1
|
Rice SA, Ten Have GAM, Engelen MPKJ, Deutz NEP. Muscle protein catabolism and splanchnic arginine consumption drive arginine dysregulation during Pseudomonas Aeruginosa induced early acute sepsis in swine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G673-G684. [PMID: 39224070 PMCID: PMC11559638 DOI: 10.1152/ajpgi.00257.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Human sepsis is characterized by increased protein breakdown and changes in arginine and citrulline metabolism. However, it is unclear whether this is caused by changes in transorgan metabolism. We therefore studied in a Pseudomonas aeruginosa induced pig sepsis model the changes in protein and arginine related metabolism on whole body (Wb) and transorgan level. We studied 22 conscious pigs for 18 hours during sepsis, induced by infusing live bacteria (Pseudomonas aeruginosa) or after placebo infusion (control). We used stable isotope tracers to measure Wb and skeletal muscle protein synthesis and breakdown, as well as Wb, splanchnic, skeletal muscle, hepatic and portal drained viscera (PDV) arginine and citrulline disposal and production rates. During sepsis, arginine Wb production (p=0.0146), skeletal muscle release (p=0.0035) and liver arginine uptake were elevated (p=0.0031). Wb de novo arginine synthesis, citrulline production, and transorgan PDV release of citrulline, glutamine and arginine did not differ between sepsis and controls. However, Wb (p<0.0001) and muscle (p<0.001) protein breakdown were increased, suggesting that the enhanced arginine production is predominantly derived from muscle breakdown in sepsis. In conclusion, live-bacterium sepsis increases muscle arginine release and liver uptake, mirroring previous pig endotoxemia studies. In contrast to observations in humans, acute live-bacterium sepsis in pigs does not change citrulline production or arterial arginine concentration. We therefore conclude that the arginine dysregulation observed in human sepsis is possibly initiated by enhanced protein catabolism and splanchnic arginine catabolism, while decreased arterial arginine concentration and citrulline metabolism may require more time to fully manifest in patients.
Collapse
Affiliation(s)
- Sarah A Rice
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Gabriella A M Ten Have
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Marielle P K J Engelen
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity. Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Wu G, Bazer FW, Johnson GA, Satterfield MC, Washburn SE. Metabolism and Nutrition of L-Glutamate and L-Glutamine in Ruminants. Animals (Basel) 2024; 14:1788. [PMID: 38929408 PMCID: PMC11201166 DOI: 10.3390/ani14121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes little catabolism by these cells due to the near absence of its uptake. Ruminal bacteria hydrolyze Gln to Glu plus ammonia and, intracellularly, use both amino acids for protein synthesis. Microbial proteins and dietary Glu enter the small intestine in ruminants. Both Glu and Gln are the major metabolic fuels and building blocks of proteins, as well as substrates for the syntheses of glutathione and amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate) in the intestinal mucosa. In addition, Gln and aspartate are essential for purine and pyrimidine syntheses, whereas arginine and proline are necessary for the production of nitric oxide (a major vasodilator) and collagen (the most abundant protein in the body), respectively. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extensively utilized by the small intestine and do not enter the portal circulation. Thus, de novo synthesis (e.g., from branched-chain amino acids and α-ketoglutarate) plays a crucial role in the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health (particularly intestinal health) in ruminants. This applies to all types of feeding systems used around the world (e.g., rearing on a milk replacer before weaning, pasture-based production, and total mixed rations). Dietary supplementation with the appropriate doses of Glu or Gln [e.g., 0.5 or 1 g/kg body weight (BW)/day, respectively] can safely improve the digestive, endocrine, and reproduction functions of ruminants to enhance their productivity. Both Glu and Gln are truly functional amino acids in the nutrition of ruminants and hold great promise for improving their health and productivity.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - M. Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Shannon E. Washburn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
