1
|
Valetti F, Morra S, Barbieri L, Dezzani S, Ratto A, Catucci G, Sadeghi SJ, Gilardi G. Oxygen-resistant [FeFe]hydrogenases: new biocatalysis tools for clean energy and cascade reactions. Faraday Discuss 2024; 252:223-240. [PMID: 38836410 DOI: 10.1039/d4fd00010b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The use of enzymes to generate hydrogen, instead of using rare metal catalysts, is an exciting area of study in modern biochemistry and biotechnology, as well as biocatalysis driven by sustainable hydrogen. Thus far, the oxygen sensitivity of the fastest hydrogen-producing/exploiting enzymes, [FeFe]hydrogenases, has hindered their practical application, thereby restricting innovations mainly to their [NiFe]-based, albeit slower, counterparts. Recent exploration of the biodiversity of clostridial hydrogen-producing enzymes has yielded the isolation of representatives from a relatively understudied group. These enzymes possess an inherent defense mechanism against oxygen-induced damage. This discovery unveils fresh opportunities for applications such as electrode interfacing, biofuel cells, immobilization, and entrapment for enhanced stability in practical uses. Furthermore, it suggests potential combinations with cascade reactions for CO2 conversion or cofactor regeneration, like NADPH, facilitating product separation in biotechnological processes. This work provides an overview of this new class of biocatalysts, incorporating unpublished protein engineering strategies to further investigate the dynamic mechanism of oxygen protection and to address crucial details remaining elusive such as still unidentified switching hot-spots and their effects. Variants with improved kcat as well as chimeric versions with promising features to attain gain-of-function variants and applications in various biotechnological processes are also presented.
Collapse
Affiliation(s)
- Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Simone Morra
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Lisa Barbieri
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
- University School for Advanced Studies IUSS Pavia, Italy
| | - Sabrina Dezzani
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
- University School for Advanced Studies IUSS Pavia, Italy
| | - Alessandro Ratto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
3
|
Gillam EMJ, Kramlinger VM. Opportunities for Accelerating Drug Discovery and Development by Using Engineered Drug-Metabolizing Enzymes. Drug Metab Dispos 2023; 51:392-402. [PMID: 36460479 DOI: 10.1124/dmd.121.000743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
The study of drug metabolism is fundamental to drug discovery and development (DDD) since by mediating the clearance of most drugs, metabolic enzymes influence their bioavailability and duration of action. Biotransformation can also produce pharmacologically active or toxic products, which complicates the evaluation of the therapeutic benefit versus liability of potential drugs but also provides opportunities to explore the chemical space around a lead. The structures and relative abundance of metabolites are determined by the substrate and reaction specificity of biotransformation enzymes and their catalytic efficiency. Preclinical drug biotransformation studies are done to quantify in vitro intrinsic clearance to estimate likely in vivo pharmacokinetic parameters, to predict an appropriate dose, and to anticipate interindividual variability in response, including from drug-drug interactions. Such studies need to be done rapidly and cheaply, but native enzymes, especially in microsomes or hepatocytes, do not always produce the full complement of metabolites seen in extrahepatic tissues or preclinical test species. Furthermore, yields of metabolites are usually limiting. Engineered recombinant enzymes can make DDD more comprehensive and systematic. Additionally, as renewable, sustainable, and scalable resources, they can also be used for elegant chemoenzymatic, synthetic approaches to optimize or synthesize candidates as well as metabolites. Here, we will explore how these new tools can be used to enhance the speed and efficiency of DDD pipelines and provide a perspective on what will be possible in the future. The focus will be on cytochrome P450 enzymes to illustrate paradigms that can be extended in due course to other drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Protein engineering can generate enhanced versions of drug-metabolizing enzymes that are more stable, better suited to industrial conditions, and have altered catalytic activities, including catalyzing non-natural reactions on structurally complex lead candidates. When applied to drugs in development, libraries of engineered cytochrome P450 enzymes can accelerate the identification of active or toxic metabolites, help elucidate structure activity relationships, and, when combined with other synthetic approaches, provide access to novel structures by regio- and stereoselective functionalization of lead compounds.
Collapse
Affiliation(s)
- Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| | - Valerie M Kramlinger
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| |
Collapse
|
4
|
Abstract
The P450 superfamily comprises some of the most powerful and versatile enzymes for the site-selective oxidation of small molecules. One of the main drawbacks for the applications of the P450s in biotechnology is that the majority of these enzymes is multicomponent in nature and requires the presence of suitable redox partners to support their functions. Nevertheless, the discovery of several self-sufficient P450s, namely those from Classes VII and VIII, has served as an inspiration for fusion approaches to generate chimeric P450 systems that are self-sufficient. In this Perspective, we highlight the domain organizations of the Class VII and Class VIII P450 systems, summarize recent case studies in the engineering of catalytically self-sufficient P450s based on these systems, and outline outstanding challenges in the field, along with several emerging technologies as potential solutions.
Collapse
Affiliation(s)
- Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005
| |
Collapse
|
5
|
Catucci G, Ciaramella A, Di Nardo G, Zhang C, Castrignanò S, Gilardi G. Molecular Lego of Human Cytochrome P450: The Key Role of Heme Domain Flexibility for the Activity of the Chimeric Proteins. Int J Mol Sci 2022; 23:ijms23073618. [PMID: 35408976 PMCID: PMC8998974 DOI: 10.3390/ijms23073618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as ‘molecular Lego’. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the ‘molecular Lego’ approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.
