1
|
Dong B, Lv R, Wang J, Che L, Wang Z, Huai Z, Wang Y, Xu L. The Extraglycemic Effect of SGLT-2is on Mineral and Bone Metabolism and Bone Fracture. Front Endocrinol (Lausanne) 2022; 13:918350. [PMID: 35872985 PMCID: PMC9302585 DOI: 10.3389/fendo.2022.918350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for osteoporosis. The effects of T2DM and anti-diabetic agents on bone and mineral metabolism have been observed. Sodium-glucose co-transporter 2 inhibitors (SGLT-2is) promote urinary glucose excretion, reduce blood glucose level, and improve the cardiovascular and diabetic nephropathy outcomes. In this review, we focused on the extraglycemic effect and physiological regulation of SGLT-2is on bone and mineral metabolism. SGLT-2is affect the bone turnover, microarchitecture, and bone strength indirectly. Clinical evidence of a meta-analysis showed that SGLT-2is might not increase the risk of bone fracture. The effect of SGLT-2is on bone fracture is controversial, and further investigation from a real-world study is needed. Based on its significant benefit on cardiovascular and chronic kidney disease (CKD) outcomes, SGLT-2is are an outstanding choice. Bone mineral density (BMD) and fracture risk evaluation should be considered for patients with a high risk of bone fracture.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruolin Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongchao Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhouyang Huai
- Department of Geriatric Medicine, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University, Yantai, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lili Xu, ; Yangang Wang,
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lili Xu, ; Yangang Wang,
| |
Collapse
|
2
|
Role of TRPV4 in skeletal function and its mutant-mediated skeletal disorders. CURRENT TOPICS IN MEMBRANES 2022; 89:221-246. [DOI: 10.1016/bs.ctm.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Innao V, Allegra A, Ginaldi L, Pioggia G, De Martinis M, Musolino C, Gangemi S. Reviewing the Significance of Vitamin D Substitution in Monoclonal Gammopathies. Int J Mol Sci 2021; 22:4922. [PMID: 34066482 PMCID: PMC8124934 DOI: 10.3390/ijms22094922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Vitamin D is a steroid hormone that is essential for bone mineral metabolism and it has several other effects in the body, including anti-cancer actions. Vitamin D causes a reduction in cell growth by interrupting the cell cycle. Moreover, the active form of vitamin D, i.e., 1,25-dihydroxyvitamin D, exerts various effects via its interaction with the vitamin D receptor on the innate and adaptive immune system, which could be relevant in the onset of tumors. Multiple myeloma is a treatable but incurable malignancy characterized by the growth of clonal plasma cells in protective niches in the bone marrow. In patients affected by multiple myeloma, vitamin D deficiency is commonly correlated with an advanced stage of the disease, greater risk of progression, the development of pathological fractures, and a worse prognosis. Changes in the vitamin D receptor often contribute to the occurrence and progress of deficiencies, which can be overcome by supplementation with vitamin D or analogues. However, in spite of the findings available in the literature, there is no clear standard of care and clinical practice varies. Further research is needed to better understand how vitamin D influences outcomes in patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.D.M.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.D.M.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
4
|