3
|
Li P, Wu G. Characteristics of Nutrition and Metabolism in Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:55-98. [PMID: 38625525 DOI: 10.1007/978-3-031-54192-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Domestic dogs and cats have evolved differentially in some aspects of nutrition, metabolism, chemical sensing, and feeding behavior. The dogs have adapted to omnivorous diets containing taurine-abundant meat and starch-rich plant ingredients. By contrast, domestic cats must consume animal-sourced foods for survival, growth, and development. Both dogs and cats synthesize vitamin C and many amino acids (AAs, such as alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine), but have a limited ability to form de novo arginine and vitamin D3. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for AAs (particularly arginine, taurine, and tyrosine), B-complex vitamins (niacin, thiamin, folate, and biotin), and choline; exhibit greater rates of gluconeogenesis; are less sensitive to AA imbalances and antagonism; are more capable of concentrating urine through renal reabsorption of water; and cannot tolerate high levels of dietary starch due to limited pancreatic α-amylase activity. In addition, dogs can form sufficient taurine from cysteine (for most breeds); arachidonic acid from linoleic acid; eicosapentaenoic acid and docosahexaenoic acid from α-linolenic acid; all-trans-retinol from β-carotene; and niacin from tryptophan. These synthetic pathways, however, are either absent or limited in all cats due to (a) no or low activities of key enzymes (including pyrroline-5-carboxylate synthase, cysteine dioxygenase, ∆6-desaturase, β-carotene dioxygenase, and quinolinate phosphoribosyltransferase) and (b) diversion of intermediates to other metabolic pathways. Dogs can thrive on one large meal daily, select high-fat over low-fat diets, and consume sweet substances. By contrast, cats eat more frequently during light and dark periods, select high-protein over low-protein diets, refuse dry food, enjoy a consistent diet, and cannot taste sweetness. This knowledge guides the feeding and care of dogs and cats, as well as the manufacturing of their foods. As abundant sources of essential nutrients, animal-derived foodstuffs play important roles in optimizing the growth, development, and health of the companion animals.
Collapse
Affiliation(s)
- Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Plasma Biomarkers and Fractional Exhaled Nitric Oxide in the Diagnosis of Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr 2023; 76:59-65. [PMID: 36574003 DOI: 10.1097/mpg.0000000000003634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Eosinophilic esophagitis (EoE) is a chronic disease which requires endoscopy with biopsies for diagnosis and monitoring. We aimed to identify a panel of non-invasive markers that could help identify patients with active EoE. METHODS In this prospective cohort study, we enrolled 128 children aged 5-18 years old, scheduled for endoscopy for suspected esophageal or peptic disease. On the day of the endoscopy, fractionated exhaled nitric oxide (FeNO) was measured; and blood was collected for peripheral absolute eosinophil count (AEC), plasma amino acids, and plasma polyamine analysis. Patients were grouped into controls (n = 91), EoE in remission (n = 16), or active EoE (n = 21), based on esophageal eosinophilia and history of EoE. RESULTS AEC was not statistically significant different among the groups compared ( P = 0.056). Plasma amino acids: citrulline (CIT), β-alanine (β-ALA), and cysteine (CYS) were higher in active EoE compared to controls ( P < 0.05). The polyamine spermine was lower in active EoE versus controls ( P < 0.05). Receiver operator characteristic (ROC) curve to assess the predictive capability of a combined score made of FeNO, β-ALA, CYS, and spermine had an area under curve (AUC) of 0.90 (95% CI: 0.80-0.96) in differentiating active EoE from controls and 0.87 (95% CI: 0.74-1.00) when differentiating active EoE from EoE in remission. CONCLUSION A panel comprising FeNO, 2 plasma amino acids (β-ALA, CYS) and the polyamine spermine can be used as a non-invasive tool to differentiate active EoE patients from controls.
