1
|
Liu D, Xiang Y, Sun M, Hu J, Chen Q, Liao L, Liu Y, Wei Y. Transcriptome and metabolome analysis of osteoblasts identifies disrupted purine metabolism and parathyroid hormone associated pathway induced by P. gingivalis infection. Bone 2025; 193:117401. [PMID: 39832660 DOI: 10.1016/j.bone.2025.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Porphyromonas gingivalis (P. gingivalis), a major pathogenic bacterium of chronic periodontitis and central player in the onset and subsequent progression of periodontitis, can cause alveolar bone resorption. The osteoblast dysfunction induced by P. gingivalis infection is a crucial pathological process causing bone loss. However, the comprehensive responses of osteoblasts, especially metabolism processes involved in osteoblast dysfunction under P. gingivalis invasion are largely unknown. In the present study, to profile the molecules switched in osteoblast dysfunction caused by P. gingivalis infection, the effect of P. gingivalis invasion on osteoblast differentiation was assessed and investigated through transcriptomics and metabolomics approaches. We found that P. gingivalis infection dramatically impaired osteoblast function. P. gingivalis invasion disrupted homeostasis of phosphorus (Pi)/calcium (Ca2+) and induced robust oxidative stress, cell apoptosis and massive activation of inflammatory response in osteoblasts. Notably, the exposure to P. gingivalis induced the inactivation of endocrines pathways, involved in bone formation, which is characterized by downregulated genes and less accumulated metabolites in "Parathyroid hormone synthesis, secretion and action", its downstream "Wnt signaling pathway" and related Pi/Ca2+ transport. Furthermore, we found that disrupted purine metabolism produced less ATP in P. gingivalis-infected osteoblasts and the reduced ATP may directly inhibit phosphorus transport. Collectively, these results provide a new insight into the molecular changes in P. gingivalis-infected osteoblasts in a comprehensive way.
Collapse
Affiliation(s)
- Dianbin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengxin Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiayi Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qiuchong Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Longxiang Liao
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Suwittayarak R, Nowwarote N, Kornsuthisopon C, Sukarawan W, Foster BL, Egusa H, Osathanon T. Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth. Sci Rep 2024; 14:24282. [PMID: 39414921 PMCID: PMC11484878 DOI: 10.1038/s41598-024-75303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Calcium phosphate-based materials (CaP) are introduced as potential dental pulp capping materials for deciduous teeth. The present study investigated the influence of inorganic phosphate (Pi) on regulating stem cells isolated from human exfoliated deciduous teeth (SHED). SHEDs were treated with Pi. Cell cycle progression and apoptosis were examined using flow cytometry analysis. Osteo/odontogenic and adipogenic differentiation were analyzed using alizarin red S and oil red O staining, respectively. The mRNA expression profile was investigated using a high-throughput RNA sequencing technique. Pi increased the late apoptotic cell population while cell cycle progression was not altered. Pi upregulated osteo/odontoblastic gene expression and enhanced calcium deposition. Pi-induced mineralization was reversed by pretreatment of cells with Foscarnet, or p38 inhibitor. Pi treatment inhibited adipogenic differentiation as determined by decreased PPARγ expression and reduced intracellular lipid accumulation. Bioinformatic analysis of gene expression profiles demonstrated several involved pathways, including PI3K/AKT, MAPK, EGFR, and VEGF signaling. In conclusion, Pi enhanced osteo/odontogenic but inhibited adipogenic differentiation in SHED.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry and Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waleerat Sukarawan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
- Department of Paediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Miyagi, Japan.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand.
- Department of Oral Biology, Faculty of Dentistry and Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Rasmy S, Mohamed A, Yousef HA. Impact of Exposure to Leaves From Metal-Polluted Sites on the Developmental Parameters of Larvae of the Dark Sword-Grass, Agrotis ipsilon (Lepidoptera: Noctuidae). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:144-158. [PMID: 39046476 PMCID: PMC11377598 DOI: 10.1007/s00244-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Abstract
Insects are impacted by pollutants in their environments and food sources. Herein, we set out a semi-field study to assess the impact of environmental heavy metal contamination on developmental parameters, energy reserves, and acidic and alkaline phosphatases in the larval Agrotis ipsilon (Lepidoptera: Noctuidae). Castor leaves from contaminated and uncontaminated (reference site) areas were fed to A. ipsilon larvae in all treatments. The heavy metal concentrations in the plant from different areas (contaminated and reference sites) and in the larvae were analyzed. Toxic effects were observed in the larvae feeding on the leaves from the metal contaminated areas. Larval and pupal weights, growth indices, and larval fitness were all significantly lower than in the reference group. Likewise, in the third and fourth instars, there was a significant decrease in both the survival and moth emergence rates. In contrast, the pupation duration was significantly longer. Total protein, lipid, and glycogen content showed significant reductions in treated larvae. Larval homogenate samples contaminated with heavy metals showed a significant increase in acid- and alkaline- phosphatase levels. The results obtained could provide a basis for a long-term evaluation of the risk associated with heavy metals and their impact on plant populations and important agricultural pests.