Collapse
|
6
|
Fan Y, Tao Y, Liu G, Wang M, Wang S, Li L. Interaction study of engeletin toward cytochrome P450 3A4 and 2D6 by multi-spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120311. [PMID: 34481255 DOI: 10.1016/j.saa.2021.120311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The inhibitory effects of engeletin on the activities of human cytochrome P450 3A4 and 2D6 (CYP3A4 and CYP2D6) were investigated by enzyme kinetics, multi-spectroscopy and molecular docking. Engeletin was found to strongly inhibit CYP3A4 and CYP2D6, with the IC50 of 1.32 μM and 2.87 μM, respectively. The inhibition modes of engeletin against CYP3A4 and CYP2D6 were a competitive type and a mixed type, respectively. The fluorescence of the two CYPs was quenched statically by engeletin, which was bound to CYP3A4 stronger than to CYP2D6 at the same temperature. Circular dichroism spectroscopy, three-dimensional fluorescence, ultraviolet-visible spectroscopy and synchronous fluorescence confirmed that the conformation and micro-environment of the two CYPs protein were changed after binding with engeletin. Molecular docking, ultraviolet-visible spectroscopy and the fluorescence data revealed that engeletin had strong binding affinity to the two CYPs through hydrogen and van der Waals forces. The findings here suggested that engeletin may cause the herb-drug interactions for its inhibition of CYP3A4 and CYP2D6 activities.
Collapse
Affiliation(s)
- Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032,China.
| |
Collapse
|
7
|
A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism. Int J Mol Sci 2021; 22:ijms222111380. [PMID: 34768811 PMCID: PMC8583553 DOI: 10.3390/ijms222111380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3's high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.
Collapse
|
8
|
Goyal N, Sridhar J, Do C, Bratton M, Shaik S, Jiang Q, Foroozesh M. Identification of CYP 2A6 inhibitors in an effort to mitigate the harmful effects of the phytochemical nicotine. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:18. [PMID: 34722929 PMCID: PMC8555909 DOI: 10.20517/2394-4722.2020.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM In this study, our goal was to study the inhibition of nicotine metabolism by P450 2A6, as a means for reduction in tobacco use and consequently the prevention of smoking-related cancers. Nicotine, a phytochemical, is an addictive stimulant, responsible for the tobacco-dependence in smokers. Many of the other phytochemicals in tobacco, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are potent systemic carcinogens. Tobacco smoking causes about one of every five deaths in the United States annually. Nicotine plasma concentration is maintained by the smokers' smoking behavior within a small range. Nicotine is metabolized by cytochrome P450s 2A6 and 2A13 to cotinine. This metabolism causes a decrease in nicotine plasma levels, which in turn leads to increased tobacco smoking, and increased exposure to the tobacco carcinogens. METHODS Using the phytochemical nicotine as a lead structure, and taking its interactions with the P450 2A6 binding pocket into consideration, new pyridine derivatives were designed and synthesized as potential selective mechanism-based inhibitors for this enzyme. RESULTS The design and synthesis of two series of novel pyridine-based compounds, with varying substituents and substitution locations on the pyridine ring, as well as their inhibitory activities on cytochrome P450 2A6 and their interactions with its active site are discussed here. Substitutions at position 3 of the pyridine ring with an imidazole or propargyl ether containing group showed the most optimal interactions with the P4502A6 active site. CONCLUSION The pyridine compounds with an imidazole or propargyl ether containing substituent on position 3 were found to be promising lead compounds for further development. Hydrogen-bonding interactions were determined to be crucial for effective binding of these molecules within the P450 2A6 active site.
Collapse
Affiliation(s)
- Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Camilla Do
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Melyssa Bratton
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Shahensha Shaik
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Quan Jiang
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
9
|
Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry 2020; 138:107729. [PMID: 33421896 DOI: 10.1016/j.bioelechem.2020.107729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Polymorphism is an important aspect in drug metabolism responsible for different individual response to drug dosage, often leading to adverse drug reactions. Here human CYP2C9 as well as its polymorphic variants CYP2C9*2 and CYP2C9*3 present in approximately 35% of the Caucasian population have been engineered by linking their gene to the one of D. vulgaris flavodoxin (FLD) that acts as regulator of the electron flow from the electrode surface to the haem. The redox properties of the immobilised proteins were investigated by cyclic voltammetry and electrocatalysis was measured in presence of the largely used anticoagulant drug S-warfarin, marker substrate for CYP2C9. Immobilisation of the CYP2C9-FLD, CYP2C9*2-FLD and CYP2C9*3-FLD on DDAB modified glassy carbon electrodes showed well defined redox couples on the oxygen-free cyclic voltammograms and mid-point potentials of all enzymes were calculated. Electrocatalysis in presence of substrate and quantification of the product formed showed lower catalytic activities for the CYP2C9*3-FLD (2.73 ± 1.07 min-1) and CYP2C9*2-FLD (12.42 ± 2.17 min-1) compared to the wild type CYP2C9-FLD (18.23 ± 1.29 min-1). These differences in activity among the CYP2C9 variants are in line with the reported literature data, and this set the basis for the use of the bio-electrode for the measurement of the different catalytic responses towards drugs very relevant in therapy.