Collapse
|
5
|
Jobgen WS, Lee MJ, Fried SK, Wu G. l-Arginine supplementation regulates energy-substrate metabolism in skeletal muscle and adipose tissue of diet-induced obese rats. Exp Biol Med (Maywood) 2022; 248:209-216. [PMID: 36544403 PMCID: PMC10107391 DOI: 10.1177/15353702221139207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dietary supplementation with l-arginine has been reported to reduce white fat mass in diet-induced obese rats and in obese humans. This study was conducted to test the hypothesis that the arginine treatment regulates glucose and fatty acid metabolism in insulin-sensitive tissues. Male Sprague–Dawley rats (4-week-old) were fed either low- or high-fat diets for 15 weeks ( n = 16/diet). Thereafter, lean or obese rats were fed their respective diets and received drinking water containing either 1.51% l-arginine-HCl or 2.55% alanine (isonitrogenous control) ( n = 8/treatment group). After 12 weeks of treatment, rats were euthanized and tissue samples were collected for biochemical assays. High-fat feeding increased the size of adipocytes isolated from retroperitoneal (RP) adipose tissue, while arginine treatment reduced their size. The total number of adipocytes in the adipose tissue did not differ among the four groups of rats. Glucose oxidation in extensor digitorum longus (EDL) muscle, soleus muscle, and RP adipose tissue were reduced in response to high-fat feeding. On the contrary, oleic acid oxidation in RP adipose tissue was enhanced in rats fed the high-fat diet. Arginine treatment stimulated both glucose and oleic acid oxidation in EDL and soleus muscles, while having no effect on glucose oxidation, oleic acid oxidation, or basal lipolysis per 106 adipocytes in RP adipose tissue. Collectively, these results indicate that oral supplementation with arginine to diet-induced obese rats promoted the oxidation of energy substrates in skeletal muscle, thereby reducing white fat in the body.
Collapse
Affiliation(s)
- Wenjuan S Jobgen
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Herring CM, Bazer FW, Johnson GA, Seo H, Hu S, Elmetwally M, He W, Long DB, Wu G. Dietary supplementation with 0.4% L-arginine between days 14 and 30 of gestation enhances NO and polyamine syntheses and water transport in porcine placentae. J Anim Sci Biotechnol 2022; 13:134. [PMID: 36476252 PMCID: PMC9730586 DOI: 10.1186/s40104-022-00794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Most embryonic loss in pigs occurs before d 30 of gestation. Dietary supplementation with L-arginine (Arg) during early gestation can enhance the survival and development of conceptuses (embryo/fetus and its extra-embryonic membranes) in gilts. However, the underlying mechanisms remain largely unknown. METHODS Between d 14 and 30 of gestation, each gilt was fed daily 2 kg of a corn- and soybean-meal based diet (12% crude protein) supplemented with either 0.4% Arg (as Arg-HCl) or an isonitrogenous amount of L-alanine (Control). There were 10 gilts per treatment group. On d 30 of gestation, gilts were fed either Arg-HCl or L-alanine 30 min before they were hysterectomized, followed by the collection of placentae, embryos, fetal membranes, and fetal fluids. Amniotic and allantoic fluids were analyzed for nitrite and nitrate [NOx; stable oxidation products of nitric oxide (NO)], polyamines, and amino acids. Placentae were analyzed for syntheses of NO and polyamines, water and amino acid transport, concentrations of amino acid-related metabolites, and the expression of angiogenic factors and aquaporins (AQPs). RESULTS Compared to the control group, Arg supplementation increased (P < 0.05) the number of viable fetuses by 1.9 per litter, the number and diameter of placental blood vessels (+ 25.9% and + 17.0% respectively), embryonic survival (+ 18.5%), total placental weight (+ 36.5%), the total weight of viable fetuses (+ 33.5%), fetal crown-to-rump length (+ 4.7%), and total allantoic and amniotic fluid volumes (+ 44.6% and + 75.5% respectively). Compared to control gilts, Arg supplementation increased (P < 0.05) placental activities of GTP cyclohydrolase-1 (+ 33.1%) and ornithine decarboxylase (+ 29.3%); placental syntheses of NO (+ 26.2%) and polyamines (+ 28.9%); placental concentrations of NOx (+ 22.5%), tetrahydrobiopterin (+ 21.1%), polyamines (+ 20.4%), cAMP (+ 27.7%), and cGMP (+ 24.7%); total amounts of NOx (+ 61.7% to + 96.8%), polyamines (+ 60.7% to + 88.7%), amino acids (+ 39% to + 118%), glucose (+ 60.5% to + 62.6%), and fructose (+ 41.4% to + 57.0%) in fetal fluids; and the placental transport of water (+ 33.9%), Arg (+ 78.4%), glutamine (+ 89.9%), and glycine (+ 89.6%). Furthermore, Arg supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors [VEGFA120 (+ 117%), VEGFR1 (+ 445%), VEGFR2 (+ 373%), PGF (+ 197%), and GCH1 (+ 126%)] and AQPs [AQP1 (+ 280%), AQP3 (+ 137%), AQP5 (+ 172%), AQP8 (+ 165%), and AQP9 (+ 127%)]. CONCLUSION Supplementing 0.4% Arg to a conventional diet for gilts between d 14 and d 30 of gestation enhanced placental NO and polyamine syntheses, angiogenesis, and water and amino acid transport to improve conceptus development and survival.