Collapse
Affiliation(s)
- Shrouk Rasmy
- Entomology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amr Mohamed
- Entomology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Research Fellow, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University Museum of Arthropods, King Saud University, 11451, Riyadh, Saudi Arabia
- Division of Invertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Kovrlija I, Menshikh K, Abreu H, Cochis A, Rimondini L, Marsan O, Rey C, Combes C, Locs J, Loca D. Challenging applicability of ISO 10993-5 for calcium phosphate biomaterials evaluation: Towards more accurate in vitro cytotoxicity assessment. BIOMATERIALS ADVANCES 2024; 160:213866. [PMID: 38642518 DOI: 10.1016/j.bioadv.2024.213866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.
Collapse
Affiliation(s)
- Ilijana Kovrlija
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ksenia Menshikh
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Hugo Abreu
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christian Rey
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
6
|
Liu Z, Wang T, Zhang L, Luo Y, Zhao J, Chen Y, Wang Y, Cao W, Zhao X, Lu B, Chen F, Zhou Z, Zheng L. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment. Adv Healthc Mater 2024; 13:e2304158. [PMID: 38319101 DOI: 10.1002/adhm.202304158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
The limited regulation strategies of the regeneration microenvironment significantly hinder bone defect repair effectiveness. One potential solution is using biomaterials capable of releasing bioactive ions and biomolecules. However, most existing biomaterials lack real-time control features, failing to meet high regulation requirements. Herein, a new Strontium (Sr) and epigallocatechin-3-gallate (EGCG) based metal-phenolic network with polydopamine (PMPNs) modification is prepared. This material reinforces a biomimetic scaffold made of extracellular matrix (ECM) and hydroxyapatite nanowires (nHAW). The PMPNs@ECM/nHAW scaffold demonstrates exceptional scavenging of free radicals and reactive oxygen species (ROS), promoting HUVECs cell migration and angiogenesis, inducing stem cell osteogenic differentiation, and displaying high biocompatibility. Additionally, the PMPNs exhibit excellent photothermal properties, further enhancing the scaffold's bioactivities. In vivo studies confirm that PMPNs@ECM/nHAW with near-infrared (NIR) stimulation significantly promotes angiogenesis and osteogenesis, effectively regulating the microenvironment and facilitating bone tissue repair. This research not only provides a biomimetic scaffold for bone regeneration but also introduces a novel strategy for designing advanced biomaterials. The combination of real-time photothermal intervention and long-term chemical intervention, achieved through the release of bioactive molecules/ions, represents a promising direction for future biomaterial development.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wentao Cao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Trauma Emergency Center, Shanghai, 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
7
|
Qi H, Wang B, Wang M, Xie H, Chen C. A pH/ROS-responsive antioxidative and antimicrobial GelMA hydrogel for on-demand drug delivery and enhanced osteogenic differentiation in vitro. Int J Pharm 2024; 657:124134. [PMID: 38643810 DOI: 10.1016/j.ijpharm.2024.124134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the co-crosslinking of two boronate complexes with GelMA. The addition of the boronate complexes improved the mechanical properties, swelling ratio, degradation kinetics and antioxidative properties of the hydrogel. The hydrogel exhibited pH and ROS responses and a synergistic control over the drug release. Proanthocyanidin was responsively released to protect mouse osteoblast precursor cells from oxidative stress and promote their osteogenic differentiation. The hydrogel responded to pH changes and released sufficient amikacin in a timely manner, thereby exerting an efficient antimicrobial effect. Overall, the hydrogel delivery system exhibited a promising strategy for solving infectious and inflammatory problems in bone defects and promoting early-stage bone healing.
Collapse
Affiliation(s)
- Haowen Qi
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Bingqing Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingjuan Wang
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
8
|
Adhikari R, Shiwakoti S, Kim E, Choi IJ, Park SH, Ko JY, Chang K, Oak MH. Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway. Biomol Ther (Seoul) 2023; 31:515-525. [PMID: 37366053 PMCID: PMC10468423 DOI: 10.4062/biomolther.2022.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.
Collapse
Affiliation(s)
- Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Eunmin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ik Jun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Hee Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| |
Collapse
|
9
|
Sun H, Xu J, Wang Y, Shen S, Xu X, Zhang L, Jiang Q. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater 2023; 24:477-496. [PMID: 36714330 PMCID: PMC9843284 DOI: 10.1016/j.bioactmat.2022.12.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Large bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells. Therefore, reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair. Herein, we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels (CPP-L/GelMA) as a "bone microenvironment regulative hydrogel" to reverse the hypoxic microenvironment in bone defects region. CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase (CAT) and ROS-responsive oxygen-releasing nanoparticles (PFC@PLGA/PPS) co-loaded liposome (CCP-L) and GelMA hydrogels. Under hypoxic condition, CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks. The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis. Finally, CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway. Hence, CPP-L/GelMA, as a bone microenvironment regulative hydrogel for bone tissue respiration, can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region, possessing of great clinical therapeutic potential.