Collapse
|
10
|
Chen CC, Min J, Zhang L, Yang Y, Yu X, Guo RT. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. Chembiochem 2020; 22:1317-1328. [PMID: 33232569 DOI: 10.1002/cbic.202000705] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
11
|
Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:289-320. [PMID: 32951814 DOI: 10.1016/bs.apcsb.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).
Collapse
Affiliation(s)
| | - Carl Young
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | - Darren J Cook
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | | | - Gary W Black
- Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Sadeghi SJ, Di Nardo G, Gilardi G. Chimeric cytochrome P450 3A4 used for in vitro prediction of food-drug interactions. Biotechnol Appl Biochem 2020; 67:541-548. [PMID: 32713008 DOI: 10.1002/bab.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/26/2022]
Abstract
Inhibition of cytochrome P450 (CYP)-mediated drug metabolism by dietary substances is the main cause of drug-food interactions in humans. The present study reports on the in vitro inhibition assays of human CYP3A4 genetically linked to the reductase domain of bacterial BM3 of Bacillus megaterium (BMR) resulting in the chimeric protein CYP3A4-BMR. The activity of this chimeric enzyme was initially measured colorimetrically with erythromycin as the substrate where KM values similar to published data were determined. Subsequently, the inhibition assays with three different dietary products, grapefruit juice, curcumin, and resveratrol, were carried out with the chimeric enzyme both in solution and immobilized on electrode surfaces. For the solution studies, nicotinamide adenine dinucleotide phosphate was added as the electron donor, whereas the need for this cofactor was obviated in the immobilized enzyme as it was supplied by the electrode. Inhibition of the N-demethylation of erythromycin by CYP3A4-BMR chimera was measured at increasing concentrations of the different dietary compounds with calculated IC50 values of 0.5%, 31 μM, and 250 μM for grapefruit juice, curcumin, and resveratrol measured in solution compared with 0.7%, 24 μM, and 208 μM measured electrochemically, respectively. These data demonstrate the feasibility of the use of both CYP3A4-BMR chimera as well as bioelectrochemistry for in vitro studies of not only drug-food interactions but also prediction of adverse drug reactions in this important P450 enzyme.
Collapse
Affiliation(s)
- Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Jeffreys LN, Pacholarz KJ, Johannissen LO, Girvan HM, Barran PE, Voice MW, Munro AW. Characterization of the structure and interactions of P450 BM3 using hybrid mass spectrometry approaches. J Biol Chem 2020; 295:7595-7607. [PMID: 32303637 PMCID: PMC7261786 DOI: 10.1074/jbc.ra119.011630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The cytochrome P450 monooxygenase P450 BM3 (BM3) is a biotechnologically important and versatile enzyme capable of producing important compounds such as the medical drugs pravastatin and artemether, and the steroid hormone testosterone. BM3 is a natural fusion enzyme comprising two major domains: a cytochrome P450 (heme-binding) catalytic domain and a NADPH-cytochrome P450 reductase (CPR) domain containing FAD and FMN cofactors in distinct domains of the CPR. A crystal structure of full-length BM3 enzyme is not available in its monomeric or catalytically active dimeric state. In this study, we provide detailed insights into the protein-protein interactions that occur between domains in the BM3 enzyme and characterize molecular interactions within the BM3 dimer by using several hybrid mass spectrometry (MS) techniques, namely native ion mobility MS (IM-MS), collision-induced unfolding (CIU), and hydrogen-deuterium exchange MS (HDX-MS). These methods enable us to probe the structure, stoichiometry, and domain interactions in the ∼240 kDa BM3 dimeric complex. We obtained high-sequence coverage (88–99%) in the HDX-MS experiments for full-length BM3 and its component domains in both the ligand-free and ligand-bound states. We identified important protein interaction sites, in addition to sites corresponding to heme-CPR domain interactions at the dimeric interface. These findings bring us closer to understanding the structure and catalytic mechanism of P450 BM3.
Collapse
Affiliation(s)
- Laura N Jeffreys
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Linus O Johannissen
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hazel M Girvan
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita E Barran
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael W Voice
- Cypex Ltd., 6 Tom McDonald Avenue, Dundee, DD2 1NH, United Kingdom
| | - Andrew W Munro
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom .,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
14
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
15
|
|
16
|
Castrignanò S, Di Nardo G, Sadeghi SJ, Gilardi G. Influence of inter-domain dynamics and surrounding environment flexibility on the direct electrochemistry and electrocatalysis of self-sufficient cytochrome P450 3A4-BMR chimeras. J Inorg Biochem 2018; 188:9-17. [DOI: 10.1016/j.jinorgbio.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/21/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
|
17
|
Kesik‐Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem 2018; 65:306-322. [PMID: 28972297 PMCID: PMC6749944 DOI: 10.1002/bab.1617] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Since its introduction in 1982, biopharmaceutical drugs have revolutionized the treatment of a broad spectrum of diseases and are increasingly used in nearly all branches of medicine. In recent years, the biopharmaceuticals market has developed much faster than the market for all drugs and is believed to have great potential for further dynamic growth because of the tremendous demand for these drugs. Biobetters, which contain altered active pharmaceutical ingredients with enhanced efficacy, will play an important role in the development of biopharmaceuticals. Another significant group of biopharmaceuticals are biosimilars. Their introduction in the European Union and, recently, the Unites States markets will reduce the costs of biopharmaceutical treatment. This review highlights recent progress in the field of biopharmaceutical development and issues concerning the registration of innovative biopharmaceuticals and biosimilars. The leading class of biopharmaceuticals, the current biopharmaceuticals market, and forecasts are also discussed.