Collapse
Affiliation(s)
- Cassandra M. Herring
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Fuller W. Bazer
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Gregory A. Johnson
- grid.264756.40000 0004 4687 2082Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 USA
| | - Heewon Seo
- grid.264756.40000 0004 4687 2082Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 USA
| | - Shengdi Hu
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Mohammed Elmetwally
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Wenliang He
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Daniel B. Long
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Guoyao Wu
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
7
|
Zielinska-Pukos MA, Bryś J, Kucharz N, Chrobak A, Wesolowska A, Grabowicz-Chądrzyńska I, Hamulka J. Factors Influencing Cortisol Concentrations in Breastmilk and Its Associations with Breastmilk Composition and Infant Development in the First Six Months of Lactation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214809. [PMID: 36429527 PMCID: PMC9690377 DOI: 10.3390/ijerph192214809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/14/2023]
Abstract
Previous studies provided contradictory results regarding the influence of maternal, seasonal, and infant factors on breastmilk cortisol, and its associations with breastmilk composition and infant development. This study aimed to assess breastmilk cortisol levels at the first, third, and sixth months of lactation and evaluate the associations with maternal psychosocial, seasonal, and infant factors, breastmilk composition, and infant anthropometric and psychomotor development and temperament. Cortisol concentrations were assessed by ELISA in 24 h breastmilk samples obtained from 38 healthy mothers. Maternal psychological status was assessed by EPDS and PSS-10 and infant psychomotor development was assessed using the Children's Development Scale (DSR). Breastmilk cortisol was 11.2 ± 6.2, 11.2 ± 4.3, and 12.7 ± 6.2 ng/mL at the first, third, and sixth months of lactation (p > 0.05), respectively. In the spring-summer season, we observed lower and higher levels of cortisol in the first and sixth months of lactation (p ≤ 0.05), respectively, but no other associations were detected regarding maternal or infant characteristics. In the third month of lactation, cortisol was related to breastmilk crude protein (β = 0.318, 0.007-0.630) and infant BMI z-score before adjustment for infant birthweight and sex (Model 2: β = 0.359, 0.021-0.697), but no other associations with breastmilk composition, infant development, or temperament were confirmed. Our results indicated that breastmilk cortisol is unrelated to maternal and infant factors and has limited influence on breastmilk crude protein, but not on infant anthropometric and psychomotor development.
