1
|
Catalan EA, Seguel-Fuentes E, Fuentes B, Aranguiz-Varela F, Castillo-Godoy DP, Rivera-Asin E, Bocaz E, Fuentes JA, Bravo D, Schinnerling K, Melo-Gonzalez F. Oral Pathobiont-Derived Outer Membrane Vesicles in the Oral-Gut Axis. Int J Mol Sci 2024; 25:11141. [PMID: 39456922 PMCID: PMC11508520 DOI: 10.3390/ijms252011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Oral pathobionts are essential in instigating local inflammation within the oral cavity and contribute to the pathogenesis of diseases in the gastrointestinal tract and other distant organs. Among the Gram-negative pathobionts, Porphyromonas gingivalis and Fusobacterium nucleatum emerge as critical drivers of periodontitis, exerting their influence not only locally but also as inducers of gut dysbiosis, intestinal disturbances, and systemic ailments. This dual impact is facilitated by their ectopic colonization of the intestinal mucosa and the subsequent mediation of distal systemic effects by releasing outer membrane vesicles (OMVs) into circulation. This review elucidates the principal components of oral pathobiont-derived OMVs implicated in disease pathogenesis within the oral-gut axis, detailing virulence factors that OMVs carry and their interactions with host epithelial and immune cells, both in vitro and in vivo. Additionally, we shed light on the less acknowledged interplay between oral pathobionts and the gut commensal Akkermansia muciniphila, which can directly impede oral pathobionts' growth and modulate bacterial gene expression. Notably, OMVs derived from A. muciniphila emerge as promoters of anti-inflammatory effects within the gastrointestinal and distant tissues. Consequently, we explore the potential of A. muciniphila-derived OMVs to interact with oral pathobionts and prevent disease in the oral-gut axis.
Collapse
Affiliation(s)
- Eduardo A. Catalan
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Emilio Seguel-Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Brandon Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Aranguiz-Varela
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Daniela P. Castillo-Godoy
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elizabeth Rivera-Asin
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elisa Bocaz
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Denisse Bravo
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile;
| | - Katina Schinnerling
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Melo-Gonzalez
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| |
Collapse
|
2
|
Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front Microbiol 2024; 15:1469414. [PMID: 39391608 PMCID: PMC11464445 DOI: 10.3389/fmicb.2024.1469414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammatory periodontal diseases associated with the accumulation of dental biofilm, such as gingivitis and periodontitis, are very common and pose clinical problems for clinicians and patients. Gingivitis is a mild form of gum disease and when treated quickly and properly is completely reversible. Periodontitis is an advanced and irreversible disease of the periodontium with periods of exacerbations, progressions and remission. Periodontitis is a chronic inflammatory condition that damages the tissues supporting the tooth in its socket, i.e., the gums, periodontal ligaments, root cementum and bone. Periodontal inflammation is most commonly triggered by bacteria present in excessive accumulations of dental plaque (biofilm) on tooth surfaces. This disease is driven by disproportionate host inflammatory immune responses induced by imbalance in the composition of oral bacteria and changes in their metabolic activities. This microbial dysbiosis favors the establishment of inflammatory conditions and ultimately results in the destruction of tooth-supporting tissues. Apart microbial shift and host inflammatory response, environmental factors and genetics are also important in etiology In addition to oral tissues destruction, periodontal diseases can also result in significant systemic complications. Conventional methods of periodontal disease treatment (improving oral hygiene, dental biofilm control, mechanical plaque removal, using local or systemic antimicrobial agents) are not fully effective. All this prompts the search for new methods of therapy. Advanced periodontitis with multiple abscesses is often treated with antibiotics, such as amoxicillin, tetracycline, doxycycline, minocycline, clindamycin, or combined therapy of amoxicillin with metronidazole. However, due to the growing problem of antibiotic resistance, treatment does not always achieve the desired therapeutic effect. This review summarizes pathogenesis, current approaches in treatment, limitations of therapy and the current state of research on the possibility of application of bacteriophages and predatory bacteria to combat bacteria responsible for periodontitis. We present the current landscape of potential applications for alternative therapies for periodontitis based on phages and bacteria, and highlight the gaps in existing knowledge that need to be addressed before clinical trials utilizing these therapeutic strategies can be seriously considered.
Collapse
Affiliation(s)
- Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Gędaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
4
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the molecular mechanisms of the type IX secretion system's response regulator: Structural and functional insights. PNAS NEXUS 2024; 3:pgae316. [PMID: 39139265 PMCID: PMC11320123 DOI: 10.1093/pnasnexus/pgae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The type IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo. First, our structural studies revealed PorX harbors a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the nonpathogenic Flavobacterium johnsoniae, but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
Affiliation(s)
- Anshu Saran
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| | - Hey-Min Kim
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Ireland Manning
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
| | - Mark A Hancock
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Claus Schmitz
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, 501 S Preston St, Louisville, KY 40202, USA
| | - Maria Sola
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Jean-François Trempe
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Mary Ellen Davey
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
5
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the Molecular Mechanisms of the Type-IX Secretion System's Response Regulator: Structural and Functional Insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594396. [PMID: 38798656 PMCID: PMC11118453 DOI: 10.1101/2024.05.15.594396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Type-IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo . First, our structural studies revealed PorX harbours a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the non-pathogenic Flavobacterium johnsoniae , but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
|
6
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
7
|
Tan PR, Lee AJL, Zhao JJ, Chan YH, Fu JH, Ma M, Tay SH. Higher odds of periodontitis in systemic lupus erythematosus compared to controls and rheumatoid arthritis: a systematic review, meta-analysis and network meta-analysis. Front Immunol 2024; 15:1356714. [PMID: 38629069 PMCID: PMC11019014 DOI: 10.3389/fimmu.2024.1356714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Periodontitis as a comorbidity in systemic lupus erythematosus (SLE) is still not well recognized in the dental and rheumatology communities. A meta-analysis and network meta-analysis were thus performed to compare the (i) prevalence of periodontitis in SLE patients compared to those with rheumatoid arthritis (RA) and (ii) odds of developing periodontitis in controls, RA, and SLE. Methods Pooled prevalence of and odds ratio (OR) for periodontitis were compared using meta-analysis and network meta-analysis (NMA). Results Forty-three observational studies involving 7,800 SLE patients, 49,388 RA patients, and 766,323 controls were included in this meta-analysis. The pooled prevalence of periodontitis in SLE patients (67.0%, 95% confidence interval [CI] 57.0-77.0%) was comparable to that of RA (65%, 95% CI 55.0-75.0%) (p>0.05). Compared to controls, patients with SLE (OR=2.64, 95% CI 1.24-5.62, p<0.01) and RA (OR=1.81, 95% CI 1.25-2.64, p<0.01) were more likely to have periodontitis. Indirect comparisons through the NMA demonstrated that the odds of having periodontitis in SLE was 1.49 times higher compared to RA (OR=1.49, 95% CI 1.09-2.05, p<0.05). Discussion Given that RA is the autoimmune disease classically associated with periodontal disease, the higher odds of having periodontitis in SLE are striking. These results highlight the importance of addressing the dental health needs of patients with SLE. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/ identifier CRD42021272876.