Shang X, Zhang X, Du C, Ma Z, Jin S, Ao N, Yang J, Du J. Clostridium butyricum Alleviates Gut Microbiota Alteration-Induced Bone Loss after Bariatric Surgery by Promoting Bone Autophagy. J Pharmacol Exp Ther 2021; 377:254-264. [PMID: 33658315 DOI: 10.1124/jpet.120.000410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Bariatric surgery is the most common and effective treatment of severe obesity; however, these bariatric procedures always result in detrimental effects on bone metabolism by underlying mechanisms. This study aims to investigate the skeletal response to bariatric surgery and to explore whether Clostridium butyricum alleviates gut microbiota alteration-induced bone loss after bariatric surgery. Consequently, male SD rats received Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) surgery, respectively, followed by body weight recording. The bone loss after bariatric surgery was further determined by dual-energy X-ray absorptiometry (DXA), micro-CT measurement, histologic analyses, and Western blot. Besides, 16S rDNA gene sequencing was performed to determine the gut microbiota alteration after surgery, and intervention with fecal microbiota from RYGB donor was conducted in obese SD rats, followed by C. butyricum administration. Accordingly, rats in the RYGB and SG groups maintained sustained weight loss, and DXA and micro-CT measurement further demonstrated significant bone loss after bariatric surgery. Besides, histologic and Western blot analyses validated enhanced osteoclastogenesis and inhibited osteoblastogenesis and defective autophagy after surgery. The 16S rDNA gene sequencing suggested a significant alteration of gut microbiota composition in the RYGB group, and intervention with fecal microbiota from RYGB donor further determined that this kind of alteration contributed to the bone loss after RYGB. Meanwhile, C. butyricum might protect against this postoperative bone loss by promoting osteoblast autophagy. In summary, this study suggests novel mechanisms to clarify the skeletal response to bariatric surgery and provides a potential candidate for the treatment of bone disorder among bariatric patients. SIGNIFICANCE STATEMENT: The significance of this study is the discovery of obvious bone loss and defective autophagy after bariatric surgery. Besides, it is revealed that gut microbiota alterations could be the reason for impaired bone mass after bariatric surgery. Furthermore, Clostridium butyricum could alleviate the gut microbiota alteration-induced bone loss after bariatric surgery by promoting osteoblast autophagy.
Collapse
Affiliation(s)
- Xueying Shang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolei Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cen Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhuoqi Ma
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Xing WY, Zhang ZH, Xu S, Hong Q, Tian QX, Ye QL, Wang H, Yu DX, Xu DX, Xie DD. Calcitriol inhibits lipopolysaccharide-induced proliferation, migration and invasion of prostate cancer cells through suppressing STAT3 signal activation. Int Immunopharmacol 2020; 82:106346. [PMID: 32120344 DOI: 10.1016/j.intimp.2020.106346] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022]
Abstract
Increasing evidence suggests that infection promotes the initiation and progression of prostate cancer. This study investigated the effects of lipopolysaccharide (LPS), a major component of Gram-negative bacilli, on proliferation, migration and invasion of prostate cancer cells and the protective effects of 1α,25(OH)2D3 (calcitriol). PC-3 and DU145 cells were stimulated with LPS (2.0 μg/mL) in the presence or absence of 1α,25(OH)2D3 (100 nM). Our results shown that 1α,25(OH)2D3 reduced the proportion of S phase cells in LPS-stimulated PC-3 and DU145 cells, and down-regulated the nuclear protein levels of Cyclin D1 and PCNA in LPS-stimulated PC-3 cells. In addition, 1α,25(OH)2D3 inhibited migration and invasion, as determined by wound healing and transwell assay, in LPS-stimulated PC-3 and DU145 cells. Of interest, we observed that 1α,25(OH)2D3 inhibits NF-κB activation and subsequent synthesis and secretion of IL-6 and IL-8 by promoting VDR and NF-κB p65 interaction. Surprisingly, 1α,25(OH)2D3 blocks nuclear translocation of pSTAT3 by promoting physical interaction between VDR and pSTAT3 (Tyr705) in LPS-stimulated PC-3 and DU145 cells. These results suggest that 1α,25(OH)2D3 inhibits LPS-induced proliferation, migration and invasion in prostate cancer cells by directly and indirectly blocking STAT3 signal transduction.