Collapse
|
18
|
Talmann L, Wiesner J, Vilcinskas A. Strategies for the construction of insect P450 fusion enzymes. ACTA ACUST UNITED AC 2018; 72:405-415. [PMID: 28866653 DOI: 10.1515/znc-2017-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) are ubiquitous enzymes with a broad substrate spectrum. Insect P450s are known to catalyze reactions such as the detoxification of insecticides and the synthesis of hydrocarbons, which makes them useful for many industrial processes. Unfortunately, it is difficult to utilize P450s effectively because they must be paired with cytochrome P450 reductases (CPRs) to facilitate electron transfer from reduced nicotinamide adenine dinucleotide phosphate (NADPH). Furthermore, eukaryotic P450s and CPRs are membrane-anchored proteins, which means they are insoluble and therefore difficult to purify when expressed in their native state. Both challenges can be addressed by creating fusion proteins that combine the P450 and CPR functions while eliminating membrane anchors, allowing the production and purification of soluble multifunctional polypeptides suitable for industrial applications. Here we discuss several strategies for the construction of fusion enzymes combining insect P450 with CPRs.
Collapse
|
19
|
Tavanti M, Porter JL, Sabatini S, Turner NJ, Flitsch SL. Panel of New Thermostable CYP116B Self-Sufficient Cytochrome P450 Monooxygenases that Catalyze C−H Activation with a Diverse Substrate Scope. ChemCatChem 2018. [DOI: 10.1002/cctc.201701510] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michele Tavanti
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Joanne L. Porter
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Selina Sabatini
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Sabine L. Flitsch
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
20
|
Ortega Ugalde S, Luirink RA, Geerke DP, Vermeulen NPE, Bitter W, Commandeur JNM. Engineering a self-sufficient Mycobacterium tuberculosis CYP130 by gene fusion with the reductase-domain of CYP102A1 from Bacillus megaterium. J Inorg Biochem 2017; 180:47-53. [PMID: 29232638 DOI: 10.1016/j.jinorgbio.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
Abstract
CYP130 belongs to the subset of cytochrome P450s from Mycobacterium tuberculosis (Mtb) that have been structurally characterized. Despite several efforts for its functional characterization, CYP130 is still considered an orphan enzyme for which no endogenous or exogenous substrate has been identified. In addition, functional redox-partners for CYP130 have not been clearly established yet, hampering the elucidation of its physiological role. In the present study, a catalytically active fusion protein involving CYP130 and the NADPH reductase-domain of CYP102A1 from Bacillus megaterium was created. By screening a panel of known substrates of human P450s, dextromethorphan N-demethylation was identified as a reaction catalyzed by CYP130. The fusion enzyme showed higher catalytic activity, when compared to CYP130 reconstituted with a selection of non-native redox-partners. Molecular dynamics simulation studies based on the crystal structure of CYP130 revealed two primary docking poses of dextromethorphan within the active site consistent with the experimentally observed N-demethylation reaction during the entire molecular dynamics simulation. The dextromethorphan N-demethylation reaction was strongly inhibited by azole-drugs and maybe applied to identify mechanism-based inhibitors of CYP130. Furthermore, the present active CYP130-fusion protein may facilitate the identification of endogenous substrates from Mtb.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rosa A Luirink
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daan P Geerke
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wilbert Bitter
- Division of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Castrignanò S, D'Avino S, Di Nardo G, Catucci G, Sadeghi SJ, Gilardi G. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:116-125. [PMID: 28734977 DOI: 10.1016/j.bbapap.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/09/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Silvia Castrignanò
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Serena D'Avino
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| |
Collapse
|
22
|
Degregorio D, D'Avino S, Castrignanò S, Di Nardo G, Sadeghi SJ, Catucci G, Gilardi G. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras. Front Pharmacol 2017; 8:121. [PMID: 28377716 PMCID: PMC5359286 DOI: 10.3389/fphar.2017.00121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a Vmax increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
23
|
Ciaramella A, Minerdi D, Gilardi G. Catalytically self-sufficient cytochromes P450 for green production of fine chemicals. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0581-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Production of ω-hydroxy palmitic acid using CYP153A35 and comparison of cytochrome P450 electron transfer system in vivo. Appl Microbiol Biotechnol 2016; 100:10375-10384. [PMID: 27344594 DOI: 10.1007/s00253-016-7675-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/31/2016] [Accepted: 06/11/2016] [Indexed: 12/28/2022]
Abstract
