ala-Gln promoted the proliferation of cells and attenuated the ZEN-induced increase in cytotoxicity, cell apoptosis and paracellular permeability. Gln and Ala-Gln alleviated barrier function damage, which was additionally induced by ZEN by increasing the antioxidant capacity of cells. In addition, Gln and Ala-Gln upregulated intestinal barrier associated gene expressions including pBD-1, pBD-2, MUC-2, ZO-1, occludin and claudin-3. This study revealed that Gln and Ala-Gln had similar effects in protecting intestinal epithelial barrier function against ZEN exposure in IPEC-J2 cells. A new treatment for alleviating ZEN-induced injury to the intestine through nutritional intervention is provided.
Collapse
|
13
|
Sun X, Zhao B, Qu H, Chen S, Hao X, Chen S, Qin Z, Chen G, Fan Y. Sera and lungs metabonomics reveals key metabolites of resveratrol protecting against PAH in rats. Biomed Pharmacother 2021; 133:110910. [PMID: 33378990 DOI: 10.1016/j.biopha.2020.110910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/13/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a type of high morbidity and mortality disease. Currently, the intrinsic metabolic alteration and potential mechanism of PAH are still not fully uncovered. Previously, we have found that polyphenol resveratrol (Rev) reversed the remodeling of the pulmonary vasculature and decreased the number of mitochondria in pulmonary arterial smooth muscle cells (PASMCs) (Lei Yu et al. (2017)). However, potential effects of Rev on the changed metabolic molecules derived from lung tissue and serum have no fully elucidated. Thus, we conducted a systematic elaboration through the metabonomics method. Various of metabolites in different pathways including amino acid metabolism, tricarboxylic acid cycle (TCA), acetylcholine metabolism, fatty acid metabolism and biosynthesis in male Wistar rats' sera and lung tissues were explored in three groups (normal group, PAH group, PAH and Rev treatment group). We found that leucine and isoleucine degradation, valine, leucine and isoleucine biosynthesis, tryptophan metabolism and aminoacyl-tRNA biosynthesis were involved in the development of PAH. Hydroxyphenyllactic, isopalmitic acid and cytosine might be significant key metabolites. Further work in this area may inform personalized treatment approaches in clinical practice of PAH through elucidating pathophysiology mechanisms of experimental verification.
Collapse
Affiliation(s)
- Xiangju Sun
- Department of Pharmacy, Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Baoshan Zhao
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China
| | - Huichong Qu
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Shuo Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Xuewei Hao
- Inspection Institute, Harbin Medical University, Daqing, Heilongjiang Province, 163319, China
| | - Siyue Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Zhuwen Qin
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Guoyou Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China.
| | - Yuhua Fan
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China.
| |
Collapse
|
14
|
Pei X, Li Y, Du C, Yuan T, Fan C, Hong H, Yuan W. Production of L-alanyl-L-glutamine by immobilized Escherichia coli expressing amino acid ester acyltransferase. Appl Microbiol Biotechnol 2020; 104:6967-6976. [PMID: 32594215 DOI: 10.1007/s00253-020-10752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Production of Ala-Gln by the E. coli expressing α-amino acid ester acyltransferase was a promising technical route due to its high enzyme activity, but the continuous production ability still needs to improve. Therefore, the immobilized E. coli expressing α-amino acid ester acyltransferase was applied for the continuous production of Ala-Gln. Four materials were selected as embedding medium for the whole cell entrapment of recombinant bacteria. Calcium alginate beads were found to be the most proper entrapment carrier for production of Ala-Gln. The temperature, pH, and repeatability of the immobilized cell were compared with free cells. Results showed that immobilization cell could maintain a wider range of temperature/pH and better stability than free cell (20-35 °C/pH 8.0-9.0, and 25 °C/pH 8.5, respectively). On this basis, continuous production strategy was put forward by filling the immobilized cell in the tubular reactor with multiple control conditions. The Ala-Gln by immobilization cell achieved the productivity of 2.79 mg/(min*mL-CV) without intermittent time. Consequently, these findings suggest that the immobilization technique has potential applications in the production of Ala-Gln by biotechnological method. KEY POINTS: • Immobilization helps to achieve high efficiency production of Ala-Gln. • Immobilized cells have better stability than free cells. • Sodium alginate is the most suitable immobilized material.