Collapse
Key Words
- Alizarin red staining, ARS
- Alkaline phosphatase, ALP
- Bone defect
- Bone marrow mesenchymal stem cells, BMSC
- Bovine serum albumin, BSA
- Brain and muscle arnt-like protein 1
- Brain and muscle arnt-like protein 1, BMAL1
- Catalase, CAT
- Fetal liver kinase-1, Flk-1
- Human umbilical vein endothelial cells, HUVEC
- Hypoxic microenvironment
- Liposome, Lip
- Microtubule-associated proteins light chain 3, LC3
- Nuclear factor (erythroid-derived 2)-like 2, NRF2
- Osteocalcin, OCN
- Osteopontin, OPN
- Perfluorocarbon, PFC
- Phosphate-buffered saline, PBS
- Poly (D, L-lactide-co-glycolide), PLGA
- Poly (propylene sulphide), PPS
- Prolonged oxygen generation
- Reactive oxygen species responsiveness
- Reactive oxygen species, ROS
- Receptor activator of nuclear factor-kappa B ligand, RANKL
- Runt-related transcription factor 2, RUNX2
- Short interfering RNA, siRNA
- Soy phosphatidylcholine, SPC
- Type I collagen, Col I
- Western blot, WB
Collapse
Affiliation(s)
- Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, Jiangsu, PR China
| | - Juan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
10
|
Kaneko K, Miyamoto Y, Ida T, Morita M, Yoshimura K, Nagasaki K, Toba K, Sugisaki R, Motohashi H, Akaike T, Chikazu D, Kamijo R. 8-Nitro-cGMP suppresses mineralization by mouse osteoblasts. J Clin Biochem Nutr 2022; 71:191-197. [PMID: 36447486 PMCID: PMC9701590 DOI: 10.3164/jcbn.21-129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/14/2022] [Indexed: 11/20/2023] Open
Abstract
Nitric oxide and reactive oxygen species regulate bone remodeling, which occurs via bone formation and resorption by osteoblasts and osteoclasts, respectively. Recently, we found that 8-nitro-cGMP, a second messenger of nitric oxide and reactive oxygen species, promotes osteoclastogenesis. Here, we investigated the formation and function of 8-nitro-cGMP in osteoblasts. Mouse calvarial osteoblasts were found to produce 8-nitro-cGMP, which was augmented by tumor necrosis factor-α (10 ng/ml) and interleukin-1β (1 ng/ml). These cytokines suppressed osteoblastic differentiation in a NO synthase activity-dependent manner. Exogenous 8-nitro-cGMP (30 μmol/L) suppressed expression of osteoblastic phenotypes, including mineralization, in clear contrast to the enhancement of mineralization by osteoblasts induced by 8-bromo-cGMP, a cell membrane-permeable analog of cGMP. It is known that reactive sulfur species denitrates and degrades 8-nitro-cGMP. Mitochondrial cysteinyl-tRNA synthetase plays a crucial role in the endogenous production of RSS. The expression of osteoblastic phenotypes was suppressed by not only exogenous 8-nitro-cGMP but also by silencing of the Cars2 gene, indicating a role of endogenous 8-nitro-cGMP in suppressing the expression of osteoblastic phenotypes. These results suggest that 8-nitro-cGMP is a negative regulator of osteoblastic differentiation.
Collapse
Affiliation(s)
- Kotaro Kaneko
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Kei Nagasaki
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Orthopedics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Kazuki Toba
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Risa Sugisaki
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
11
|
Lacerda-Abreu MA, Meyer-Fernandes JR. Extracellular Inorganic Phosphate-Induced Release of Reactive Oxygen Species: Roles in Physiological Processes and Disease Development. Int J Mol Sci 2021; 22:ijms22157768. [PMID: 34360534 PMCID: PMC8346167 DOI: 10.3390/ijms22157768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for living organisms and is maintained in equilibrium in the range of 0.8-1.4 mM Pi. Pi is a source of organic constituents for DNA, RNA, and phospholipids and is essential for ATP formation mainly through energy metabolism or cellular signalling modulators. In mitochondria isolated from the brain, liver, and heart, Pi has been shown to induce mitochondrial reactive oxygen species (ROS) release. Therefore, the purpose of this review article was to gather relevant experimental records of the production of Pi-induced reactive species, mainly ROS, to examine their essential roles in physiological processes, such as the development of bone and cartilage and the development of diseases, such as cardiovascular disease, diabetes, muscle atrophy, and male reproductive system impairment. Interestingly, in the presence of different antioxidants or inhibitors of cytoplasmic and mitochondrial Pi transporters, Pi-induced ROS production can be reversed and may be a possible pharmacological target.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| |
Collapse
|
12
|
Abdelfattah EA, Augustyniak M, Yousef HA. Stage-, sex- and tissue-related changes in H 2O 2, glutathione concentration, and glutathione-dependent enzymes activity in Aiolopus thalassinus (Orthoptera: Acrididae) from heavy metal polluted areas. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:478-491. [PMID: 33582930 DOI: 10.1007/s10646-021-02354-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
This study is part of a large project carried out at the Cairo University, Egypt, and focused on assessing physiological and biochemical changes in Aiolopus thalassinus under the influence of environmental pollution with heavy metals (Pb, Cd, Cu, and Zn). The study aimed to investigate parameters related to maintaining redox balance, with particular emphasis on stage-, sex- and tissue-dependent differences in H2O2 and glutathione (GSH) levels and activity of selected enzymes involved in GSH metabolism. A noticeable increase in the concentration of H2O2 was found, especially in the gut of 5th instar nymphs and females from the highly polluted site. An increase in GSH concentration was significant, especially in the gut of adult A. thalassinus from the high polluted site. However, recycling of reduced form of glutathione in the gut by glutathione reductase (GR) was relevant only for females from the high polluted site. Nymphs and females generally showed higher glutathione S-transferase (GST) activity, especially in the gut. These stage- and sex-related differences can result from different growth dynamic and various reproductive functions of nymphs and both sexes. The digestive track is in direct contact with xenobiotics consumed with food. Nymphs are characterized by vigorous growth, they feed intensively, and their development processes are associated with substantial oxygen consumption. Also, maintaining the antioxidant system at a high level can be more important for females than males due to egg production over a long period. It appears that de novo GSH synthesis is a favorable and cost-effective adaptation mechanism for A. thalassinus living in the high polluted site.