Collapse
Affiliation(s)
- Monika A. Zielinska-Pukos
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Natalia Kucharz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Agnieszka Chrobak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Aleksandra Wesolowska
- Laboratory of Human Milk and Lactation Research at Regional Human Milk Bank in Holy Family Hospital, Department of Neonatology, Faculty of Life Sciences, Medical University of Warsaw, Litewska 14/16 Str., 00-575 Warsaw, Poland
| | | | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| |
Collapse
|
8
|
Rezaei R, Wu G. Branched-chain amino acids regulate intracellular protein turnover in porcine mammary epithelial cells. Amino Acids 2022; 54:1491-1504. [DOI: 10.1007/s00726-022-03203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023]
|
9
|
Liu Y, Tian X, Daniel RC, Okeugo B, Armbrister SA, Luo M, Taylor CM, Wu G, Rhoads JM. Impact of probiotic Limosilactobacillus reuteri DSM 17938 on amino acid metabolism in the healthy newborn mouse. Amino Acids 2022; 54:1383-1401. [PMID: 35536363 DOI: 10.1007/s00726-022-03165-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
We studied the effect of feeding a single probiotic Limosilactobacillus reuteri DSM 17938 (LR 17938) on the luminal and plasma levels of amino acids and their derivatives in the suckling newborn mouse, using gas chromatography and high-performance liquid chromatography. We found that LR 17938 increased the relative abundance of many amino acids and their derivatives in stool, while it simultaneously significantly reduced the plasma levels of three amino acids (serine, citrulline, and taurine). Many peptides and dipeptides were increased in stool and plasma, notably gamma-glutamyl derivatives of amino acids, following ingestion of the LR 17938. Gamma-glutamyl transformation of amino acids facilitates their absorption. LR 17938 significantly upregulated N-acetylated amino acids, the levels of which could be useful biomarkers in plasma and warrant further investigation. Specific fecal microbiota were associated with higher levels of fecal amino acids and their derivatives. Changes in luminal and circulating levels of amino acid derivatives, polyamines, and tryptophan metabolites may be mechanistically related to probiotic efficacy.
Collapse
Affiliation(s)
- Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA.
| | - Xiangjun Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rhea C Daniel
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Beanna Okeugo
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Shabba A Armbrister
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - J Marc Rhoads
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| |
Collapse
|
10
|
Martinez RE, Leatherwood JL, Bradbery AN, Silvers BL, Fridley J, Arnold CE, Posey EA, He W, Bazer FW, Wu G. Equine enterocytes actively oxidize l-glutamine, but do not synthesize l-citrulline or l-arginine from l-glutamine or l-proline in vitro. J Anim Sci 2022; 100:skac077. [PMID: 35275603 PMCID: PMC9030134 DOI: 10.1093/jas/skac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
In livestock species, the enterocytes of the small intestine are responsible for the synthesis of citrulline and arginine from glutamine and proline. At present, little is known about de novo synthesis of citrulline and arginine in horses. To test the hypothesis that horses of different age groups can utilize glutamine and proline for the de novo synthesis of citrulline and arginine, jejunal enterocytes from 19 horses of three different age groups: neonates (n = 4; 7.54 ± 2.36 d of age), adults (n = 9; 6.4 ± 0.35 yr), and aged (n = 6; 22.9 ± 1.0 yr) with healthy gastrointestinal tracts were used in the present study. Enterocytes were isolated from the jejunum and incubated at 37 °C for 30 min in oxygenated (95% O2/5% CO2) Krebs bicarbonate buffer (pH 7.4) containing 5 mM D-glucose and 0 mM, 2-mM L-[U-14C]glutamine, or 2 mM L-[U-14C]proline plus 2 mM L-glutamine. Concentrations of arginine, citrulline, and ornithine in cells plus medium were determined using high-performance liquid chromatography. Results indicate that the rate of oxidation of glutamine to CO2 was high in enterocytes from neonatal horses, but low in cells from adult and aged horses. Enterocytes from all age groups of horses did not degrade proline into CO2. Regardless of age, equine enterocytes formed ornithine from glutamine and proline, but failed to convert ornithine into citrulline and arginine. Because arginine is an essential substrate for the synthesis of not only proteins, but also nitrogenous metabolites (e.g., nitric oxide, polyamines, and creatine), our novel findings have important implications for the nutrition, performance, and health of horses.