Bacterial cytochrome P450 enzymes in cytochrome P450 (CYP)153 family were recently reported as fatty acid ω-hydroxylase. Among them, CYP153As from Marinobacter aquaeolei VT8 (CYP153A33), Alcanivorax borkumensis SK2 (CYP153A13), and Gordonia alkanivorans (CYP153A35) were selected, and their specific activities and product yields of ω-hydroxy palmitic acid based on whole cell reactions toward palmitic acid were compared. Using CamAB as redox partner, CYP153A35 and CYP153A13 showed the highest product yields of ω-hydroxy palmitic acid in whole cell and in vitro reactions, respectively. Artificial self-sufficient CYP153A35-BMR was constructed by fusing it to the reductase domain of CYP102A1 (i.e., BM3) from Bacillus megaterium, and its catalytic activity was compared with CYP153A35 and CamAB systems. Unexpectedly, the system with CamAB resulted in a 1.5-fold higher yield of ω-hydroxy palmitic acid than that using A35-BMR in whole cell reactions, whereas the electron coupling efficiency of CYP153A35-BM3 reductase was 4-fold higher than that of CYP153A35 and CamAB system. Furthermore, various CamAB expression systems according to gene arrangements of the three proteins and promoter strength in their gene expression were compared in terms of product yields and productivities. Tricistronic expression of the three proteins in the order of putidaredoxin (CamB), CYP153A35, and putidaredoxin reductase (CamA), i.e., A35-AB2, showed the highest product yield from 5 mM palmitic acid for 9 h in batch reaction owing to the concentration of CamB, which is the rate-limiting factor for the activity of CYP153A35. However, in fed-batch reaction, A35-AB1, which expressed the three proteins individually using three T7 promoters, resulted with the highest product yield of 17.0 mM (4.6 g/L) ω-hydroxy palmitic acid from 20 mM (5.1 g/L) palmitic acid for 30 h.
Collapse
|
25
|
Zuo R, Zhang Y, Huguet‐Tapia JC, Mehta M, Dedic E, Bruner SD, Loria R, Ding Y. An artificial self‐sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio‐selectivity. Biotechnol J 2016; 11:624-32. [DOI: 10.1002/biot.201500416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/16/2015] [Accepted: 12/23/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Ran Zuo
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville Florida USA
| | - Yi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville Florida USA
| | - Jose C. Huguet‐Tapia
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida Gainesville Florida USA
| | - Mishal Mehta
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville Florida USA
| | - Evelina Dedic
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville Florida USA
| | - Steven D. Bruner
- Department of Chemistry, University of Florida Gainesville Florida USA
- Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida Gainesville Florida USA
| | - Rosemary Loria
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida Gainesville Florida USA
| | - Yousong Ding
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville Florida USA
- Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida Gainesville Florida USA
| |
Collapse
|
26
|
Cook D, Finnigan J, Cook K, Black G, Charnock S. Cytochromes P450. INSIGHTS INTO ENZYME MECHANISMS AND FUNCTIONS FROM EXPERIMENTAL AND COMPUTATIONAL METHODS 2016; 105:105-26. [DOI: 10.1016/bs.apcsb.2016.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Di Nardo G, Dell'Angelo V, Catucci G, Sadeghi SJ, Gilardi G. Subtle structural changes in the Asp251Gly/Gln307His P450 BM3 mutant responsible for new activity toward diclofenac, tolbutamide and ibuprofen. Arch Biochem Biophys 2015; 602:106-115. [PMID: 26718083 DOI: 10.1016/j.abb.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022]
Abstract
This paper reports the structure of the double mutant Asp251Gly/Gln307His (named A2) generated by random mutagenesis, able to produce 4'-hydroxydiclofenac, 2-hydroxyibuprofen and 4-hydroxytolbutamide from diclofenac, ibuprofen and tolbutamide, respectively. The 3D structure of the substrate-free mutant shows a conformation similar to the closed one found in the substrate-bound wild type enzyme, but with a higher degree of disorder in the region of the G-helix and F-G loop. This is due to the mutation Asp251Gly that breaks the salt bridge between Aps251 on I-helix and Lys224 on G-helix, allowing the G-helix to move away from I-helix and conferring a higher degree of flexibility to this element. This subtle structural change is accompanied by long-range structural rearrangements of the active site with the rotation of Phe87 and a reorganization of catalytically important water molecules. The impact of these structural features on thermal stability, reduction potential and electron transfer is investigated. The data demonstrate that a single mutation far from the active site triggers an increase in protein flexibility in a key region, shifting the conformational equilibrium toward the closed form that is ready to accept electrons and enter the P450 catalytic cycle as soon as a substrate is accepted.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy; CrisDi, Interdepartmental Center for Crystallography, University of Torino, Via Pietro Giuria 7, Torino, Italy
| | - Valentina Dell'Angelo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy; CrisDi, Interdepartmental Center for Crystallography, University of Torino, Via Pietro Giuria 7, Torino, Italy
| |
Collapse
|
28
|
Heath GR, Li M, Polignano IL, Richens JL, Catucci G, O’Shea P, Sadeghi SJ, Gilardi G, Butt JN, Jeuken LJC. Layer-by-Layer Assembly of Supported Lipid Bilayer Poly-l-Lysine Multilayers. Biomacromolecules 2015; 17:324-35. [DOI: 10.1021/acs.biomac.5b01434] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George R. Heath
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mengqiu Li
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Joanna L. Richens
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gianluca Catucci
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Paul O’Shea
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sheila J. Sadeghi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Gianfranco Gilardi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Biological Sciences,
and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Lars J. C. Jeuken
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
29
|
Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc Natl Acad Sci U S A 2015; 112:2847-52. [PMID: 25691737 DOI: 10.1073/pnas.1419028112] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam-negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6-epi-pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450(Prava) bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450(Prava) fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug.