Collapse
Affiliation(s)
- Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
13
|
Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today 2021; 26:1226-1244. [PMID: 33684524 DOI: 10.1016/j.drudis.2021.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have emerged as key players in regulating the fate and function of stem cells from both non-hematopoietic and hematopoietic lineages in bone marrow, and thus affect the osteoblastogenesis-osteoclastogenesis balance and bone homeostasis. Accumulating evidence has linked ROS and associated oxidative stress with the progression of bone disorders, and ROS-based therapeutic strategies have appeared to achieve favorable outcomes in bone. We review current knowledge of the multifactorial roles and mechanisms of ROS as a target in bone pathology. In addition, we discuss emerging ROS-based therapeutic strategies that show potential for bone therapy. Finally, we highlight the opportunities and challenges facing ROS-targeted stem cell therapeutics for improving bone health.
Collapse
|
14
|
Wegner AM, Haudenschild DR. NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target. J Orthop Res 2020; 38:2104-2112. [PMID: 32285964 DOI: 10.1002/jor.24693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) enzymes are important short-range signaling molecules. They have been extensively studied in the physiology and pathophysiology of the cardiovascular system, where they have important roles in vascular inflammation, angiogenesis, hypertension, cardiac injury, stroke, and aging. Increasing evidence demonstrates that ROS and Nox enzymes also affect bone homeostasis and osteoporosis, and more recent studies implicate ROS and Nox enzymes in both inflammatory arthritis and osteoarthritis. Mechanistically, this connection may be through the effects of ROS on signal transduction. ROS affect both transforming growth factor-β/Smad signaling, interleukin-1β/nuclear factor-kappa B signaling, and the resulting changes in matrix metalloproteinase expression. The purpose of this review is to describe the role of Nox enzymes in the physiology and pathobiology of bone and joints and to highlight the potential of therapeutically targeting the Nox enzymes.
Collapse
Affiliation(s)
- Adam M Wegner
- OrthoCarolina, Winston-Salem Spine Center, Winston-Salem, North Carolina
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
15
|
Khalid S, Yamazaki H, Socorro M, Monier D, Beniash E, Napierala D. Reactive oxygen species (ROS) generation as an underlying mechanism of inorganic phosphate (P i)-induced mineralization of osteogenic cells. Free Radic Biol Med 2020; 153:103-111. [PMID: 32330587 PMCID: PMC7262875 DOI: 10.1016/j.freeradbiomed.2020.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Reactive Oxygen Species (ROS) are a natural byproduct of oxygen metabolism. At physiological levels, ROS regulate multiple cellular processes like proliferation, migration, and differentiation. Increased levels of ROS are associated with pathological conditions, such as inflammation and vascular calcification, where they elicit cytotoxic effects. These contrasting outcomes of ROS have also been reported in osteogenic precursor cells. However, the role of ROS in committed osteogenic cells has not been investigated. Cytotoxic and physiologic effects have also been demonstrated for extracellular phosphate (Pi). Specifically, in committed osteogenic cells Pi stimulates their major function (mineralization), however in osteogenic precursors and endothelial cells Pi cytotoxicity has been reported. Interestingly, Pi cytotoxic effects have been associated with ROS production in the pathological vascular mineralization. In this study, we investigated a molecular mechanistic link between elevated Pi and ROS production in the context of the mineralization function of committed osteogenic cells. Using committed osteogenic cells, 17IIA11 odontoblast-like cell and MLO-A5 osteoblast cell lines, we have unveil that Pi enhances intracellular ROS production. Furthermore, using a combination of mineralization assays and gene expression analyses, we determined that Pi-induced intracellular ROS supports the physiological mineralization process. In contrast, the exogenous ROS, provided in a form of H2O2, was detrimental for osteogenic cells. By comparing molecular signaling cascades induced by extracellular ROS and Pi, we identified differences in signaling routes that determine physiologic versus toxic effect of ROS on osteogenic cells. Specifically, while both extracellular and Pi-induced intracellular ROS utilize Erk1/2 signaling mediator, only extracellular ROS induces stress-activated mitogen-activated protein kinases P38 and JNK that are associated with cell death. In summary, our results uncovered a physiological role of ROS in the Pi-induced mineralization through the molecular pathway that is distinct from ROS-induced cytotoxic effects.