Collapse
Affiliation(s)
- Rafael E Martinez
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Jessica L Leatherwood
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Amanda N Bradbery
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Brittany L Silvers
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Jennifer Fridley
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Carolyn E Arnold
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
11
|
He W, Wu G. Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of developing pigs. Amino Acids 2022; 54:1025-1039. [PMID: 35294675 DOI: 10.1007/s00726-022-03151-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Enterocytes of young pigs are known to use glutamine, glutamate, and glucose as major metabolic fuels. However, little is known about the roles of aspartate, alanine, and fatty acids as energy sources for these cells. Therefore, this study simultaneously determined the oxidation of the amino acids and glucose as well as short- and long-chain fatty acids in enterocytes of developing pigs. Jejunal enterocytes were isolated from 0-, 7-, 14- and 21-day-old piglets, and incubated at 37 °C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 5 mM D-glucose and one of the following: D-[U-14C]glucose, 0.5-5 mM L-[U-14C]glutamate, 0.5-5 mM L-[U-14C]glutamine, 0.5-5 mM L-[U-14C]aspartate, 0.5-5 mM L-[U-14C]alanine, 0.5-2 mM L-[U-14C]palmitate, 0.5-5 mM [U-14C]propionate, and 0.5-5 mM [1-14C]butyrate. At the end of the incubation, 14CO2 produced from each 14C-labeled substrate was collected. Rates of oxidation of each substrate by enterocytes from all age groups of piglets increased (P < 0.05) gradually with increasing its extracellular concentrations. The rates of oxidation of glutamate, glutamine, aspartate, and glucose by enterocytes from 0- to 21-day-old pigs and of alanine from newborn pigs were much greater (P < 0.05) than those for the same concentrations of palmitate, propionate, and butyrate. Compared with 0-day-old pigs, the rates of oxidation of glutamate, aspartate, glutamine, alanine, and glucose by enterocytes from 21-day-old pigs decreased (P < 0.05) markedly, without changes in palmitate oxidation. Oxidation of alanine, propionate, butyrate and palmitate by enterocytes of pigs was limited during their postnatal growth. At each postnatal age, the oxidation of glutamate, glutamine, aspartate, and glucose produced much more ATP than alanine, propionate, butyrate and palmitate. The degradation of glutamate was initiated primarily by glutamate-pyruvate and glutamate-oxaloacetate transaminases. Our results indicated that amino acids (glutamate plus glutamine plus aspartate) are the major metabolic fuels in enterocytes of 0- to 21-day-old pigs.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
He W, Furukawa K, Bailey CA, Wu G. Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of post-hatching developing chickens. J Anim Sci 2022; 100:6535628. [PMID: 35199826 PMCID: PMC9030142 DOI: 10.1093/jas/skac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
This study determined the oxidation of amino acids, glucose and fatty acid in enterocytes of developing chickens. Jejunal enterocytes were isolated from 0-, 7-, 21-, and 42-d-old broiler chickens, and incubated at 40°C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 5 mM D-glucose and one of the following: 0.5-5 mM L-[U-14C]glutamate, 0.5-5 mM L-[U-14C]glutamine, 0.5-5 mM L-[U-14C]aspartate, 0.5-5 mM L-[U-14C]alanine, 0.5-2 mM [U-14C]palmitate, D-[U-14C]glucose, 0.5-5 mM [U-14C]propionate, and 0.5-5 mM [1-14C]butyrate. 14CO2 produced from each 14C-labeled substrate was collected for determination of radioactivity. Among all the substrates studied, glutamate had the greatest rate of oxidation in enterocytes from 0- to 42-d-old chickens. Glutamate transaminases, rather than glutamate dehydrogenase, may be primarily responsible for initiating glutamate degradation. Rates of amino acid and fatty acid oxidation by cells increased (P < 0.05) with increasing their extracellular concentrations from 0.5 to 5 mM. Rates of glutamate and glucose oxidation in enterocytes decreased (P < 0.05) with increasing age, and rates of glutamine, aspartate, propionate, and butyrate oxidation were lower (P < 0.05) in 42-d-old chickens than in 0-d-old chickens. By contrast, oxidation of palmitate at 2 mM increased (P < 0.05) by 118% in cells from 42-d-old chickens, compared with 0-d-old chickens. Compared with glutamate, oxidation of glutamine, aspartate, alanine, propionate, butyrate, and palmitate was limited in cells from all age groups of chickens. Collectively, these results indicate that glutamate is the major metabolic fuel in enterocytes of 0- to 42-d-old chickens.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Kyohei Furukawa