Collapse
Affiliation(s)
- Wei-Yang Xing
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Shen Xu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Qian Hong
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Qi-Xing Tian
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Qing-Lin Ye
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Li YY, Jiang Y, Liu L, Guo HY, Cao HW, Ji ZC. Development, validation and comparison of four methods for quantifying endogenous 25OH-D3 in human plasma. Biomed Chromatogr 2019; 33:e4691. [PMID: 31452227 DOI: 10.1002/bmc.4691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022]
Abstract
To meet the increasing clinical needs for 25-hydroxyvitamin D3 (25OH-D3) detection, the development of an efficient and accurate high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for plasma 25OH-D3 quantitation is important. Since 25OH-D3 is an endogenous compound, the lack of a plasma blank increases the difficulty of accurately quantifying 25OH-D3. Selection of a method suitable for clinical monitoring among various methods for endogenous compound quantification is necessary. Methyl tert butyl ether was chosen for the sample treatment in a liquid-liquid extraction protocol. Water as a blank matrix, 5% human serum albumin in water as a blank matrix, surrogate analyte and background subtraction were designed to address the problem of a deficiency of a plasma blank. Four liquid chromatography-tandem mass spectrometry methods were fully validated to verify the advantages and limitations owing to regulatory deficiencies for endogenous compound validation. All four methods met the criteria and could be used to monitor clinical samples. Overall 30 human plasma samples were quantified in parallel using the four methods. The difference between any two methods was <12.6% and the total relative standard deviation was <5.2%. Background subtraction and 5% human serum albumin in water as a blank matrix may be better choices considering data quality, matrix similarity, cost and practicality.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yi Jiang
- Department of Breast Disease, The Second Hospital of Jilin University, Changchun, China
| | - Li Liu
- Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun, China
| | - Hai-Yang Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Hai-Wei Cao
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Zheng-Chao Ji
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Li J, Liu C, Li Y, Zheng Q, Xu Y, Liu B, Sun W, Li Y, Ji S, Liu M, Zhang J, Zhao D, Du R, Liu Z, Zhong G, Sun C, Wang Y, Song J, Zhang S, Qin J, Ling S, Wang X, Li Y. TMCO1-mediated Ca 2+ leak underlies osteoblast functions via CaMKII signaling. Nat Commun 2019; 10:1589. [PMID: 30962442 PMCID: PMC6453895 DOI: 10.1038/s41467-019-09653-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Transmembrane and coiled-coil domains 1 (TMCO1) is a recently identified Ca2+ leak channel in the endoplasmic reticulum. TMCO1 dysfunction in humans is associated with dysmorphism, mental retardation, glaucoma and the occurrence of cancer. Here we show an essential role of TMCO1 in osteogenesis mediated by local Ca2+/CaMKII signaling in osteoblasts. TMCO1 levels were significantly decreased in bone from both osteoporosis patients and bone-loss mouse models. Tmco1−/− mice exhibited loss of bone mass and altered microarchitecture characteristic of osteoporosis. In the absence of TMCO1, decreased HDAC4 phosphorylation resulted in nuclear enrichment of HADC4, which leads to deacetylation and degradation of RUNX2, the master regulator of osteogenesis. We further demonstrate that TMCO1-mediated Ca2+ leak provides local Ca2+ signals to activate the CaMKII-HDAC4-RUNX2 signaling axis. The establishment of TMCO1 as a pivotal player in osteogenesis uncovers a novel potential therapeutic target for ameliorating osteoporosis. TMCO1 is a recently described endoplasmic reticular Ca2+ channel. Here, the authors show it is important for osteoblast function and bone formation in mice, and identify a novel pathway linking local increases in Ca2+ at the ER surface with the posttranslational modification of RUNX2.