Collapse
Affiliation(s)
- Sana Khalid
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Hajime Yamazaki
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Mairobys Socorro
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daisy Monier
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Elia Beniash
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Dept. of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Kheirallah DAM, El-Samad LM, Mokhamer EHM, Abdul-Aziz KK, Toto NAH. DNA damage and oogenesis anomalies in Pimelia latreillei (Coleoptera: Tenebrionidae) induced by heavy metals soil pollution. Toxicol Ind Health 2020; 35:688-702. [PMID: 31818244 DOI: 10.1177/0748233719893200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study used Pimelia latreillei as a biomonitoring insect for heavy metals soil pollution in a populated industrial area at Zawya Abd El-Qader, Alexandria, Egypt. Comet assay and histological analysis were applied to evaluate the potential risk of heavy metals. X-ray analysis of the soil samples collected from the polluted site revealed significantly increased metal percentages compared with the reference site. Moreover, a significant increase in metal percentages was detected by the X-ray analysis in insect ovaries collected from the polluted site. The Tail DNA length was significantly greater in the insects collected from the polluted site-47.6% compared with 11.4% at the reference site. Pronounced disruptions in oogenesis were observed through histological and ultrastructure investigations in insects collected from the polluted site. The study summarized the potential utility of insect biomonitors in predicting the effect of heavy metals soil pollution on occupational health.
Collapse
|
17
|
Kato T, Yamada A, Sasa K, Yoshimura K, Morimura N, Ogata H, Sakashita A, Kamijo R. Nephronectin Expression is Inhibited by Inorganic Phosphate in Osteoblasts. Calcif Tissue Int 2019; 104:201-206. [PMID: 30341591 DOI: 10.1007/s00223-018-0484-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/11/2018] [Indexed: 01/11/2023]
Abstract
Nephronectin (Npnt), an extracellular matrix protein, is known to be a ligand of integrin α8β1, and it has also been known to play critical roles as various organs. In the present study, elevated extracellular inorganic phosphate (Pi) strongly inhibited the expression of Npnt in MC3T3-E1 cells, while the existence of extracellular calcium (Ca) was indispensable for its effect. Furthermore, Pi-induced inhibition of Npnt gene expression was recovered by inhibitors of both sodium-dependent Pi transporter (Pit) and fibroblast growth factor receptors (Fgfrs). These results demonstrated that Npnt gene expression is regulated by extracellular Pi via Pit and Fgfrs.
Collapse
Affiliation(s)
- Tadashi Kato
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, 142-8555, Japan
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasakichuo, Tsuzuki, Yokohama, 224-8503, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, 142-8555, Japan.
| | - Kiyohito Sasa
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, 142-8555, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, 142-8555, Japan
| | - Naoko Morimura
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasakichuo, Tsuzuki, Yokohama, 224-8503, Japan
| | - Akiko Sakashita
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasakichuo, Tsuzuki, Yokohama, 224-8503, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, 142-8555, Japan
| |
Collapse
|
18
|
Yousef HA, Abdelfattah EA, Augustyniak M. Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3823-3833. [PMID: 30539392 DOI: 10.1007/s11356-018-3756-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The response of antioxidant enzymes to oxidative environmental stress was determined in 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae) collected from sites with different level of pollution with heavy metals, PO43-, and SO42-. The high polluted site induced higher DNA damage to individuals compared to the control site. The highest values of tail length (TL), tail moment (TM), and percent of DNA in tail (TDNA) were found in the gut of 5th instar nymphs from a high polluted site. Also, protein carbonyls and lipid peroxide levels were significantly higher in insects collected from polluted sites compared to those from the control site. A strong positive correlation between both protein carbonyl and lipid peroxide concentration and the pollution level of the sites was found in all tissues of the insects. The activity of superoxide dismutase (SOD) in the brain of insects collected from the high polluted site was significantly higher than that in the thoracic muscles and gut. We observed strong inhibition of catalase (CAT) activity. This effect was apparently caused by pollutants present at the high polluted site. The level of pollution significantly influenced polyphenol oxidase (PPO) activity in A. thalassinus nymphs in all examined tissues. The highest values were observed in the brain. The relationship between pollution and ascorbate peroxidase (APOX) activity in the examined tissues had no clear tendency. However, the lowest APOX activity was observed in individuals from the low polluted site. Level of pollution of sampling sites, oxidative stress biomarkers, and enzymatic response in A. thalanthsis 5th instar were negatively or positively correlated. Oxidative damage parameters, especially the percent of severed cells, lipid peroxides, and the activity of APOX, can be perceived as good markers of environmental multistress.