Collapse
Affiliation(s)
- Ping Ren Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aaron J. L. Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joseph J. Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Hui Fu
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Margaret Ma
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Bereta GP, Strzelec K, Łazarz-Bartyzel K, Dziedzic-Kowalska A, Nowakowska Z, Krutyhołowa A, Bielecka E, Kantyka T, Grabiec AM, Kaczmarzyk T, Chomyszyn-Gajewska M, Potempa J, Gawron K. Identification of a new genetic variant (G231N, E232T, N235D) of peptidylarginine deiminase from P. gingivalis in advanced periodontitis. Front Immunol 2024; 15:1355357. [PMID: 38576615 PMCID: PMC10991804 DOI: 10.3389/fimmu.2024.1355357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.
Collapse
Affiliation(s)
- Grzegorz P. Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Agata Dziedzic-Kowalska
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Medical College, Jagiellonian University, Krakow, Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Laugisch O, Ruppert-Jungck MC, Auschill TM, Eick S, Sculean A, Heumann C, Timmermann L, Pedrosa DJ, Eggers C, Arweiler NB. Glucose-6-Phosphatase-Dehydrogenase activity as modulative association between Parkinson's disease and periodontitis. Front Cell Infect Microbiol 2024; 14:1298546. [PMID: 38404290 PMCID: PMC10885135 DOI: 10.3389/fcimb.2024.1298546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
The association between periodontitis (PD) and Parkinson's disease (PK) is discussed due to the inflammatory component of neurodegenerative processes. PK severity and affected areas were determined using the following neuropsychological tests: Unified Parkinson's Disease Rating Score (UPDRS) and Hoehn and Yahr; non-motoric symptoms by Non-Motor Symptoms Scale (NMSS), and cognitive involvement by Mini-Mental State Examination (MMSE). Neuroinflammation and the resulting Glucose-6-Phosphatase-Dehydrogenase (G6PD) dysfunction are part of the pathophysiology of PK. This study aimed to evaluate these associations in periodontal inflammation. Clinical data and saliva-, serum-, and RNA-biobank samples of 50 well-characterized diametric patients with PK and five age- and sex-matched neurologically healthy participants were analyzed for G6PD function, periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Campylobacter rectus, Fusobacterium nucleatum, and Filifactor alocis), monocyte chemoattractant protein (MCP) 1, and interleukin (IL) 1-beta. Regression analysis was used to identify associations between clinical and behavioral data, and t-tests were used to compare health and disease. Compared with PK, no pathogens and lower inflammatory markers (p < 0.001) were detectible in healthy saliva and serum, PK-severity/UPDRS interrelated with the occurrence of Prevotella intermedia in serum as well as IL1-beta levels in serum and saliva (p = 0.006, 0.019, 0.034), Hoehn and Yahr correlated with Porphyromonas gingivalis, Prevotella intermedia, RNA IL1-beta regulation, serum, and saliva IL1-beta levels, with p-values of 0.038, 0.011, 0.008, <0.001, and 0.010, while MMSE was associated with Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, serum MCP 1 levels, RNA IL1-beta regulation and G6PD serum activity (p = 0.036, 0.003, 0.045, <0.001, and 0.021). Cognitive and motor skills seem to be important as representative tests are associated with periodontal pathogens and oral/general inflammation, wherein G6PD-saliva dysfunction might be involved. Clinical trial registration https://www.bfarm.de/DE/Das-BfArM/Aufgaben/Deutsches-Register-Klinischer-Studien/_node.html, identifier DRKS00005388.
Collapse
Affiliation(s)
- Oliver Laugisch
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Marina C. Ruppert-Jungck
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Thorsten M. Auschill
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christian Heumann
- Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - David J. Pedrosa
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop, Bottrop, Germany
| | - Nicole B. Arweiler
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| |
Collapse
|
10
|
Dwivedi SD, Yadav K, Bhoi A, Sahu KK, Sangwan N, Singh D, Singh MR. Targeting Pathways and Integrated Approaches to Treat Rheumatoid Arthritis. Crit Rev Ther Drug Carrier Syst 2024; 41:87-102. [PMID: 38305342 DOI: 10.1615/critrevtherdrugcarriersyst.2023044719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic symmetrical systemic disorder that not only affects joints but also other organs such as heart, lungs, kidney, and liver. Approximately there is 0.5%-1% of the total population affected by RA. RA pathogenesis still remains unclear due to which its appropriate treatment is a challenge. Further, multitudes of factors have been reported to affect its progression i.e. genetic factor, environmental factor, immune factor, and oxidative factor. Therapeutic approaches available for the treatment of RA include NSAIDs, DMARDs, enzymatic, hormonal, and gene therapies. But most of them provide the symptomatic relief without treating the core of the disease. This makes it obligatory to explore and reach the molecular targets for cure and long-term relief from RA. Herein, we attempt to provide extensive overlay of the new targets for RA treatment such as signaling pathways, proteins, and receptors affecting the progression of the disease and its severity. Precise modification in these targets such as suppressing the notch signaling pathway, SIRT 3 protein, Sphingosine-1-phosphate receptor and stimulating the neuronal signals particularly efferent vagus nerve and SIRT 1 protein may offer long term relief and potentially diminish the chronicity. To target or alter the novel molecules and signaling pathway a specific delivery system is required such as liposome, nanoparticles and micelles and many more. Present review paper discusses in detail about novel targets and delivery systems for treating RA.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Keshav Kant Sahu
- School of studies in biotechnology, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
11
|
Lobognon VD, Alard JÉ. [Autoimmunity and oral cavity, where are we in 2023?]. Med Sci (Paris) 2024; 40:49-56. [PMID: 38299903 DOI: 10.1051/medsci/2023195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Autoimmune diseases (AIDs) remain an enigma to the current understanding of immune system functioning. Identifying their etiologies remains a major challenge, despite growing knowledge. The oral cavity has a very special place in regard to AIDs. The oral mucosa, the most exposed body's natural barrier to pathogens, plays a role in both education of the immune system and the organism's daily protection. On the one hand, systemic disturbance of the immune system can impact the oral sphere with early signs which are useful diagnostic tools. On the other hand, the current research efforts on interactions between microbiota and the immune system allow an update of the old hypothesis involving an initial infection to trigger autoimmunity. Dysbiosis of our microbiota, especially in the oral sphere, could lead to a breakdown in tolerance mechanisms. Immune tolerance has to maintain the integrity of the organism but also cohabitation with commensal microbiota. The relationship between periodontitis, a chronic infectious disease, and rheumatoid arthritis, one of the most common systemic autoimmune disorders, illustrates the possible relationship between chronic infections and the etiopathogenesis of autoimmunity. Indeed, its association with oral pathogens involved in periodontal damage raises questions about a possible infectious etiology of rheumatoid arthritis (RA) which would place the management of periodontitis not only as mandatory RA's support therapy but also as a prophylactic gesture to prevent autoimmunity.