Collapse
|
30
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
31
|
Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation. Appl Microbiol Biotechnol 2014; 98:8191-200. [DOI: 10.1007/s00253-014-5706-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 11/25/2022]
|
32
|
Watkins DW, Armstrong CT, Anderson JLR. De novo protein components for oxidoreductase assembly and biological integration. Curr Opin Chem Biol 2014; 19:90-8. [DOI: 10.1016/j.cbpa.2014.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 01/03/2023]
|
33
|
Castrignanò S, Ortolani A, Sadeghi SJ, Di Nardo G, Allegra P, Gilardi G. Electrochemical detection of human cytochrome P450 2A6 inhibition: a step toward reducing dependence on smoking. Anal Chem 2014; 86:2760-6. [PMID: 24527722 DOI: 10.1021/ac4041839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of human cytochrome P450 2A6 has been demonstrated to play an important role in nicotine metabolism and consequent smoking habits. Here, the "molecular Lego" approach was used to achieve the first reported electrochemical signal of human CYP2A6 and to improve its catalytic efficiency on electrode surfaces. The enzyme was fused at the genetic level to flavodoxin from Desulfovibrio vulgaris (FLD) to create the chimeric CYP2A6-FLD. Electrochemical characterization by cyclic voltammetry shows clearly defined redox transitions of the haem domain in both CYP2A6 and CYP2A6-FLD. Electrocatalysis experiments using coumarin as substrate followed by fluorimetric quantification of the product were performed with immobilized CYP2A6 and CYP2A6-FLD. Comparison of the kinetic parameters showed that coumarin catalysis was carried out with a higher efficiency by the immobilized CYP2A6-FLD, with a calculated kcat value significantly higher (P < 0.005) than that of CYP2A6, whereas the affinity for the substrate (KM) remained unaltered. The chimeric system was also successfully used to demonstrate the inhibition of the electrochemical activity of the immobilized CYP2A6-FLD, toward both coumarin and nicotine substrates, by tranylcypromine, a potent and selective CYP2A6 inhibitor. This work shows that CYP2A6 turnover efficiency is improved when the protein is linked to the FLD redox module, and this strategy can be utilized for the development of new clinically relevant biotechnological approaches suitable for deciphering the metabolic implications of CYP2A6 polymorphism and for the screening of CYP2A6 substrates and inhibitors.
Collapse
Affiliation(s)
- Silvia Castrignanò
- Department of Life Sciences and Systems Biology, University of Torino , 10123 Torino, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Yoshioka K, Kato D, Kamata T, Niwa O. Cytochrome P450 modified polycrystalline indium tin oxide film as a drug metabolizing electrochemical biosensor with a simple configuration. Anal Chem 2013; 85:9996-9. [PMID: 24117377 DOI: 10.1021/ac402661w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a biocatalytic electrode consisting of cytochrome P450 (CYP) proteins would be a key technology with which to establish simple drug metabolizing biosensors or screening devices for drug inhibitors. We have successfully detected the direct electron transfer (DET) from a human CYP layer or a CYP microsome adsorbed on a bare indium tin oxide (ITO) film electrode without any modification layers and applied it to drug metabolism evaluation. We compared the electrocatalytic properties of the two ITO films with different surface nanostructures (polycrystalline or amorphous). CYP on polycrystalline ITO film enhanced the electron transfer rate of oxygen reduction about fifteen times more than with amorphous film. The polycrystalline ITO film was a suitable electrode for the adsorption of CYP proteins while maintaining efficient DET and enzymatic activity, probably because of its larger surface area and negatively charged surface. The oxygen reduction current at the polycrystalline ITO film electrodes had increased 3- to 4-fold, specifically coupled with the oxidation of drugs (testosterone and quinidine) by the monooxygenase activity of CYP. In contrast, the oxygen reduction current completely disappeared in the presence of the CYP inhibitor (ketoconazole). Similar results could be obtained from the CYP microsome with sufficiently clear responses. These results indicate that the CYP modified polycrystalline ITO electrode offers the potential for electrochemically evaluating CYP activity for drug metabolism with a simple configuration.