Collapse
Affiliation(s)
- Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
19
|
Guo DL, Li Q, Lv WQ, Zhang GH, Yu YH. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening. BMC PLANT BIOLOGY 2018; 18:285. [PMID: 30445920 PMCID: PMC6240241 DOI: 10.1186/s12870-018-1516-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/31/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND 'Fengzao' is an early-ripening bud mutant of 'Kyoho', which matures nearly 30 days earlier than 'Kyoho'. To gain a better understanding of the regulatory role of miRNAs in early-ripening of grape berry, high-throughput sequencing approach and quantitative RT-PCR validation were employed to identify miRNAs at the genome-wide level and profile the expression patterns of the miRNAs during berry development in 'Kyho' and 'Fengzao', respectively. RESULTS Nine independent small RNA libraries were constructed and sequenced in two varieties from key berry development stages. A total of 108 known miRNAs and 61 novel miRNAs were identified. Among that, 159 miRNAs identified in 'Fengzao' all completely expressed in 'Kyoho' and there were 10 miRNAs specifically expressed in 'Kyoho'. The expression profiles of known and novel miRNAs were quite similar between two varieties. As the major differentially expressed miRNAs, novel_144, vvi-miR3626-3p and vvi-miR3626-5p only expressed in 'Kyoho', vvi-miR399b and vvi-miR399e were down-regulated in 'Fengzao', while vvi-miR477b-3p up-regulated in 'Fengzao'. According to the expression analysis and previous reports, miR169-NF-Y subunit, miR398-CSD, miR3626-RNA helicase, miR399- phosphate transporter and miR477-GRAS transcription factor were selected as the candidates for further investigations of miRNA regulation role in the early-ripening of grape. The qRT-PCR analyses validated the contrasting expression patterns for these miRNAs and their target genes. CONCLUSIONS The miRNAome of the grape berry development of 'Kyoho', and its early-ripening bud mutant, 'Fengzao' were compared by high-throughput sequencing. The expression pattern of several key miRNAs and their target genes during grape berry development and ripening stages was examined. Our results provide valuable basis towards understanding the regulatory mechanisms of early-ripening of grape berry.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Wen-Qing Lv
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Guo-Hai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| |
Collapse
|
20
|
Li D, Zhang K, Shi C, Liu L, Yan G, Liu C, Zhou Y, Hu Y, Sun H, Yang B. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. Int J Nanomedicine 2018; 13:7167-7181. [PMID: 30464466 PMCID: PMC6228053 DOI: 10.2147/ijn.s174553] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Repair of nonunion critical-sized bone defects is a significant clinical challenge all over the world. Construction of osteogenic microenvironment that provides osteoconductive and osteoinductive signals is a leading strategy. Materials and methods In the present study, ascorbic acid (AA) and β-glycerophosphate disodium salt hydrate (β-GP) modified biomimetic gelatin/hydroxyapatite (GH) nanofibrous scaffolds were developed by electrospinning. Then the scaffolds were crosslinked by N-hydroxysulfo-succinimide sodium salt (NHS) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC). The morphology of the non-crosslinked and crosslinked scaffolds was evaluated by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FT-IR) was used to assess the interacting model between the small molecules and GH scaffold. Then MTT, Alamar Blue, and CCK8 assays were used to investigate the biocompatibility of the various crosslinked scaffolds. Subsequently, the osteogenic genes expression of bone marrow stromal cells (BMSCs) cultured on the scaffolds were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Finally, the crosslinked scaffolds were implanted in a rat calvarial defect model to assess the osteogenic effects in vivo. Results SEM results showed that the various scaffolds presented extracellular matrix (ECM)-like fibrous porous structure. (FT-IR) spectrum indicated that AA and β-GP were covalently bonded with GH scaffolds. The MTT, Alamar Blue, and CCK8 assays demonstrated that all the scaffolds can support BMSCs' growth well. The qRT-PCR results showed that the expression level of Alp and Runx2 in BMSCs on GH/A/B scaffold was about 3.5- and 1.5-fold, respectively, compared with that of GH group on day 7. The results also showed that AA- and β-GP-modified GH scaffolds can significantly induce the higher levels of osteogenic gene expression in a temporal specific manner. Importantly, AA and β-GP synergistically promoted osteoblast differentiation in vitro and dramatically induced bone regeneration in vivo. Impressively, AA and β-GP dual modified GH nanofibrous scaffold could serve as a template for guiding bone regeneration and the bone defects were almost repaired completely (94.28%±5.00%) at 6 weeks. Besides, single AA or β-GP-modified GH nanofibrous scaffolds could repair 62.95%±9.39% and 66.56%±18.45% bone defects, respectively, at 12 weeks in vivo. In addition, AA and β-GP exhibit an anti-inflammatory effect in vivo. Conclusion Our data highlighted that, AA, β-GP, and GH nanofibers created a fine osteoconductive and osteoinductive microenvironments for bone regeneration. We demonstrated that AA and β-GP dual modified GH nanofiber is a versatile bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Daowei Li
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China.,Department of Oral Pathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Kai Zhang
- Department of Oral Pathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Ce Shi
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China.,Department of Oral Pathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Lijun Liu
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guangxing Yan
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Cangwei Liu
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yijun Zhou
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yue Hu
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Hongchen Sun
- Department of Multiscale Diagnosis and Treatment Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People's Republic of China,
| | - Bai Yang
- Department of Oral Pathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
21
|