Collapse
Affiliation(s)
| | - Jean-Éric Alard
- Lymphocytes B, autoimmunité et immunothérapies (LBAI), UMR1227, Univ Brest, Inserm, Brest, France - Service d'odontologie, CHU de Brest, Brest, France
| |
Collapse
|
12
|
Kobayashi T, Bartold PM. Periodontitis and periodontopathic bacteria as risk factors for rheumatoid arthritis: A review of the last 10 years. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:263-272. [PMID: 37674898 PMCID: PMC10477376 DOI: 10.1016/j.jdsr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory destruction of joint tissue and is caused by an abnormal autoimmune response triggered by interactions between genetics, environmental factors, and epigenetic and posttranslational modifications. RA has been suggested to be interrelated with periodontitis, a serious form or stage of chronic inflammatory periodontal disease associated with periodontopathic bacterial infections, genetic predisposition, environmental factors, and epigenetic influences. Over the last decade, a number of animal and clinical studies have been conducted to assess whether or not periodontitis and associated periodontopathic bacteria constitute risk factors for RA. The present review introduces recent accumulating evidence to support the associations of periodontitis and periodontopathic bacteria with the risk of RA or the outcome of RA pharmacological treatment with disease-modifying antirheumatic drugs. In addition, the results from intervention studies have suggested an improvement in RA clinical parameters after nonsurgical periodontal treatment. Furthermore, the potential causal mechanisms underlying the link between periodontitis and periodontopathic bacteria and RA are summarized.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Peter Mark Bartold
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
13
|
Irie K, Azuma T, Tomofuji T, Yamamoto T. Exploring the Role of IL-17A in Oral Dysbiosis-Associated Periodontitis and Its Correlation with Systemic Inflammatory Disease. Dent J (Basel) 2023; 11:194. [PMID: 37623290 PMCID: PMC10453731 DOI: 10.3390/dj11080194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Oral microbiota play a pivotal role in maintaining homeostasis, safeguarding the oral cavity, and preventing the onset of disease. Oral dysbiosis has the potential to trigger pro-inflammatory effects and immune dysregulation, which can have a negative impact on systemic health. It is regarded as a key etiological factor for periodontitis. The emergence and persistence of oral dysbiosis have been demonstrated to mediate inflammatory pathology locally and at distant sites. The heightened inflammation observed in oral dysbiosis is dependent upon the secretion of interleukin-17A (IL-17A) by various innate and adaptive immune cells. IL-17A has been found to play a significant role in host defense mechanisms by inducing antibacterial peptides, recruiting neutrophils, and promoting local inflammation via cytokines and chemokines. This review seeks to present the current knowledge on oral dysbiosis and its prevention, as well as the underlying role of IL-17A in periodontitis induced by oral dysbiosis and its impact on systemic inflammatory disease.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Preventive Dentistry and Dental Public Health, Kanagawa Dental University, Yokosuka 238-8580, Japan;
| | - Tetsuji Azuma
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan; (T.A.); (T.T.)
| | - Takaaki Tomofuji
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan; (T.A.); (T.T.)
| | - Tatsuo Yamamoto
- Department of Preventive Dentistry and Dental Public Health, Kanagawa Dental University, Yokosuka 238-8580, Japan;
| |
Collapse
|
14
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
15
|
Castillo DM, Lafaurie GI, Romero-Sánchez C, Delgadillo NA, Castillo Y, Bautista-Molano W, Pacheco-Tena C, Bello-Gualtero JM, Chalem-Choueka P, Castellanos JE. The Interaction Effect of Anti-RgpA and Anti-PPAD Antibody Titers: An Indicator for Rheumatoid Arthritis Diagnosis. J Clin Med 2023; 12:jcm12083027. [PMID: 37109363 PMCID: PMC10144073 DOI: 10.3390/jcm12083027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Porphyromonas gingivalis secretes virulence factors like Arg-gingipains and peptidyl arginine deiminase (PPAD), that are associated with rheumatoid arthritis (RA) pathogenesis. However, there is no information regarding the antibody titers for these bacterial enzymes as systemic indicators or biomarkers in RA. In this cross-sectional study, 255 individuals were evaluated: 143 were diagnosed with RA, and 112 were without RA. Logistic regression models adjusted for age, sex, basal metabolic index, smoking, and periodontitis severity were used to evaluate the association of RA with rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPAs), erythrocyte sedimentation rate, high sensitivity C-reactive protein, anti-RgpA, anti-PPAD, and double positive anti-RgpA/anti-PPAD. It was found that RF (odds ratio [OR] 10.6; 95% confidence interval [CI] 4.4-25), ACPAs (OR 13.7; 95% CI 5.1-35), and anti-RgpA/anti-PPAD double positivity (OR 6.63; 95% CI 1.61-27) were associated with RA diagnoses. Anti-RgpA was also associated with RA (OR 4.09; 95% CI 1.2-13.9). The combination of anti-RgpA/anti-PPAD showed a high specificity of 93.7% and 82.5% PPV in identifying individuals with RA. RgpA antibodies were associated with the periodontal inflammatory index in RA individuals (p < 0.05). The double positivity of the anti-RgpA/anti-PPAD antibodies enhanced the diagnosis of RA. Therefore, RgpA antibodies and anti-RgpA/anti-PPAD may be biomarkers for RA.
Collapse
Affiliation(s)
- Diana Marcela Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Consuelo Romero-Sánchez
- Cellular and Molecular Immunilogy Group (INMUBO), School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
- Clinical Immunology Group, Rheumatology and Immunology Department, Hospital Militar Central, Bogotá 110231, Colombia
- Clinical Immunology Group, School of Medicine, Universidad Militar Nueva Granada, Bogotá 110231, Colombia
| | - Nathaly Andrea Delgadillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Yormaris Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Wilson Bautista-Molano
- Cellular and Molecular Immunilogy Group (INMUBO), School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
| | | | - Juan Manuel Bello-Gualtero
- Clinical Immunology Group, Rheumatology and Immunology Department, Hospital Militar Central, Bogotá 110231, Colombia
- Clinical Immunology Group, School of Medicine, Universidad Militar Nueva Granada, Bogotá 110231, Colombia
| | | | - Jaime E Castellanos
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
16
|
Malcolm J, Nyirenda MH, Brown JL, Adrados-Planell A, Campbell L, Butcher JP, Glass DG, Piela K, Goodyear CS, Wright AJ, McInnes IB, Millington OR, Culshaw S. C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance. J Autoimmun 2023; 135:102994. [PMID: 36706535 DOI: 10.1016/j.jaut.2023.102994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
In rheumatoid arthritis, the emergence of anti-citrullinated autoimmunity is associated with HLA-antigen-T cell receptor complexes. The precise mechanisms underpinning this breach of tolerance are not well understood. Porphyromonas gingivalis expresses an enzyme capable of non-endogenous C-terminal citrullination with potential to generate citrullinated autoantigens. Here we document how C-terminal citrullination of ovalbumin peptide323-339 alters the interaction between antigen-presenting cells and OTII T cells to induce functional changes in responding T cells. These data reveal that C-terminal citrullination is sufficient to breach T cell peripheral tolerance in vivo and reveal the potential of C-terminal citrullination to lower the threshold for T cell activation. Finally, we demonstrate a role for the IL-2/STAT5/CD25 signalling axis in breach of tolerance. Together, our data identify a tractable mechanism and targetable pathways underpinning breach of tolerance in rheumatoid arthritis and provide new conceptual insight into the origins of anti-citrullinated autoimmunity.