Collapse
Affiliation(s)
- Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qiaoxia Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Youjia Xu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Beibei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yuan Li
- The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Shuhui Ji
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Cuiwei Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yanqing Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|
8
|
Casseb GAS, Ambrósio G, Rodrigues ALS, Kaster MP. Levels of 25-hydroxyvitamin D 3, biochemical parameters and symptoms of depression and anxiety in healthy individuals. Metab Brain Dis 2019; 34:527-535. [PMID: 30604028 DOI: 10.1007/s11011-018-0371-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
Growing evidence support the role of vitamin D in brain function and behavior. This study investigated the relationship between 25-hydroxyvitamin D3 [25(OH)D3] levels, biochemical profile and symptoms of depression and anxiety in healthy individuals. Symptoms of depression were assessed by the Beck Depression Inventory (BDI) and anxiety was evaluated with the State-Trait Anxiety Inventory (STAI). Our sample included 36 individuals, mostly women 27(75%), 36.39 ± 9.72 years old, non-smokers 31(86.1%), body mass index of 26.57 ± 3.92 kg/m2, 27.95 ± 7.50% body fat. Participants were divided into those with 25(OH)D3 levels lower than 40 ng/mL (mean 28.16 ± 7.07) and equal or higher than 40 ng/mL (mean 53.19 ± 6.32). Those with lower 25(OH)D3 had higher levels of triacylglycerol, triacylglycerol/high density lipoprotein (HDL) ratio, high glucose and homeostatic model assessment of insulin resistance (HOMA-IR) index. No changes were observed in sociodemographic variables, body composition, inflammatory parameters and cortisol. Additionally, in the groups with low and high 25(OH)D3 levels, STAI state, STAI trait and BDI scores were not statistically different. Levels of 25(OH)D3 were inversely and independently associated with glucose and HOMA-IR, but not associated with triacylglycerol, depression and anxiety scores. Lower levels of 25(OH)D3 were associated with dysfunction in glucose metabolism but not with depression and anxiety in healthy individuals.
Collapse
Affiliation(s)
- Gleicilaine A S Casseb
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040900, Brazil
| | - Gabriela Ambrósio
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040900, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040900, Brazil.
| |
Collapse
|
9
|
Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of Sodium-Glucose Co-transporter 2 Inhibitors on Bone Metabolism and Fracture Risk. Front Pharmacol 2019; 9:1517. [PMID: 30670968 PMCID: PMC6331441 DOI: 10.3389/fphar.2018.01517] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
The effect of anti-diabetic medications on bone metabolism has received increasing attention, considering that type 2 diabetes mellitus is a common metabolic disorder with adverse effects on bone metabolism. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are novel anti-diabetic medications that prevent glucose resorption at the proximal convoluted tubules in the kidney, increasing urinary glucose excretion, and decreasing the blood glucose level. The superiority of SGLT2 inhibitors shows in reducing the glucose level independent of insulin secretion, lowering the risk of hypoglycemia, and improving cardiovascular outcomes. SGLT2 inhibitors have been associated with genital mycotic infections, increased risk of acute kidney injury, dehydration, orthostatic hypotension, and ketoacidosis. Moreover, the effect of SGLT2 inhibitors on bone metabolism and fracture risk has been widely taken into consideration. Our review summarizes the results of current studies investigating the effects of SGLT2 inhibitors on bone metabolism (possibly including increased bone turnover, disrupted bone microarchitecture, and reduced bone mineral density). Several mechanisms are probably involved, such as bone mineral losses due to the disturbed calcium and phosphate homeostasis, as confirmed by an increase in fibroblast growth factor 23 and parathyroid hormone levels and a decrease in 1,25-dihydroxyvitamin D levels. SGLT2 inhibitors might indirectly increase bone turnover by weight loss. Lowering the blood glucose level might ameliorate bone metabolism impairment in diabetes. The effect of SGLT2 inhibitors on bone fractures remains unclear. Evidence indicating the direct effect of SGLT2 inhibitors on fracture risk is lacking and increased falls probably contribute to fractures.