Tatsumoto N, Arioka M, Yamada S, Takahashi-Yanaga F, Tokumoto M, Tsuruya K, Kitazono T, Sasaguri T. Inhibition of GSK-3β increases trabecular bone volume but not cortical bone volume in adenine-induced uremic mice with severe hyperparathyroidism. Physiol Rep 2017; 4:4/21/e13010. [PMID: 27803315 PMCID: PMC5112491 DOI: 10.14814/phy2.13010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk for bone fractures compared with the general population. Repression of the Wnt/β‐catenin signaling pathway is associated with bone abnormalities. Inhibition of glycogen synthase kinase (GSK)‐3β, a critical component of the Wnt/β‐catenin signaling pathway, increases bone volume through accumulation of β‐catenin. It remains unknown whether inhibition of GSK‐3β increases bone volume in CKD. The present in vivo study examined the effects of GSK‐3β inhibition on bone volume in CKD mice. Wild‐type mice were divided into three groups. One group was fed a control diet (CNT) and the other two groups were fed a diet containing 0.2% adenine and given water with or without lithium chloride (LiCl), a GSK‐3 inhibitor (CKD, CKD+LiCl, respectively). GSK‐3β heterozygous knockout mice were fed a diet containing 0.2% adenine (CKD‐GSK‐3β+/−). After 6 weeks, trabecular and cortical bone volumes of the femur were analyzed using microcomputed tomography. CKD mice developed azotemia, hyperphosphatemia, and hyperparathyroidism, followed by a decrease in cortical bone volume without any change in trabecular bone volume. Serum levels of urea nitrogen, phosphate, and parathyroid hormone were comparable among the three groups of CKD mice. Trabecular bone volume increased in CKD‐GSK‐3β+/− and CKD+LiCl mice compared with CNT and CKD mice. However, there were no significant differences in cortical bone volume among the three groups of CKD mice. The results suggest that inhibition of GSK‐3β increases trabecular bone volume but not cortical bone volume in adenine‐induced uremic mice with uncontrolled hyperparathyroidism.
Collapse
Affiliation(s)
- Narihito Tatsumoto
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Arioka
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Global Medical Science Education Unit, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Sasaguri
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Abdelfattah EA, Augustyniak M, Yousef HA. Biomonitoring of genotoxicity of industrial fertilizer pollutants in Aiolopus thalassinus (Orthoptera: Acrididae) using alkaline comet assay. CHEMOSPHERE 2017; 182:762-770. [PMID: 28535484 DOI: 10.1016/j.chemosphere.2017.05.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/17/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Phosphate fertilizer industry is considered as one of the main sources of environmental pollutants. Besides solid waste products, e.g. phosphates, sulphates, and heavy metals, also atmospheric pollutants, such as hydrofluoric acid fumes (HF), sulphur dioxide (SO2), nitrogen oxides (NO2), and particulate matter with diameter up to 10 μm (PM10) can be dangerous. Genotoxic effect of these pollutants was monitored by assessing the DNA damage using alkaline comet assay on cells from brain, thoracic muscles and gut of Aiolopus thalassinus collected at three sites (A-C) located at 1, 3, and 6 km away from Abu-Zaabal Company for Fertilizers and Chemical Industries. Control site was established 32 km from the source of pollution, at the Cairo University Campus. The level of the DNA damage was significantly higher in insects from polluted sites comparing to that from the control site. A strong negative correlation between percentage of cells with visible DNA damage (% of severed cells) and the distance of the sites from Abu-Zaabal Company was found. The best parameter for monitoring of fertilizer pollutants is % of severed cells. Possible impact of Abu-Zaabal Company (extremely high concentration of phosphates and sulphates in all the polluted sites) on DNA integrity in A. thalassinus tissues was discussed. The potential use of the comet assay as a biomonitoring method of the environmental pollution caused by fertilizer industry was proposed. Specific pollution resulting from the activity of the fertilizer industry can cause comparable adverse effects in the organisms inhabiting areas up to 6 km from the source of contamination.
Collapse
Affiliation(s)
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Egypt.
| |
Collapse
|
23
|
Yousef HA, Abdelfattah EA, Augustyniak M. Evaluation of oxidative stress biomarkers in Aiolopus thalassinus (Orthoptera: Acrididae) collected from areas polluted by the fertilizer industry. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:340-350. [PMID: 28116642 DOI: 10.1007/s10646-017-1767-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
The waste products of the fertilizer industry such as heavy metals, but especially phosphates and sulphates, are a serious problem that influences the structure and functioning of ecosystems. The levels of Cd, Pb, Zn, Cu, sulphates and phosphates were measured in soil samples from four sites: a control and sites that were 1, 3 and 6 km (sites A-C) away from the Abu-Zaabal Fertilizer Company. Oxidative stress markers (protein carbonyls, lipid peroxides), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), polyphenoloxidase (PPO) and ascorbate peroxidase (APOX)) were evaluated in the tissues of Aiolopus thalassinus, collected from the corresponding sites. The highest concentrations of Cu and Zn were found in the soil from site A. The level of protein carbonyls in the brain, thoracic muscles and gut of the males and females from sites A, B and C were 11.82, 4.38, 5.97 (males) and 19.04, 16.65, 7.79 (females) times higher, respectively, compared to the individuals from the control site. Lipid peroxides levels in both sexes were significantly correlated with the distance from the source of the contamination. In the brain, thoracic muscles and gut of the males and females collected from site A, the level of lipid peroxides were 15.41, 23.49, 11.50 (males) and 25.36, 11.34, 15.37 (females) times higher compared to the values of the control animals. The activities of SOD, PPO, CAT and APOX were significantly affected by the environmental pollutants. The enzymatic and non-enzymatic oxidative markers in the Aiolopus thalassinus, a common insect species that inhabits various ecosystems, can also be used as a relevant biomarker of the pollution that is caused by the fertilizer industry.