Collapse
Affiliation(s)
- Kyoko Yoshioka
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566 Japan
| | | | | | | |
Collapse
|
35
|
Park SH, Kang JY, Kim DH, Ahn T, Yun CH. The Flavin-Containing Reductase Domain of Cytochrome P450 BM3 Acts as a Surrogate for Mammalian NADPH-P450 Reductase. Biomol Ther (Seoul) 2013; 20:562-8. [PMID: 24009851 PMCID: PMC3762289 DOI: 10.4062/biomolther.2012.20.6.562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/27/2012] [Accepted: 10/04/2012] [Indexed: 11/08/2022] Open
Abstract
Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is a self-sufficient monooxygenase that consists of a heme domain and FAD/FMN-containing reductase domain (BMR). In this report, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by BMR was evaluated as a method for monitoring BMR activity. The electron transfer proceeds from NADPH to BMR and then to BMR substrates, MTT and CTC. MTT and CTC are monotetrazolium salts that form formazans upon reduction. The reduction of MTT and CTC followed classical Michaelis-Menten kinetics (kcat=4120 min−1, Km=77 μM for MTT and kcat=6580 min−1, Km=51 μM for CTC). Our continuous assay using MTT and CTC allows the simple, rapid measurement of BMR activity. The BMR was able to metabolize mitomycin C and doxorubicin, which are anticancer drug substrates for CPR, producing the same metabolites as those produced by CPR. Moreover, the BMR was able to interact with CYP1A2 and transfer electrons to promote the oxidation reactions of substrates by CYP1A2 and CYP2E1 in humans. The results of this study suggest the possibility of the utilization of BMR as a surrogate for mammalian CPR.
Collapse
Affiliation(s)
- Seon-Ha Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|
37
|
Abstract
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases.
Collapse
Affiliation(s)
- Louise Aigrain
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; E-Mail:
| | - Fataneh Fatemi
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Oriane Frances
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Gilles Truan
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-567048813; Fax: +33-567048814
| |
Collapse
|
38
|
Sadeghi SJ, Ferrero S, Di Nardo G, Gilardi G. Drug–drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4. Bioelectrochemistry 2012; 86:87-91. [DOI: 10.1016/j.bioelechem.2012.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/26/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
39
|
Choi KY, Jung E, Jung DH, An BR, Pandey BP, Yun H, Sung C, Park HY, Kim BG. Engineering of daidzein 3'-hydroxylase P450 enzyme into catalytically self-sufficient cytochrome P450. Microb Cell Fact 2012; 11:81. [PMID: 22697884 PMCID: PMC3434051 DOI: 10.1186/1475-2859-11-81] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
A cytochrome P450 (CYP) enzyme, 3’-daidzein hydroxylase, CYP105D7 (3’-DH), responsible for daidzein hydroxylation at the 3’-position, was recently reported. CYP105D7 (3’-DH) is a class I type of CYP that requires electrons provided through electron transfer proteins such as ferredoxin and ferredoxin reductase. Presently, we constructed an artificial CYP in order to develop a reaction host for the production of a hydroxylated product. Fusion-mediated construction with the reductase domain from self-sufficient CYP102D1 was done to increase electron transfer efficiency and coupling with the oxidative process. An artificial self-sufficient daidzein hydroxylase (3’-ASDH) displayed distinct spectral properties of both flavoprotein and CYP. The fusion enzyme catalyzed hydroxylation of daidzein more efficiently, with a kcat/Km value of 16.8 μM-1 min-1, which was about 24-fold higher than that of the 3’-DH-camA/B reconstituted enzyme. Finally, a recombinant Streptomyces avermitilis host for the expression of 3’-ASDH and production of the hydroxylated product was developed. The conversion that was attained (34.6%) was 5.2-fold higher than that of the wild-type.
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rua F, Sadeghi SJ, Castrignanò S, Di Nardo G, Gilardi G. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs. J Inorg Biochem 2012; 117:277-84. [PMID: 22819650 DOI: 10.1016/j.jinorgbio.2012.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/16/2012] [Accepted: 05/30/2012] [Indexed: 11/16/2022]
Abstract
In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests.
Collapse
Affiliation(s)
- Francesco Rua
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | | | | | | | | |
Collapse
|
41
|
Abstract
Metabolism is a highly interconnected web of chemical reactions that power life. Though the stoichiometry of metabolism is well understood, the multidimensional aspects of metabolic regulation in time and space remain difficult to define, model and engineer. Complex metabolic conversions can be performed by multiple species working cooperatively and exchanging metabolites via structured networks of organisms and resources. Within cells, metabolism is spatially regulated via sequestration in subcellular compartments and through the assembly of multienzyme complexes. Metabolic engineering and synthetic biology have had success in engineering metabolism in the first and second dimensions, designing linear metabolic pathways and channeling metabolic flux. More recently, engineering of the third dimension has improved output of engineered pathways through isolation and organization of multicell and multienzyme complexes. This review highlights natural and synthetic examples of three-dimensional metabolism both inter- and intracellularly, offering tools and perspectives for biological design.
Collapse
|
42
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
43
|
Choi KY, Jung E, Jung DH, Pandey BP, Yun H, Park HY, Kazlauskas RJ, Kim BG. Cloning, expression and characterization of CYP102D1, a self-sufficient P450 monooxygenase from Streptomyces avermitilis. FEBS J 2012; 279:1650-62. [PMID: 22188665 DOI: 10.1111/j.1742-4658.2011.08462.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Among 33 cytochrome P450s (CYPs) of Streptomyces avermitilis, CYP102D1 encoded by the sav575 gene is naturally a unique and self-sufficient CYP. Since the native cyp102D1 gene could not be expressed well in Escherichia coli, its expression was attempted using codon-optimized synthetic DNA. The gene was successfully overexpressed and the recombinant CYP102D1 was functionally active, showing a Soret peak at 450 nm in the reduced CO difference spectrum. FMN/FAD isolated from the reductase domain showed the same fluorescence in thin layer chromatography separation as the authentic standards. Characterization of the substrate specificity of CYP102D1 based on NADPH oxidation rate revealed that it catalysed the oxidation of saturated and unsaturated fatty acids with very good regioselectivity, similar to other CYP102A families depending on NADPH supply. In particular, CYP102D1 catalysed the rapid oxidation of myristoleic acid with a k(cat)/K(m) value of 453.4 ± 181.5 μM(-1)·min(-1). Homology models of CYP102D1 based on other members of the CYP102A family allowed us to alter substrate specificity to aromatic compounds such as daidzein. Interestingly, replacement of F96V/M246I in the active site increased catalytic activity for daidzein with a k(cat)/K(m) value of 100.9 ± 10.4 μM(-1)·min(-1) (15-fold).