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Christopher A Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA,Corresponding author:
| |
Collapse
|
13
|
Nutritional and Physiological Regulation of Water Transport in the Conceptus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:109-125. [PMID: 34807439 DOI: 10.1007/978-3-030-85686-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Water transport during pregnancy is essential for maintaining normal growth and development of conceptuses (embryo/fetus and associated membranes). Aquaporins (AQPs) are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. At least 11 isoforms of AQPs (AQPs 1-9, 11, and 12) are differentially expressed in the mammalian placenta (amnion, allantois, and chorion), and organs (kidney, lung, brain, heart, and skin) of embryos/fetuses during prenatal development. Available evidence suggests that the presence of AQPs in the conceptus mediates water movement across the placenta to support the placentation, the homeostasis of amniotic and allantoic fluid volumes, as well as embryonic and fetal survival, growth and development. Abundances of AQPs in the conceptus can be modulated by nutritional status and physiological factors affecting the pregnant female. Here, we summarize the effects of maternal dietary factors (such as intakes of protein, arginine, lipids, all-trans retinoic acid, copper, zinc, and mercury) on the expression of AQPs in the conceptus. We also discuss the physiological changes in hormones (e.g., progesterone and estrogen), oxygen supply, nitric oxide, pH, and osmotic pressure associated with the regulation of fluid exchange between mother and fetus. These findings may help to improve the survival, growth, and development of embryo/fetus in livestock species and other mammals (including humans).
Collapse
|
14
|
Functional Molecules of Intestinal Mucosal Products and Peptones in Animal Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:263-277. [PMID: 34807446 DOI: 10.1007/978-3-030-85686-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing interest in the use of intestinal mucosal products and peptones (partial protein hydrolysates) to enhance the food intake, growth, development, and health of animals. The mucosa of the small intestine consists of the epithelium, the lamina propria, and the muscularis mucosa. The diverse population of cells (epithelial, immune, endocrine, neuronal, vascular, and elastic cells) in the intestinal mucosa contains not only high-quality food protein (e.g., collagen) but also a wide array of low-, medium-, and high-molecular-weight functional molecules with enormous nutritional, physiological, and immunological importance. Available evidence shows that intestinal mucosal products and peptones provide functional substances, including growth factors, enzymes, hormones, large peptides, small peptides, antimicrobials, cytokines, bioamines, regulators of nutrient metabolism, unique amino acids (e.g., taurine and 4-hydroxyproline), and other bioactive substances (e.g., creatine and glutathione). Therefore, dietary supplementation with intestinal mucosal products and peptones can cost-effectively improve feed intake, immunity, health (the intestine and the whole body), well-being, wound healing, growth performance, and feed efficiency in livestock, poultry, fish, and crustaceans. In feeding practices, an inclusion level of an intestinal mucosal product or a mucosal peptone product at up to 5% (as-fed basis) is appropriate in the diets of these animals, as well as companion and zoo animals.