Collapse
Affiliation(s)
- J Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - M H Nyirenda
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - J L Brown
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A Adrados-Planell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Genomics and Health, FISABIO Foundation, Avda Cataluña 21, 46020, Valencia, Spain
| | - L Campbell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J P Butcher
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - D G Glass
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - K Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - C S Goodyear
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - A J Wright
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom; Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - I B McInnes
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - O R Millington
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - S Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
17
|
Eezammuddeen NN, Vaithilingam RD, Hassan NHM. Influence of periodontitis on levels of autoantibodies in rheumatoid arthritis patients: A systematic review. J Periodontal Res 2023; 58:29-42. [PMID: 36317493 DOI: 10.1111/jre.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis (PD) is a dysbiotic disease of tooth-supporting structures that has been associated with various systemic diseases including rheumatoid arthritis (RA). To date, evidence demonstrated increased prevalence of RA among PD patients and postulated PD to have a role in the development of autoantibodies in RA patients. Therefore, a systematic review was conducted to assess the available evidence to ascertain the effect of PD on levels of autoantibodies in the serum, saliva and gingival crevicular fluid (GCF) of RA patients. MATERIAL AND METHODS The systematic review was conducted in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines. Relevant literature was searched from PubMed, Web of Science, Scopus and Ebscohost databases from inception until 31 August 2020. The risk of bias in each study was determined based on the Newcastle-Ottawa Scale tool. Results from random-effect meta-analyses were presented as summary estimates of odds ratios (ORs) for seropositivity and standardised mean difference (SMD) of autoantibody levels with 95% confidence intervals. Sensitivity tests and meta-regression were performed to assess the robustness of the results and potential cause of heterogeneity. RESULTS The electronic and manual searches gathered 932 articles. Following screening and full-text assessment, a total of 29 studies were included in the analysis. Twenty-eight published observational studies were included in the quantitative analysis in the form of random-effect meta-analysis which revealed that PD was associated with anti-citrullinated proteins autoantibodies (ACPAs) and Rheumatoid Factor (RF) seropositive RA patients (OR for ACPA seropositivity: 1.82; 95% CI: 1.13-2.93) (OR for RF seropositivity: 1.53; 95% CI: 1.05-2.24). Also, RA patients with PD had increased serum levels of ACPA and RF. However, high heterogeneity among studies' results, partially ascribed to the unstandardised case definition of PD and laboratory testing of autoantibodies. Apart from ACPA and RF in serum, studies which reported on other RA-related autoantibodies, as well as autoantibody levels in saliva and GCF were scarce. CONCLUSION RA patients with PD tend to have greater ACPA and RF levels in their serum when compared with the RA patients without PD supporting the plausible role of PD in the development of systemic autoimmunity in RA patients.
Collapse
Affiliation(s)
- Nazurah Nik Eezammuddeen
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Comprehensive Care, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
18
|
Hu R, Yuan T, Wang H, Zhao J, Shi L, Li Q, Zhu C, Su N, Zhang S. Efficacy, safety and immunogenicity of etanercept biosimilars versus reference biologics in patients with rheumatoid arthritis: A meta-analysis. Front Pharmacol 2023; 14:1089272. [PMID: 36874005 PMCID: PMC9979087 DOI: 10.3389/fphar.2023.1089272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Background: Although with the application of etanercept biosimilars in the field of rheumatoid arthritis, the evidences of their efficacy, safety, and immunogenicity are still limited. We conducted this meta-analysis to evaluate the efficacy, safety and immunogenicity of etanercept biosimilars for treating active rheumatoid arthritis compared to reference biologics (Enbrel®). Methods: PubMed, Embase, Central, and ClinicalTrials.gov were searched for randomized controlled trials of etanercept biosimilars treated in adult patients diagnosed with rheumatoid arthritis from their earliest records to 15 August 2022. The outcomes included ACR20, ACR50, and ACR70 response rate at different time points from FAS or PPS, adverse events, and proportion of patients developed anti-drug antibodies. The risk of bias of each included study was assessed using the revised Cochrane Risk of Bias in Randomised Trials tool, and the certainty of evidence was rated according to the Grading of Recommendation Assessment, Development, and Evaluation. Results: Six RCTs with 2432 patients were included in this meta-analysis. Etanercept biosimilars showed more benefits in ACR50 at 24 weeks from PPS [5 RCTs, OR = 1.22 (1.01, 1.47), p = 0.04, I 2 = 49%, high certainty], ACR50 at 1 year from PPS [3 RCTs, OR = 1.43 (1.10, 1.86), p < 0.01, I 2 = 0%, high certainty] or FAS [2 RCTs, OR = 1.36 (1.04, 1.78), p = 0.03, I 2 = 0%, high certainty], and ACR70 at 1 year from PPS [3 RCTs, OR = 1.32 (1.01, 1.71), p = 0.04, I 2 = 0%, high certainty]. In terms of other outcomes about efficacy, safety, and immunogenicity, the results showed that there was no significant difference between etanercept biosimilars and reference biologics, and the certainty of evidences ranged from low to moderate. Conclusion: Etanercept biosimilars showed more benefits in ACR50 response rate at 1 year than reference biologics (Enbrel®), other outcomes for clinical efficacy, safety, and immunogenicity of etanercept biosimilars were comparable with originator in patients with rheumatoid arthritis. Systematic Review Registration: PROSPERO, identifier CRD42022358709.
Collapse
Affiliation(s)
- Rui Hu
- Department of Pharmacy, Karamay Central Hospital, Karamay, China
| | - Tao Yuan
- Department of Pharmacy, Karamay Central Hospital, Karamay, China
| | - Hui Wang
- Department of Pharmacy, Karamay Central Hospital, Karamay, China
| | - Jianglin Zhao
- Department of Pharmacy, Karamay Central Hospital, Karamay, China
| | - Liya Shi
- Department of Pharmacy, Karamay Central Hospital, Karamay, China
| | - Quankai Li
- Department of Pharmacy, Karamay Central Hospital, Karamay, China
| | - Chunmei Zhu
- Department of Pharmacy, Karamay Central Hospital, Karamay, China.,Department of Nephropathy and Rheumatology, Karamay Central Hospital, Karamay, China
| | - Na Su
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengzhao Zhang
- Department of Pharmacy, Karamay Central Hospital, Karamay, China
| |
Collapse
|
19
|
Muacevic A, Adler JR, Amini SS, Kesselman MM. Oral Microbiome in Pre-Rheumatoid Arthritis: The Role of Aggregatibacter Actinomycetemcomitans in Bacterial Composition. Cureus 2022; 14:e32201. [PMID: 36620849 PMCID: PMC9812525 DOI: 10.7759/cureus.32201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that symmetrically affects the joints, eventually leading to cartilage and tissue destruction. While there are multiple etiologies for RA, from environmental to genetic risk factors, periodontal disease (PD) may contribute to the acceleration of RA symptoms in pre-rheumatoid arthritis (pre-RA) and RA patients. While PD is caused by multiple oral bacteria, this review explains the role of Aggregatibacter actinomycetemcomitans (Aa) in the pathogenesis of pre-RA and RA based on 13 primary articles. This paper focuses on the Aa virulence factor leukotoxin A (LtxA) because it has been reported to cause cellular destruction and inflammation in the oral cavity that can accelerate the development of RA. Individuals who are classified as pre-RA may benefit from periodontal screening to further reduce their risk of developing advanced RA. Additionally, they may benefit from earlier pharmacological therapy for RA using disease-modifying anti-rheumatic drugs (DMARD) and antibacterial treatment.