Collapse
Affiliation(s)
- Xuze Pei
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Tangguo Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Fan
- Innobio Corporation Limited, Dalian, 116600, China
| | - Hao Hong
- Innobio Corporation Limited, Dalian, 116600, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
15
|
Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact 2020; 19:129. [PMID: 32527330 PMCID: PMC7291740 DOI: 10.1186/s12934-020-01369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other fields. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efficient biotechnological process for the industrial production of AQ. RESULTS A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA-glsB to block the first step in glutamine metabolism, and glnE-glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the final engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. CONCLUSION A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efficient production of AQ with industrial potential.
Collapse
Affiliation(s)
- Jiangming Zhu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bohua Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qun Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaotong Zhong
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quanxiu Gao
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Jiezheng Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
16
|
Hussain T, Yuan D, Tan B, Murtaza G, Rahu N, Kalhoro MS, Kalhoro DH, Yin Y. Eucommia ulmoides flavones (EUF) abrogated enterocyte damage induced by LPS involved in NF-κB signaling pathway. Toxicol In Vitro 2019; 62:104674. [PMID: 31669396 DOI: 10.1016/j.tiv.2019.104674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
Abstract
This study was conducted to explore the regulatory mechanism of Eucommia ulmoides flavones (EUF) using enterocyte damage model induced by lipopolysaccharide (LPS). Intestinal porcine epithelial cell line (IPEC-J2) cells were cultured in Dulbecco's modified eagle medium with high glucose (DMEM-H) medium containing 0 or 10 μg/mL EUF, 0 or 40 ng/mL LPS. The results showed that LPS impaired DNA synthesis, cell viability, mitochondrial function, arrested cell cycle and induced apoptosis, reduced SOD activity while the EUF treated cells provided beneficial effect on all these parameters (P < 0.05). The addition of EUF increased phosphorylated Akt, IκBα and phosphorylated IKKα/β, but decreased Bax and Caspase-3 protein expressions in LPS-treated cells (P < 0.05). For the second experiment, cells were treated by DMEM-H medium containing 10 μg/mL EUF+ 40 ng/mL LPS or 10 μg/mL EUF+ 40 ng/mL LPS+ 10 μmol/L LY29400. EUF + LPS + LY29400 treatment significantly reduced cell viability, proliferation, mitochondrial bioenergetics parameters, SOD activity, and decreased protein expressions of PI3K, p-Akt, p-IKKα/β, p-NFκB and Bax (P < 0.05). These findings revealed the cytoprotective effects of EUF in enterocyte, which may involve the PI3K-NFκB signaling pathway, and it provides a theoretical basis for exploration of EUF as a potential anti-inflammatory compound to intervene intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Tarique Hussain
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; University of the Chinese Academy of Sciences, Beijing 10008, China; Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P.O.Box: 128, Jhang Road, Faisalabad, Pakistan
| | - Diaxiu Yuan
- Department of Medicine, Jishou University, Jishou, Hunan 416000, China.
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; University of the Chinese Academy of Sciences, Beijing 10008, China.