Collapse
|
15
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
16
|
Bergen WG. Pigs (Sus Scrofa) in Biomedical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:335-343. [PMID: 34807450 DOI: 10.1007/978-3-030-85686-1_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Much of biomedical oriented research is conducted with animal models. Over the years, rodents (primarily rats and mice) have emerged as the preferred species for basic biochemistry, cell biology, physiology and nutrition studies. In the past, dogs have been used for the evaluation of dietary protein quality and other aspects of animal nitrogen metabolism and physiology, cardiovascular and endocrine research. At an increasing rate, pigs have also been used as a model species in biomedical research. Pigs are readily available in various mature sizes and genotypic/phenotypic traits, and there are many anatomic, nutritional and physiologic similarities between human beings and pigs. Many notable reviews summarizing the role of pigs in biomedical studies have already been published and these are cited below. The present review focuses on characteristics that make pigs an excellent biomedical animal model in particular in obesity, diabetes and cardiovascular research. To procure an animal model for obesity, irrespective of species used, these animals must be fed a dense caloric diet (high fat) to achieve an experimental working model within a reasonable period. This review also focuses on a putative role of gastrointestinal microbiota in obesity as obese animals exhibit a shift in the distribution of gastrointestinal microbial phyla from lean animals. But to date such results have not pinpointed a treatable cause for obesity. Sometimes, the choice of sampling sites for microbial assessment in many reports can be questioned as the microbial content and phyla distribution in easily collected fecal samples may differ from those obtained directly from the small intestine and upper colon. While pigs are still utilized in many countries for medical surgery practice, this has been discontinued in US medical schools.
Collapse
Affiliation(s)
- Werner G Bergen
- Department of Animal Sciences, Auburn University, AL, Auburn, 210 Upchurch Hall, 36854, USA.
| |
Collapse
|
17
|
Elmetwally MA, Li X, Johnson GA, Burghardt RC, Herring CM, Kramer AC, Meininger CJ, Bazer FW, Wu G. Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances NO and polyamine syntheses and the expression of angiogenic proteins in porcine placentae. Amino Acids 2021; 54:193-204. [PMID: 34741684 DOI: 10.1007/s00726-021-03097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.
Collapse
Affiliation(s)
- Mohammed A Elmetwally
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xilong Li
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cassandra M Herring
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
18
|
Furukawa K, He W, Bailey CA, Bazer FW, Toyomizu M, Wu G. Polyamine synthesis from arginine and proline in tissues of developing chickens. Amino Acids 2021; 53:1739-1748. [PMID: 34613458 DOI: 10.1007/s00726-021-03084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Polyamines (putrescine, spermidine, and spermine) are synthesized primarily from ornithine via ornithine decarboxylase (ODC) in mammals. Although avian tissues contain ODC activity, little is known about intracellular sources of ornithine for their polyamine synthesis. This study tested the hypothesis that arginase and proline oxidase contribute to polyamine synthesis in chickens. Kidney, jejunum, leg muscle, and liver from 0-, 7-, 14- and 21-day-old broiler chickens were assayed for the activities of arginase, proline oxidase (POX), ornithine aminotransferase (OAT), and ornithine decarboxylase (ODC). Kidney slices were also used to determine 14C-polyamine synthesis from [U-14C]arginine and [U-14C]proline. Furthermore, these tissues and plasma were analyzed for polyamines. Results indicate that all tissues contained OAT (mitochondrial) and ODC (cytosolic) activities, but arginase and POX activities were only detected in the mitochondria of chicken kidneys. Renal POX and arginase activities were greater at 7 days of age compared to newly hatched birds, and declined by Day 14. Renal arginase activity was greater at 21 days compared to 14 days of age, but there was no change in renal POX activity during that same period. Concentrations of polyamines in the kidneys and plasma were greater on Day 7 compared to Day 0 and decreased thereafter on Days 14 and 21. Kidney slices readily converted arginine and proline into polyamines, with peak rates being on Day 7. Concentrations of putrescine, spermidine and spermine in the plasma of chickens were about 20- to 100-fold greater than those in mammals. Our results indicate that polyamines are synthesized from arginine and proline in avian kidneys. Unlike mammals, polyamines released from the kidneys are likely the major source of polyamines in the blood and other extra-renal tissues in chickens.
Collapse
Affiliation(s)
- Kyohei Furukawa
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Christopher A Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Masaaki Toyomizu
- Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
19
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|