Collapse
|
20
|
Saran A, Weerasinghe N, Thibodeaux CJ, Zeytuni N. Purification, crystallization and crystallographic analysis of the PorX response regulator associated with the type IX secretion system. Acta Crystallogr F Struct Biol Commun 2022; 78:354-362. [PMID: 36189719 PMCID: PMC9527653 DOI: 10.1107/s2053230x22008500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Pathogenic bacteria utilize specialized macromolecular secretion systems to transport virulence factors across membrane(s) and manipulate their infected host. To date, 11 secretion systems have been identified, including the type IX secretion system (T9SS) associated with human, avian and farmed-fish diseases. As a bacterial secretion system, the T9SS also facilitates gliding motility and the degradation of different macromolecules by the secretion of metabolic enzymes in nonpathogenic bacteria. PorX is a highly conserved protein that regulates the transcription of essential T9SS components and additionally mediates the function of T9SS via direct interaction with PorL, the rotary motor protein of the T9SS. PorX is also a member of a two-component system regulatory cascade, where it serves as the response regulator that relays a signal transduced from a conserved sensor histidine kinase, PorY, to a designated sigma factor. Here, the recombinant expression and purification of PorX homologous proteins from the pathogenic bacterium Porphyromonas gingivalis and the nonpathogenic bacterium Flavobacterium johnsoniae are reported. A bioinformatical characterization of the different domains comprising the PorX protein is also provided, and the crystallization and X-ray analysis of PorX from F. johnsoniae are reported.
Collapse
Affiliation(s)
- Anshu Saran
- The Department of Anatomy and Cell Biology and the Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nuwani Weerasinghe
- The Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | - Natalie Zeytuni
- The Department of Anatomy and Cell Biology and the Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Stähli A, Scherler C, Zappalà G, Sculean A, Eick S. In vitro activity of anti-rheumatic drugs on release of pro-inflammatory cytokines from oral cells in interaction with microorganisms. FRONTIERS IN ORAL HEALTH 2022; 3:960732. [PMID: 36118051 PMCID: PMC9478466 DOI: 10.3389/froh.2022.960732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontitis patients suffering concomitantly from rheumatoid arthritis (RA) often present with less inflamed periodontal tissues due to the ongoing anti-rheumatic therapy. This in vitro study was aimed to analyze whether anti-inflammatory drugs used in the therapy of RA can modulate the release of IL-8 and IL-1β by professional and non-professional immune cells stimulated with microorganisms. Periodontal ligament (PDL) fibroblasts, monocytic MONO-MAC-6-cells, and gingival keratinocytes were exposed to ibuprofen, prednisolone, and methotrexate with and without lysates of Fusobacterium nucleatum or Candida albicans. Supernatants were obtained and the levels of interleukin(IL)-8 and IL-1β (only MONO-MAC-6) were quantified. The addition of F. nucleatum lysate resulted in the strongest release of proinflammatory cytokines by PDL fibroblast and MONO-MAC-6 cells, while the modification by the tested anti-rheumatic drugs was only minor. After stimulation of the MONO-MAC-cells with F. nucleatum, prednisolone increased the release of IL-8, whereas methotrexate decreased the level. Anti-inflammatory drugs increased the adherence of C. albicans to epithelial cells. In patients with RA, the reduction of the microbial load in subgingival biofilm (biofilm removal) is of major importance; however, the intake of inflammatory drugs may interfere with the inflammatory response.
Collapse
|
22
|
Romão VC, Fonseca JE. Disease mechanisms in preclinical rheumatoid arthritis: A narrative review. Front Med (Lausanne) 2022; 9:689711. [PMID: 36059838 PMCID: PMC9437632 DOI: 10.3389/fmed.2022.689711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In the last decades, the concept of preclinical rheumatoid arthritis (RA) has become established. In fact, the discovery that disease mechanisms start years before the onset of clinical RA has been one of the major recent insights in the understanding of RA pathogenesis. In accordance with the complex nature of the disease, preclinical events extend over several sequential phases. In a genetically predisposed host, environmental factors will further increase susceptibility for incident RA. In the initial steps of preclinical disease, immune disturbance mechanisms take place outside the joint compartment, namely in mucosal surfaces, such as the lung, gums or gut. Herein, the persistent immunologic response to altered antigens will lead to breach of tolerance and trigger autoimmunity. In a second phase, the immune response matures and is amplified at a systemic level, with epitope spreading and widening of the autoantibody repertoire. Finally, the synovial and bone compartment are targeted by specific autoantibodies against modified antigens, initiating a local inflammatory response that will eventually culminate in clinically evident synovitis. In this review, we discuss the elaborate disease mechanisms in place during preclinical RA, providing a broad perspective in the light of current evidence.
Collapse
Affiliation(s)
- Vasco C. Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Li Y, Guo R, Oduro PK, Sun T, Chen H, Yi Y, Zeng W, Wang Q, Leng L, Yang L, Zhang J. The Relationship Between Porphyromonas Gingivalis and Rheumatoid Arthritis: A Meta-Analysis. Front Cell Infect Microbiol 2022; 12:956417. [PMID: 35923803 PMCID: PMC9340274 DOI: 10.3389/fcimb.2022.956417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systematical autoimmune disease, characterized by chronic synovial joint inflammation and hurt. Porphyromonas gingivalis(P. gingivalis) can cause life-threatening inflammatory immune responses in humans when the host pathogenic clearance machinery is disordered. Some epidemiological studies have reported that P. gingivalis exposure would increase the prevalence of RA. However, the results remain inconsistent. Therefore, a meta-analysis was done to systematically analyze the relationship between P. gingivalis exposure and the prevalence of rheumatoid arthritis. Database including Cochrane Library, Web of Science, PubMed, and EMBASE were searched for published epidemiological articles assessed the relationship between P. gingivalis and RA. Obtained studies were screened based on the predefined inclusion and exclusion criteria. The overall Odds Ratios (ORs) of incorporated articles were pooled by random-effect model with STATA 15.1 software. The literature search returned a total of 2057 studies. After exclusion, 28 articles were included and analyzed. The pooled ORs showed a significant increase in the risk of RA in individuals with P. gingivalis exposure (OR = 1.86; 95% CI: 1.43-2.43). Subgroup analysis revealed that pooled ORs from populations located in Europe (OR = 2.17; 95% CI: 1.46-3.22) and North America (OR = 2.50; 95% CI: 1.23-5.08) were significantly higher than that from population in Asia (OR = 1.11; 95% CI: 1.03-1.20). Substantial heterogeneity was observed but did not significantly influence the overall outcome. In conclusion, our results indicated P. gingivalis exposure was a risk factor in RA. Prompt diagnosis and management decisions on P. gingivalis antimicrobial therapy would prevent rheumatoid arthritis development and progression.