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Choi KY, Jung EO, Jung DH, Pandey BP, Lee N, Yun H, Park HY, Kim BG. Novel iron-sulfur containing NADPH-reductase from Nocardia farcinica IFM10152 and fusion construction with CYP51 lanosterol demethylase. Biotechnol Bioeng 2011; 109:630-6. [PMID: 22038382 DOI: 10.1002/bit.24359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 11/08/2022]
Abstract
CYP51, a sterol 14α-demethylase, is one of the key enzymes involved in sterol biosynthesis and requires electrons transferred from its redox partners. A unique CYP51 from Nocardia farcinica IFM10152 forms a distinct cluster with iron-sulfur containing NADPH-P450 reductase (FprD) downstream of CYP51. Previously, sequence alignment of nine reductases from N. farcinica revealed that FprC, FprD, and FprH have an additional sequence at their N-termini that has very high identity with iron-sulfur clustered ferredoxin G (FdxG). To construct an artificial self-sufficient cytochrome P450 monooxygenase (CYP) with only FprD, CYP51, and iron-sulfur containing FprD were fused together with designed linker sequences. CYP51-FprD fusion enzymes showed distinct spectral properties of both flavoprotein and CYP. CYP51-FprD F1 and F2 in recombinant Escherichia coli BL21(DE3) catalyzed demethylation of lanosterol more efficiently, with k(cat) /K(m) values of 96.91 and 105.79 nmol/min/nmol, respectively, which are about 35-fold higher compared to those of CYP51 and FprD alone.
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
46
|
Fantuzzi A, Mak LH, Capria E, Dodhia V, Panicco P, Collins S, Gilardi G. A New Standardized Electrochemical Array for Drug Metabolic Profiling with Human Cytochromes P450. Anal Chem 2011; 83:3831-9. [DOI: 10.1021/ac200309q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Fantuzzi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Lok Hang Mak
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Ennio Capria
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Vikash Dodhia
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Paola Panicco
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Stephen Collins
- NanoBioDesign Ltd., Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom
| | - Gianfranco Gilardi
- Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| |
Collapse
|
47
|
Panicco P, Dodhia VR, Fantuzzi A, Gilardi G. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal Chem 2011; 83:2179-86. [PMID: 21348440 DOI: 10.1021/ac200119b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Personalized medicine" is a new concept in health care, one aspect of which defines the specificity and dosage of drugs according to effectiveness and safety for each patient. Dosage strongly depends from the rate of metabolism which is primarily regulated by the activity of cytochrome P450. In addition to the need for a genetic characterization of the patients, there is also the necessity to determine the drug-clearance properties of the polymorphic P450 enzyme. To address this issue, human P450 2D6 and 2C9 were engineered and covalently linked to an electrode surface allowing fast, accurate, and reliable measurements of the kinetic parameters of these phase-1 drug metabolizing polymorphic enzymes. In particular, the catalytic activity of P450 2C9 on the electrode surface was found to be improved when expressed from a gene-fusion with flavodoxin from Desulfovibrio vulgaris (2C9/FLD). The results are validated using marker drugs for these enzymes, bufuralol for 2D6, and warfarin for 2C9/FLD. The platform is able to measure the same small differences in K(M), and it allows a fast and reproducible mean to generated the product identified by HPLC from which the k(cat) is calculated.
Collapse
Affiliation(s)
- Paola Panicco
- Division of Molecular Biosciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
48
|
Sadeghi SJ, Fantuzzi A, Gilardi G. Breakthrough in P450 bioelectrochemistry and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:237-48. [DOI: 10.1016/j.bbapap.2010.07.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/04/2010] [Indexed: 11/25/2022]
|
49
|
O'Reilly E, Köhler V, Flitsch SL, Turner NJ. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 2011; 47:2490-501. [DOI: 10.1039/c0cc03165h] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Fantuzzi A, Capria E, Mak LH, Dodhia VR, Sadeghi SJ, Collins S, Somers G, Huq E, Gilardi G. An Electrochemical Microfluidic Platform for Human P450 Drug Metabolism Profiling. Anal Chem 2010; 82:10222-7. [DOI: 10.1021/ac102480k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Fantuzzi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Ennio Capria
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Lok Hang Mak
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Vikash R Dodhia
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Sheila J. Sadeghi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Stephen Collins
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Graham Somers
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Ejaz Huq
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Gianfranco Gilardi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| |
Collapse
|