Collapse
Affiliation(s)
- Yangli Ye
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenhe Zhao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Liang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yinqiu Yang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingxiang Yu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Mak A. The Impact of Vitamin D on the Immunopathophysiology, Disease Activity, and Extra-Musculoskeletal Manifestations of Systemic Lupus Erythematosus. Int J Mol Sci 2018; 19:ijms19082355. [PMID: 30103428 PMCID: PMC6121378 DOI: 10.3390/ijms19082355] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past two decades it has been increasingly recognized that vitamin D, aside from its crucial involvement in calcium and phosphate homeostasis and the dynamics of the musculoskeletal system, exerts its influential impact on the immune system. The mechanistic roles that vitamin D plays regarding immune activation for combating infection, as well as pathologically and mediating autoimmune conditions, have been progressively unraveled. In vitro and in vivo models have demonstrated that the action of vitamin D on various immunocytes is not unidirectional. Rather, how vitamin D affects immunocyte functions depends on the context of the immune response, in the way that its suppressive or stimulatory action offers physiologically appropriate and immunologically advantageous outcomes. In this review, the relationship between various aspects of vitamin D, starting from its adequacy in circulation to its immunological functions, as well as its autoimmune conditions, in particular systemic lupus erythematosus (SLE), a prototype autoimmune condition characterized by immune-complex mediated inflammation, will be discussed. Concurring with other groups of investigators, our group found that vitamin D deficiency is highly prevalent in patients with SLE. Furthermore, the circulating vitamin D levels appear to be correlated with a higher disease activity of SLE as well as extra-musculoskeletal complications of SLE such as fatigue, cardiovascular risk, and cognitive impairment.
Collapse
Affiliation(s)
- Anselm Mak
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore 119228, Singapore.
| |
Collapse
|
11
|
Song T, Lin T, Ma J, Guo L, Zhang L, Zhou X, Ye T. Regulation of TRPV5 transcription and expression by E2/ERα signalling contributes to inhibition of osteoclastogenesis. J Cell Mol Med 2018; 22:4738-4750. [PMID: 30063124 PMCID: PMC6156443 DOI: 10.1111/jcmm.13718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing of osteoclasts formation and activity because of oestrogen (E2) deficiency is very important in the aetiology of postmenopausal osteoporosis. Our previous studies showed that E2 inhibited osteoclastic bone resorption by increasing the expression of Transient Receptor Potential Vanilloid 5 (TRPV5) channel. However, the exact mechanism by which E2 increases TRPV5 expression is not fully elucidated. In this study, Western blot, quantitative real‐time PCR, tartrate‐resistant acid phosphatase staining, F‐actin ring staining, chromatin immunoprecipitation and luciferase assay were applied to explore the mechanisms that E2‐induced TRPV5 expression contributes to the inhibition of osteoclastogenesis. The results showed that silencing or overexpressing of TRPV5 significantly affected osteoclasts differentiation and activity. Silencing of TRPV5 obviously alleviated E2‐inhibited osteoclastogenesis, resulting in increasing of bone resorption. E2 stimulated mature osteoclasts apoptosis by increasing TRPV5 expression. Further studies showed that E2 increased TRPV5 expression through the interaction of the oestrogen receptor α (ERα) with NF‐κB, which could directly bind to the fragment of −286 nt ~ −277 nt in the promoter region of trpv5. Taken together, we conclude that TRPV5 plays a dominant effect in E2‐mediated osteoclasts formation, bone resorption activity and osteoclasts apoptosis. Furthermore, NF‐κB plays an important role in the transcriptional activation of E2‐ERα stimulated TRPV5 expression.
Collapse
Affiliation(s)
- Tengfei Song
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Lin
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Medical Genetics, Second Military Medical University, shanghai, China
| | - Xuhui Zhou
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianwen Ye
- Department of Orthopaedic surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Calcium is an essential ion for the maintenance of normal bone health and physiologic functions. The extracellular and intracellular levels of calcium are maintained through hormonal regulation called homeostasis. Balance, the net intake minus excretion of calcium, is maintained by hormonal regulation of intestinal absorption and fecal/urinary excretion. Homeostasis and balance are disconnected in patients with chronic kidney disease (CKD). The purpose of this review is to understand how calcium homeostasis and balance are impaired in CKD. RECENT FINDINGS Two formal calcium balance studies have found that an oral intake of 800-1000 mg of calcium in adults with CKD leads to neutral calcium balance, whereas amounts greater than that lead to positive calcium balance. In patients with CKD, the main determinant of positive calcium balance is the intake and the lack of urinary calcium excretion. SUMMARY Calcium balance is different in patients with advanced CKD compared with patients without CKD. Thus, the oral intake of calcium in the form of diet and binders should not exceed 800-1000 mg/day to achieve neutral calcium balance in adult patients with CKD stages 3b/4.