Collapse
Affiliation(s)
- Yilin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Rui Guo
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Tongke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yating Yi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Weiqian Zeng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Long Yang
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| |
Collapse
|
24
|
Sherina N, de Vries C, Kharlamova N, Sippl N, Jiang X, Brynedal B, Kindstedt E, Hansson M, Mathsson-Alm L, Israelsson L, Stålesen R, Saevarsdottir S, Holmdahl R, Hensvold A, Johannsen G, Eriksson K, Sallusto F, Catrina AI, Rönnelid J, Grönwall C, Yucel-Lindberg T, Alfredsson L, Klareskog L, Piccoli L, Malmström V, Amara K, Lundberg K. Antibodies to a Citrullinated Porphyromonas gingivalis Epitope Are Increased in Early Rheumatoid Arthritis, and Can Be Produced by Gingival Tissue B Cells: Implications for a Bacterial Origin in RA Etiology. Front Immunol 2022; 13:804822. [PMID: 35514991 PMCID: PMC9066602 DOI: 10.3389/fimmu.2022.804822] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Based on the epidemiological link between periodontitis and rheumatoid arthritis (RA), and the unique feature of the periodontal bacterium Porphyromonas gingivalis to citrullinate proteins, it has been suggested that production of anti-citrullinated protein antibodies (ACPA), which are present in a majority of RA patients, may be triggered in the gum mucosa. To address this hypothesis, we investigated the antibody response to a citrullinated P. gingivalis peptide in relation to the autoimmune ACPA response in early RA, and examined citrulline-reactivity in monoclonal antibodies derived from human gingival B cells. Antibodies to a citrullinated peptide derived from P. gingivalis (denoted CPP3) and human citrullinated peptides were analyzed by multiplex array in 2,807 RA patients and 372 controls; associations with RA risk factors and clinical features were examined. B cells from inflamed gingival tissue were single-cell sorted, and immunoglobulin (Ig) genes were amplified, sequenced, cloned and expressed (n=63) as recombinant monoclonal antibodies, and assayed for citrulline-reactivities by enzyme-linked immunosorbent assay. Additionally, affinity-purified polyclonal anti-cyclic-citrullinated peptide (CCP2) IgG, and monoclonal antibodies derived from RA blood and synovial fluid B cells (n=175), were screened for CPP3-reactivity. Elevated anti-CPP3 antibody levels were detected in RA (11%), mainly CCP2+ RA, compared to controls (2%), p<0.0001, with a significant association to HLA-DRB1 shared epitope alleles, smoking and baseline pain, but with low correlation to autoimmune ACPA fine-specificities. Monoclonal antibodies derived from gingival B cells showed cross-reactivity between P. gingivalis CPP3 and human citrullinated peptides, and a CPP3+/CCP2+ clone, derived from an RA blood memory B cell, was identified. Our data support the possibility that immunity to P. gingivalis derived citrullinated antigens, triggered in the inflamed gum mucosa, may contribute to the presence of ACPA in RA patients, through mechanisms of molecular mimicry.
Collapse
Affiliation(s)
- Natalia Sherina
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte de Vries
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nastya Kharlamova
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sippl
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xia Jiang
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elin Kindstedt
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, ImmunoDiagnositic Division, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lena Israelsson
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ragnhild Stålesen
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Gunnar Johannsen
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Danakliniken Specialisttandvård, Praktikertjänst AB, Danderyd, Sweden
| | - Kaja Eriksson
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Federica Sallusto
- Institute for Research in Biomedicine, Universita dell a Svizzera Italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre of Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine, Universita dell a Svizzera Italiana, Bellinzona, Switzerland
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Khaled Amara
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lundberg
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
26
|
Cheah CW, Al-Maleki AR, Vaithilingam RD, Vadivelu J, Sockalingam S, Baharuddin NA, Bartold PM. Associations between inflammation-related LL-37 with subgingival microbial dysbiosis in rheumatoid arthritis patients. Clin Oral Investig 2022; 26:4161-4172. [PMID: 35257247 DOI: 10.1007/s00784-022-04388-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study investigated the subgingival microbial profile of rheumatoid arthritis (RA) patients and its associations with disease parameters and the inflammation-related antimicrobial peptide, LL-37. METHODS RA and non-RA (NRA) patients were assessed for periodontal status and divided into periodontitis (CP), gingivitis (G), and healthy (H) groups. Subgingival plaque 16s rRNA gene sequencing data was processed and analyzed using the CLC Genomic Workbench (Qiagen). Bacterial diversity and co-occurrence patterns were examined. Differential abundance between groups was also investigated. Associations between bacterial genera with disease parameters and LL-37 levels were explored qualitatively using canonical correlation analysis. RESULTS Subgingival microbial community clustered in CP status. Co-occurrence network in NRA-H was dominated by health-associated genera, while the rest of the networks' key genera were both health- and disease-associated. RA-CP displayed highly inter-generic networks with a statistically significant increase in periodontal disease-associated genera (p<0.05). In NRA-H, disease parameters and LL-37 were correlated positively with disease-associated genera while negatively with health-associated genera. However, in the remaining groups, mixed positive and negative correlations were noted with genera. CONCLUSION RA patients demonstrated subgingival microbial dysbiosis where the bacteria networks were dominated by health- and disease-associated genera. Mixed correlations with disease parameters and LL-37 levels were noted. CLINICAL RELEVANCE The subgingival microbial dysbiosis in RA may predispose these patients to developing periodontal inflammation with an associated detrimental effect on host immune responses. Routine periodontal assessment may allow initiation of treatment strategies to minimize the effects of gingival inflammation on the existing heightened immune response present in RA patients.
Collapse
Affiliation(s)
- Chia Wei Cheah
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sargunan Sockalingam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Adinar Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | |
Collapse
|
27
|
Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cell Mol Life Sci 2022; 79:94. [PMID: 35079870 PMCID: PMC8788905 DOI: 10.1007/s00018-022-04126-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
Numerous
post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.
Collapse
|
28
|
Looh SC, Soo ZMP, Wong JJ, Yam HC, Chow SK, Hwang JS. Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles? Toxins (Basel) 2022; 14:toxins14010050. [PMID: 35051027 PMCID: PMC8777676 DOI: 10.3390/toxins14010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host’s immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA.