Collapse
Affiliation(s)
- Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, 40-007, PL, Katowice, Poland
| |
Collapse
|
24
|
Hori M, Kinoshita Y, Taguchi M, Fukumoto S. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Miner Metab 2016; 34:132-9. [PMID: 25792238 DOI: 10.1007/s00774-015-0651-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) has been shown to work as a phosphotropic hormone. Although FGF23 reduces the serum phosphate level, it has not been established that phosphate directly regulates FGF23 production. In this study, we investigated whether phosphate can enhance Fgf23 expression using the rat osteoblastic cell line UMR-106, which has been shown to express Fgf23 in response to 1,25-dihydroxyvitamin D [1,25(OH)2D]. Phosphate increased Fgf23 expression in a dose- and time-dependent manner in the presence of 1,25(OH)2D. Phosphate also increased Fgf23 promoter activity, but showed no effect on the half-life of Fgf23 messenger RNA. Phosphonoformic acid and PD98059, an inhibitor of MEK, inhibited the effects of phosphate on Fgf23 expression and promoter activity. In addition, phosphate enhanced production of reactive oxygen species (ROS) in UMR-106 cells, and hydrogen peroxide enhanced FGF23 production in a dose- and time-dependent manner. Hydrogen peroxide also enhanced Elk1 reporter activity, a target of the MEK-extracellular-signal-regulated kinase (ERK) pathway. Furthermore, the effect of phosphate on ROS production and Fgf23 expression was inhibited by apocynin, an inhibitor of NADPH oxidase. These results indicate that phosphate directly enhances Fgf23 transcription without affecting the stability of Fgf23 messenger RNA by stimulating NADPH-induced ROS production and the MEK-ERK pathway in UMR-106 cells.
Collapse
Affiliation(s)
- Michiko Hori
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Manabu Taguchi
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiji Fukumoto
- Division of Nephrology and Endocrinology, Department of Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
25
|
Kawai M, Kinoshita S, Ozono K, Michigami T. Inorganic Phosphate Activates the AKT/mTORC1 Pathway and Shortens the Life Span of an α‑Klotho-Deficient Model. J Am Soc Nephrol 2016; 27:2810-24. [PMID: 26872488 DOI: 10.1681/asn.2015040446] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 01/07/2016] [Indexed: 12/24/2022] Open
Abstract
Inorganic phosphate (Pi) has been implicated in the pathogenesis of accelerated aging; however, the underlying mechanisms remain elusive. Herein, we demonstrated in cultured cells and in vivo that increased levels of extracellular Pi activated the AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway by suppressing membrane-bound phosphatase and tensin homolog (PTEN) levels in a manner requiring the sodium-dependent Pi transporter PiT‑1. High levels of extracellular Pi also led to phosphorylation of Ser/Thr clusters in the C‑terminal tail of PTEN, which has been shown to dissociate PTEN from the membrane. Notably, blockade of mTORC1 activity by rapamycin treatment prolonged the life span of hyperphosphatemic α‑Klotho-deficient (Kl(-/-)) mice. Dietary correction of hyperphosphatemia or treatment with rapamycin also rescued the brown adipose tissue dysfunction and oxidative damage observed in Kl(-/-) mice. Furthermore, rapamycin treatment partially rescued these effects and extended the life span when Kl(-/-) mice were maintained on a high-phosphate diet. Finally, rapamycin reduced circulating Pi levels in Kl(-/-) mice, apparently by decreasing the localization of sodium-dependent Pi transport protein 2a at the renal brush border membrane. Therefore, the activation of mTORC1 may create a vicious loop that exacerbates the retention of Pi, which in turn may enhance oxidative damage and ultimately shorten the life span of Kl(-/-) mice. These results demonstrate that Pi has important roles in the aging process, and the blockade of mTORC1 may have therapeutic potential for premature aging-like symptoms associated with hyperphosphatemia.
Collapse
Affiliation(s)
- Masanobu Kawai
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan; and
| | - Saori Kinoshita
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan; and
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan; and
| |
Collapse
|
26
|
Calcium phosphate nanoparticles are associated with inorganic phosphate-induced osteogenic differentiation of rat bone marrow stromal cells. Chem Biol Interact 2015; 238:111-7. [DOI: 10.1016/j.cbi.2015.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 12/19/2022]
|