Collapse
Affiliation(s)
- Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Casey C, McGinty A, Holmes VA, Hill AJ, Patterson CC, Young IS, McCance DR. Maternal vitamin D and markers of glycaemia during pregnancy in the Belfast centre of the Hyperglycaemia and Adverse Pregnancy Outcome study. Diabet Med 2018; 35:972-979. [PMID: 29608221 PMCID: PMC6013372 DOI: 10.1111/dme.13632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 01/18/2023]
Abstract
AIMS To measure total 25-hydroxyvitamin D levels in women in mid-pregnancy who participated in the Belfast centre of the Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) observational study, and to investigate the associations between levels of 25-hydroxyvitamin D and markers of gestational diabetes mellitus and lipid biomarkers. METHODS A total of 1585 pregnant women had serum samples available for measurement. Participants were recruited from the Royal Jubilee Maternity Hospital, Belfast, Northern Ireland, at 24-32 weeks' gestation, as part of the HAPO study. 25-hydroxyvitamin D concentrations were measured using liquid chromatography tandem mass spectrometry. Glucose, C-peptide and lipid levels were previously analysed in a central laboratory. Statistical analysis was performed. RESULTS The median (interquartile range) 25-hydroxyvitamin D concentration during pregnancy was 38.6 (24.1-60.7) nmol/l, with 65.8% of women being vitamin D-deficient (≤50 nmol/l). In regression analysis, the association between maternal 25-hydroxyvitamin D and fasting plasma glucose levels approached significance [regression coefficient -0.017 (95% CI -0.034 to 0.001); P=0.06], and a significant positive association was observed between maternal 25-hydroxyvitamin D and β-cell function [1.013 (95% CI 1.001 to 1.024); P=0.031]. Maternal 25-hydroxyvitamin D level was positively associated with HDL [0.047 (95% CI 0.021 to 0.073) P≤ 0.001] and total cholesterol [0.085 (95% CI 0.002 to 0.167); P=0.044] in regression analysis. CONCLUSIONS These results indicate a high prevalence of vitamin D deficiency during pregnancy, which requires identification and treatment; however, only weak associations were observed between 25-hydroxyvitamin D level and markers of glucose and insulin metabolism. This would suggest that these are of doubtful clinical significance.
Collapse
Affiliation(s)
- C Casey
- Centre for Public Health, Queen's University Belfast, Belfast
| | - A McGinty
- Centre for Public Health, Queen's University Belfast, Belfast
| | - V A Holmes
- Centre for Public Health, Queen's University Belfast, Belfast
| | - A J Hill
- NICHE, School of Biomedical Sciences, Ulster University, Coleraine
| | - C C Patterson
- Centre for Public Health, Queen's University Belfast, Belfast
| | - I S Young
- Centre for Public Health, Queen's University Belfast, Belfast
| | - D R McCance
- Centre for Public Health, Queen's University Belfast, Belfast
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| |
Collapse
|
14
|
Okabe H, Shimizu C, Yamamoto M, Kikuchi R, Minami A, Chen YF, Imai H, Mizuta M, Chen Z, Chiba H, Hui SP. Determination of Serum 25-Hydroxyvitamin D 3 by LC/MS/MS and Its Monthly Variation in Sapporo Indoor Workers. ANAL SCI 2018; 34:1043-1047. [PMID: 29863032 DOI: 10.2116/analsci.18p193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
25-Hydroxyvitamin D3 (25(OH)D3) as the metabolite of vitamin D, is connected with various of diseases, and important to people with limited sunshine. Thus, the investigation of serum 25-hydroxyvitamin D and its variation in these people is necessary. In this study, a simple, precise, and accurate method for serum 25(OH)D3 determination by LC/MS/MS was developed. Serum samples were obtained monthly for one year from 11 male and 11 female indoor workers in Sapporo, Japan, and the overall 25(OH)D3 concentration was 12.9 ± 4.7 ng/mL. The 25(OH)D3 in females was significantly lower than that in males (14.0 ± 5.0 vs. 11.9 ± 4.3 ng/mL). The serum 25(OH)D3 concentration in males and females were both strongly correlated to UV-B radiation (r2 = 0.8477 and 0.7384, respectively), with a two-month's lag. Also the monthly change in 25(OH)D3 in males was more significant than that in females.