Collapse
Affiliation(s)
- Sung Cheng Looh
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | - Zoey May Pheng Soo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Jia Jia Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | | | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
29
|
Sokolova MV, Schett G, Steffen U. Autoantibodies in Rheumatoid Arthritis: Historical Background and Novel Findings. Clin Rev Allergy Immunol 2022; 63:138-151. [PMID: 34495490 PMCID: PMC9464122 DOI: 10.1007/s12016-021-08890-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Autoantibodies represent a hallmark of rheumatoid arthritis (RA), with the rheumatoid factor (RF) and antibodies against citrullinated proteins (ACPA) being the most acknowledged ones. RA patients who are positive for RF and/or ACPA ("seropositive") in general display a different etiology and disease course compared to so-called "seronegative" patients. Still, the seronegative patient population is very heterogeneous and not well characterized. Due to the identification of new autoantibodies and advancements in the diagnosis of rheumatic diseases in the last years, the group of seronegative patients is constantly shrinking. Aside from antibodies towards various post-translational modifications, recent studies describe autoantibodies targeting some native proteins, further broadening the spectrum of recognized antigens. Next to the detection of new autoantibody groups, much research has been done to answer the question if and how autoantibodies contribute to the pathogenesis of RA. Since autoantibodies can be detected years prior to RA onset, it is a matter of debate whether their presence alone is sufficient to trigger the disease. Nevertheless, there is gathering evidence of direct autoantibody effector functions, such as stimulation of osteoclastogenesis and synovial fibroblast migration in in vitro experiments. In addition, autoantibody positive patients display a worse clinical course and stronger radiographic progression. In this review, we discuss current findings regarding different autoantibody types, the underlying disease-driving mechanisms, the role of Fab and Fc glycosylation and clinical implications.
Collapse
Affiliation(s)
- Maria V. Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Jajoo NS, Shelke AU, Bajaj RS, Devani V. Correction to: Periodontitis and Rheumatoid Arthritis: The Common Thread. Clin Rev Bone Miner Metab 2021. [DOI: 10.1007/s12018-021-09280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Tetrahydroimidazo[4,5- c]pyridine-Based Inhibitors of Porphyromonas gingivalis Glutaminyl Cyclase. Pharmaceuticals (Basel) 2021; 14:ph14121206. [PMID: 34959608 PMCID: PMC8709289 DOI: 10.3390/ph14121206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is a severe yet underestimated oral disease. Since it is linked to several systemic diseases, such as diabetes, artheriosclerosis, and even Alzheimer’s disease, growing interest in treating periodontitis has emerged recently. The major cause of periodontitis is a shift in the oral microbiome. A keystone pathogen that is associated with this shift is Porphyromonas gingivalis. Hence, targeting P. gingivalis came into focus of drug discovery for the development of novel antiinfective compounds. Among others, glutaminyl cyclases (QCs) of oral pathogens might be promising drug targets. Here, we report the discovery and structure–activity relationship of a novel class of P. gingivalis QC inhibitors according to a tetrahydroimidazo[4,5-c]pyridine scaffold. Some compounds exhibited activity in the lower nanomolar range and thus were further characterized with regard to their selectivity and toxicity.
Collapse
|
32
|
Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int J Mol Sci 2021; 22:ijms221910576. [PMID: 34638916 PMCID: PMC8508717 DOI: 10.3390/ijms221910576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is caused by prolonged periodic interactions between genetic, environmental, and immunologic factors. Posttranslational modifications (PTMs) such as citrullination, carbamylation, and acetylation are correlated with the pathogenesis of RA. PTM and cell death mechanisms such as apoptosis, autophagy, NETosis, leukotoxic hypercitrullination (LTH), and necrosis are related to each other and induce autoantigenicity. Certain microbial infections, such as those caused by Porphyromonasgingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella copri, can induce autoantigens in RA. Anti-modified protein antibodies (AMPA) containing anti-citrullinated protein/peptide antibodies (ACPAs), anti-carbamylated protein (anti-CarP) antibodies, and anti-acetylated protein antibodies (AAPAs) play a role in pathogenesis as well as in prediction, diagnosis, and prognosis. Interestingly, smoking is correlated with both PTMs and AMPAs in the development of RA. However, there is lack of evidence that smoking induces the generation of AMPAs.
Collapse
|
33
|
Meurman JH, Bascones-Martinez A. Oral Infections and Systemic Health - More than Just Links to Cardiovascular Diseases. ORAL HEALTH & PREVENTIVE DENTISTRY 2021; 19:441-448. [PMID: 34505498 PMCID: PMC11640876 DOI: 10.3290/j.ohpd.b1993965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE During the past 20 years, a plethora of research reports has been published showing a statistical association between poor oral health and cardiovascular diseases. The aim of this narrative review was to focus on associations between oral infections and non-atherosclerosis-related systemic diseases. MATERIALS AND METHODS An open literature search and evaluation of articles were conducted on Medline and Cochrane databases with the key words 'oral infection', 'periodontitis', 'pneumonia', 'osteoarthritis', 'rheumatic diseases', 'inflammatory bowel disease', 'kidney disease', 'liver diseases', 'metabolic syndrome', 'diabetes', 'cancer', 'Alzheimer's disease'. Cardiovascular diseases were excluded from the analysis. RESULTS The scarcity of controlled studies did not allow conducting a systematic review with meta-analysis on the topics, but dental infections have been shown be associated with several general diseases also beyond the atherosclerosis paradigm. However, there is no causal evidence of the role of dental infections in this regard. Poor oral health has nevertheless often been observed to be associated with worsening of the diseases and may also affect treatments. CONCLUSIONS Maintaining good oral health is imperative regarding many diseases, and its importance in the daily life of any patient group cannot be over emphasised.
Collapse
|
34
|
González-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: What have we learned about their connection and their treatment? Periodontol 2000 2021; 87:181-203. [PMID: 34463976 DOI: 10.1111/prd.12385] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis and periodontitis are chronic inflammatory diseases defined respectively by the destruction of the articular cartilage and tooth-supporting periodontal tissues. Although the epidemiologic evidence for an association between these two diseases is still scarce, there is emerging scientific information linking specific bacterial periodontal pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, in the citrullination process, leading to autoantibody formation and compromised immunotolerance of the susceptible patient to rheumatoid arthritis. In this review, we update the existing information on the evidence, not only regarding the epidemiologic association, but also the biologic mechanisms linking these two diseases. Finally, we review information emerging from intervention studies evaluating whether periodontal treatment could influence the initiation and progression of rheumatoid arthritis.
Collapse
Affiliation(s)
- Jerián González-Febles
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| |
Collapse
|
35
|
Lew PH, Rahman MT, Safii SH, Baharuddin NA, Bartold PM, Sockalingam S, Kassim NLA, Vaithilingam RD. Antibodies against citrullinated proteins in relation to periodontitis with or without rheumatoid arthritis: a cross-sectional study. BMC Oral Health 2021; 21:360. [PMID: 34284769 PMCID: PMC8293567 DOI: 10.1186/s12903-021-01712-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Previous studies have reported conflicting findings between serum anti-citrullinated protein antibodies (ACPA) levels in rheumatoid arthritis (RA) participants with and without periodontitis (Pd). This study aimed to analyse possible correlations between serum ACPA levels and clinical parameters in Pd and RA participants. Methods Full mouth periodontal examination (probing pocket depth, clinical attachment levels, gingival bleeding index, visual plaque index) was conducted and serum samples obtained from 80 participants comprising RA, Pd, both RA and Pd (RAPd) and healthy individuals (HC). Erythrocyte sedimentation rates (ESR) and periodontal inflamed surface area (PISA) were obtained. Serum samples were analysed for ACPA quantification using enzyme-linked immunosorbent assay (ELISA). Results Median levels (IU/mL) of ACPA (interquartile range, IQR) in RAPd, RA, Pd and HC groups were 118.58(274.51), 102.02(252.89), 78.48(132.6) and 51.67(91.31) respectively. ACPA levels were significantly higher in RAPd and RA as compared to HC group (p < 0.05). However, ACPA levels of any of the groups were not correlated with any clinical periodontal and RA parameters within the respective groups. Conclusions At individual level, the amount of serum ACPA seem to have an increasing trend with the diseased condition in the order of RAPd > RA > Pd > HC. However, lack of any significant correlation between the serum ACPA levels with the clinical Pd and RA parameters warrants further studies to investigate the causal link between RA and Pd for such a trend. Further studies involving more inflammatory biomarkers might be useful to establish the causal link between Pd in the development and progression of RA or vice versa. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01712-y.