| | - Ghulam Murtaza
- Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, Sindh 67210, Pakistan
| | - Najma Rahu
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Muhammed Saleem Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Dildar Hussain Kalhoro
- Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, Sindh 67210, Pakistan
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; University of the Chinese Academy of Sciences, Beijing 10008, China
| |
Collapse
|
17
|
Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Stahl W, Brenneisen P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 2019; 14:e0222267. [PMID: 31553748 PMCID: PMC6760786 DOI: 10.1371/journal.pone.0222267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Scharf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
18
|
The Role of Nrf2 Signaling Pathway in Eucommia ulmoides Flavones Regulating Oxidative Stress in the Intestine of Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9719618. [PMID: 31565157 PMCID: PMC6745127 DOI: 10.1155/2019/9719618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Eucommia ulmoides flavones (EUF) have been demonstrated to alleviate oxidative stress and intestinal damage in piglets, but their effect target is still poorly understood. NF-E2-related factor 2 (Nrf2) pathway plays a very important role in the defense mechanism. This study was designed to investigate the regulation of EUF on the Nrf2 pathway and inhibition of Nrf2 on oxidative stress in the intestine of piglets. An in vivo study was conducted in weaned piglets treated with basal diet, basal diet+diquat, and 100 mg/kg EUF diet+diquat for 14 d to determine Nrf2 and Keap1 protein expressions, as well as downstream antioxidant gene mRNA expression. An in vitro study was performed in a porcine jejunal epithelial cell line to investigate the effect of inhibiting Nrf2 on cell growth and intracellular oxidative stress parameters. The results showed that the supplementation of EUF decreased the oxidized glutathione (GSSG) concentration and the ratio of GSSG to glutathione (GSH) but increased the protein expressions of nuclear Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) as well as mRNA expression of heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1), and glutamate cysteine ligase catalytic subunit (GCLC) in the small intestinal mucosa of diquat-challenged piglets. When Nrf2 was inhibited by using ML385, cell viability, cellular antioxidant activities, expressions of nuclear Nrf2 and Keap1 protein, and downstream antioxidant enzyme (HO-1, NQO-1, and GCLC) mRNA were decreased in paraquat-treated enterocytes. These results showed that the Nrf2 signaling pathway played an important role in EUF-regulating oxidative stress in the intestine of piglets.
Collapse
|
19
|
Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, Liu Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front Vet Sci 2019; 6:46. [PMID: 30847348 PMCID: PMC6393345 DOI: 10.3389/fvets.2019.00046] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 01/20/2023] Open
Abstract
Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal development and health is critically important for enhancing nutrient digestibility capacity and disease resistance of weaned pigs, therefore, increasing their survival rate at this most vulnerable stage, and overall productive performance during later stages. A healthy gut may include but not limited several important features: a healthy proliferation of intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence suggested nutritional intervention are one of promising measures to enhance intestinal health of weaned pigs, although the exact protective mechanisms may vary and are still not completely understood. Previous research indicated that functional amino acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression of tight junction protein) of weaned pigs. A number of feed additives are marketed to assist in boosting intestinal immunity and regulating gut microbiota, therefore, reducing the negative impacts of weaning, and other environmental challenges on piglets. The promising results have been demonstrated in antimicrobial peptides, clays, direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids, phytochemicals, and many other feed additives. This review summarizes our current understanding of nutritional intervention on intestinal health and development of weaned pigs and the importance of mechanistic studies focusing on this research area.
Collapse
Affiliation(s)
- Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Liu Z, Huang C, Liu Y, Lin D, Zhao Y. NMR-based metabolomic analysis of the effects of alanyl-glutamine supplementation on C2C12 myoblasts injured by energy deprivation. RSC Adv 2018; 8:16114-16125. [PMID: 35542200 PMCID: PMC9080260 DOI: 10.1039/c8ra00819a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
The dipeptide alanyl-glutamine (Ala-Gln) is a well-known parenteral nutritional supplement. The Ala-Gln supplementation is a potential treatment for muscle-related diseases and injuries. However, molecular mechanisms underlying the polyphenic effects of Ala-Gln supplementation remain elusive. Here, we performed NMR-based metabolomic profiling to analyze the effects of Ala-Gln, and the free alanine (Ala) and glutamine (Gln) supplementations on the mouse myoblast cell line C2C12 injured by glucose and glutamine deprivation. All the three supplementations can promote the differentiation ability of the injured C2C12 cells, while only Ala-Gln supplementation can facilitate the proliferation of the injured cells. Ala-Gln supplementation can partially restore the metabolic profile of C2C12 myoblasts disturbed by glucose and glutamine deprivation, and exhibits more significant effects than Ala and Gln supplementations. Our results suggest that Ala-Gln supplementation can promote MyoD1 protein synthesis, upregulate the muscle ATP-storage phosphocreatine (PCr), maintain TCA cycle anaplerosis, enhance the antioxidant capacity through promoting GSH biosynthesis, and stabilize lipid membranes by suppressing glycerophospholipids metabolism. This work provides new insight into mechanistic understanding of the polyphenic effects of Ala-Gln supplementation on muscle cells injured by energy deprivation.
Collapse
Affiliation(s)
- Zhiqing Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology Xiamen 361024 China
| | - Yan Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Yufen Zhao
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| |
Collapse
|