Collapse
Affiliation(s)
| | - Chikara Shimizu
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital
| | | | - Rei Kikuchi
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital
| | - Akiko Minami
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital
| | - Yi-Fan Chen
- Graduate School of Information Science and Technology, Hokkaido University
| | - Hideyuki Imai
- Graduate School of Information Science and Technology, Hokkaido University
| | - Masahiro Mizuta
- Graduate School of Information Science and Technology, Hokkaido University
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences
| | | |
Collapse
|
15
|
STIM1 and TRPV4 regulate fluid flow-induced calcium oscillation at early and late stages of osteoclast differentiation. Cell Calcium 2018; 71:45-52. [DOI: 10.1016/j.ceca.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/23/2017] [Accepted: 12/08/2017] [Indexed: 01/18/2023]
|
16
|
van Goor MK, Verkaart S, van Dam TJ, Huynen MA, van der Wijst J. Interspecies differences in PTH-mediated PKA phosphorylation of the epithelial calcium channel TRPV5. Pflugers Arch 2017; 469:1301-1311. [PMID: 28534087 PMCID: PMC5590029 DOI: 10.1007/s00424-017-1996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 11/26/2022]
Abstract
The epithelial calcium (Ca2+) channel TRPV5 (transient receptor potential vanilloid 5) is expressed in the distal convoluted tubule of the kidney and facilitates active Ca2+ reabsorption. This process is instrumental for the maintenance of Ca2+ homeostasis. Therefore, all aspects of TRPV5 function are tightly regulated by the calciotropic parathyroid hormone (PTH). Rabbit (rb)TRPV5 channel activity was shown to be stimulated upon PTH-mediated protein kinase A (PKA) phosphorylation. Since there is incomplete conservation of the PKA consensus motif (RR/QxT) across species, the aim of this study was to extend these findings to humans and characterize the expression and function of human (h)TRPV5. Functional differences between rbTRPV5 and hTRPV5 upon PTH stimulation were investigated using 45Ca2+ uptake assays, Fura-2 Ca2+ imaging, and cell surface biotinylation. While PTH treatment enhanced rbTRPV5 channel activity, it did not stimulate hTRPV5 activity. Mutation of the human RQxT motif into rabbit RRxT (hTRPV5 Q706R) partially restored the sensitivity to PTH. An ancestral sequence reconstruction of TRPV5 orthologues demonstrated that the change in the RRxT motif coincides with the creation of another putative PKA motif (RGAS to RRAS) in the amino terminus of hTRPV5. Interestingly, a constitutively phosphorylated hTRPV5 mutant (hTRPV5 S141D) displayed significantly decreased channel function, while its plasma membrane abundance was increased. Taken together, PTH-mediated stimulation of TRPV5, via PKA, is not conserved in humans. Our data suggest that PTH regulation of TRPV5 is altered in humans, an important observation for future studies that may add to new concepts on the role of PTH in renal Ca2+ handling.
Collapse
Affiliation(s)
- Mark K van Goor
- Department of Physiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Sjoerd Verkaart
- Department of Physiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Teunis J van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Abstract
Calcium is an important ion in cell signaling, hormone regulation, and bone health. Its regulation is complex and intimately connected to that of phosphate homeostasis. Both ions are maintained at appropriate levels to maintain the extracellular to intracellular gradients, allow for mineralization of bone, and to prevent extra skeletal and urinary calcification. The homeostasis involves the target organs intestine, parathyroid glands, kidney, and bone. Multiple hormones converge to regulate the extracellular calcium level: parathyroid hormone, vitamin D (principally 25(OH)D or 1,25(OH)2D), fibroblast growth factor 23, and α-klotho. Fine regulation of calcium homeostasis occurs in the thick ascending limb and collecting tubule segments via actions of the calcium sensing receptor and several channels/transporters. The kidney participates in homeostatic loops with bone, intestine, and parathyroid glands. Initially in the course of progressive kidney disease, the homeostatic response maintains serum levels of calcium and phosphorus in the desired range, and maintains neutral balance. However, once the kidneys are no longer able to appropriately respond to hormones and excrete calcium and phosphate, positive balance ensues leading to adverse cardiac and skeletal abnormalities. © 2016 American Physiological Society. Compr Physiol 6:1781-1800, 2016.
Collapse
Affiliation(s)
- Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana.,Section of Nephrology, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| |
Collapse
|
18
|
Correlation between the combination of apparent integrated backscatter–spectral centroid shift and bone mineral density. J Med Ultrason (2001) 2016; 43:167-73. [DOI: 10.1007/s10396-015-0690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
19
|
Ca2+ signaling in cytoskeletal reorganization, cell migration, and cancer metastasis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:409245. [PMID: 25977921 PMCID: PMC4421034 DOI: 10.1155/2015/409245] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/12/2015] [Indexed: 01/19/2023]
Abstract
Proper control of Ca2+ signaling is mandatory for effective cell migration, which is critical for embryonic development, wound healing, and cancer metastasis. However, how Ca2+ coordinates structural components and signaling molecules for proper cell motility had remained elusive. With the advance of fluorescent live-cell Ca2+ imaging in recent years, we gradually understand how Ca2+ is regulated spatially and temporally in migrating cells, driving polarization, protrusion, retraction, and adhesion at the right place and right time. Here we give an overview about how cells create local Ca2+ pulses near the leading edge, maintain cytosolic Ca2+ gradient from back to front, and restore Ca2+ depletion for persistent cell motility. Differential roles of Ca2+ in regulating various effectors and the interaction of roles of Ca2+ signaling with other pathways during migration are also discussed. Such information might suggest a new direction to control cancer metastasis by manipulating Ca2+ and its associating signaling molecules in a judicious manner.
Collapse
|
20
|
Review of the dental implications of X-linked hypophosphataemic rickets (XLHR). Clin Oral Investig 2015; 19:759-68. [PMID: 25677243 DOI: 10.1007/s00784-015-1425-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this article was to review the dental implications of X-linked hypophosphataemic rickets (XLHR) and to provide suggestions regarding the dental treatment of these patients. MATERIALS AND METHODS The following search items "x-linked hypophosphataemia, hypophosphataemic rickets, vitamin D-resistant rickets" were used for literature search. Only full-text articles were analysed and summarized to get an overview of the different treatments and outcomes of hypophosphataemic patients. RESULTS Radiographically, very large pulp chambers with an abnormally high pulp volume/tooth volume ratio, suggesting taurodontism, are often evident. The affected teeth are characterised by a thin enamel layer and dentinal defects. The gender distribution of hypophosphataemic patients is almost equal, but postpubertary males seem to show a trend to develop more severe dental symptoms of the disease. Abscesses without any signs of dental caries or trauma are frequent findings. The most often affected teeth are incisors followed by molars and premolars. CONCLUSIONS Treatment options include frequent dental examination, application of topical fluoride varnish and sealing of pits and fissures to prevent microbial invasion that may result in pulpitis and further endodontic complications. CLINICAL RELEVANCE X-linked hypophosphataemic rickets is associated with marked structural alterations of dental hard tissues and the development of multiple abscesses and sinus tracts of dental origin. Therefore, profound knowledge of the various dental implications of XLHR is required to provide these patients with the best possible treatment options.
Collapse
|