Collapse
Affiliation(s)
- Pit Hui Lew
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Syarida Hasnur Safii
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Adinar Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Sargunan Sockalingam
- Department of Rheumatology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Lide Abu Kassim
- Kulliyyah of Education, International Islamic University Malaysia, 53100, Kuala Lumpur, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Akkaya HÜ, Yılmaz HE, Narin F, Sağlam M. Evaluation of galectin-3, peptidylarginine deiminase-4 and tumor necrosis factor-α levels in gingival crevicular fluid for periodontal health, gingivitis and stage III grade C periodontitis: A pilot study. J Periodontol 2021; 93:80-88. [PMID: 33913157 DOI: 10.1002/jper.21-0137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Comparing the gingival crevicular fluid (GCF) levels of galectin-3, peptidylarginine deiminase 4 (PAD4) and tumor necrosis factor-alpha (TNF-α) in individuals with stage III grade C periodontitis and gingivitis and with healthy periodontium was the purpose of this clinical research. METHODS Sixty systemically healthy and non-smoker individuals consisting of stage III grade C periodontitis (group S3P/n = 20), gingivitis (group G/n = 20), and periodontally healthy (group HP/n = 20) were recruited for this research. Clinical parameters such as probing depth, clinical attachment level, gingival index, plaque index, and bleeding on probing were recorded in periodontal charts. Enzyme-linked immunosorbent assay method was used in evaluating the GCF levels of galectin-3, PAD4, and TNF-α for study groups. RESULTS The GCF galectin-3 total amount was highest in group S3P compared with group G and group HP (P <0.05). Its total amount was also higher in group G compared with group HP (P <0.05). The GCF PAD4 total amount was higher in group S3P compared with group HP (P <0.05) but was similar with group G (P >0.05). Its total amounts were also similar in group G and group HP (P >0.05). The GCF TNF-α total amounts were similar in group S3P and group G (P >0.05) but significantly greater than the group HP (P ˂0.05). The GCF galectin-3, PAD4, and TNF-α concentrations were lower in the group S3P and group G compared with the group HP (P <0.05). There were significant positive correlations between GCF galectin-3 total amount and all clinical parameters (P ˂0.01) and also between GCF galectin-3 and TNF-α total amounts (P ˂0.01). There was no correlation between PAD4 and clinical parameters, or between PAD4 and TNF-α (P >0.05). CONCLUSIONS Galectin-3 and PAD4 may be involved in the periodontal disease pathogenesis considering the elevated levels of these molecules in periodontal disease. These biomarkers may be used in the diagnosis of periodontal diseases.
Collapse
Affiliation(s)
- Hazal Üstünel Akkaya
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| | - Huriye Erbak Yılmaz
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Çelebi University, Izmir, Turkey.,Dokuz Eylül University Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Figen Narin
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
37
|
Taudte N, Linnert M, Rahfeld JU, Piechotta A, Ramsbeck D, Buchholz M, Kolenko P, Parthier C, Houston JA, Veillard F, Eick S, Potempa J, Schilling S, Demuth HU, Stubbs MT. Mammalian-like type II glutaminyl cyclases in Porphyromonas gingivalis and other oral pathogenic bacteria as targets for treatment of periodontitis. J Biol Chem 2021; 296:100263. [PMID: 33837744 PMCID: PMC7948796 DOI: 10.1016/j.jbc.2021.100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer’s disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize the so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals. However, whether differences between these bacteroidal QCs and animal QCs are sufficient to enable development of selective inhibitors is not clear. To learn more, we recombinantly expressed all three QCs. They exhibit comparable catalytic efficiencies and are inhibited by metal chelators. Crystal structures of the enzymes from P. gingivalis (PgQC) and T. forsythia (TfQC) reveal a tertiary structure composed of an eight-stranded β-sheet surrounded by seven α-helices, typical of animal type II QCs. In each case, an active site Zn ion is tetrahedrally coordinated by conserved residues. Nevertheless, significant differences to mammalian enzymes are found around the active site of the bacteroidal enzymes. Application of a PgQC-selective inhibitor described here for the first time results in growth inhibition of two P. gingivalis clinical isolates in a dose-dependent manner. The insights gained by these studies will assist in the development of highly specific small-molecule bacteroidal QC inhibitors, paving the way for alternative therapies against periodontitis and associated diseases.
Collapse
Affiliation(s)
- Nadine Taudte
- Periotrap Pharmaceuticals GmbH, Halle (Saale), Germany
| | - Miriam Linnert
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Mirko Buchholz
- Periotrap Pharmaceuticals GmbH, Halle (Saale), Germany; Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Petr Kolenko
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Parthier
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - John A Houston
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Florian Veillard
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany; Angewandte Biowissenschaften und Prozesstechnik, Hochschule Anhalt, Köthen, Germany
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Milton T Stubbs
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany; ZIK HALOmem, Charles-Tanford-Proteinzentrum, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
38
|
Rovas A, Puriene A, Punceviciene E, Butrimiene I, Stuopelyte K, Jarmalaite S. Associations of periodontal status in periodontitis and rheumatoid arthritis patients. J Periodontal Implant Sci 2021; 51:124-134. [PMID: 33913635 PMCID: PMC8090795 DOI: 10.5051/jpis.2006060303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to assess the association between the clinical status of rheumatoid arthritis (RA) and periodontitis (PD) in patients diagnosed with PD and to evaluate the impact of RA treatment on the severity of PD. Methods The study included 148 participants with PD, of whom 64 were also diagnosed with RA (PD+RA group), while 84 age-matched participants were rheumatologically healthy (PD-only group). PD severity was assessed by the following periodontal parameters: clinical attachment loss, probing pocket depth (PPD), bleeding on probing (BOP), alveolar bone loss, and number of missing teeth. RA disease characteristics and impact of disease were evaluated by the Disease Activity Score 28 using C-reactive protein, disease duration, RA treatment, the RA Impact of Disease tool, and the Health Assessment Questionnaire. Outcome variables were compared using parametric and non-parametric tests and associations were evaluated using regression analysis with the calculation of odds ratios (ORs). Results Participants in the PD+RA group had higher mean PPD values (2.81 ± 0.59 mm vs. 2.58 ± 0.49 mm, P=0.009) and number of missing teeth (6.27±4.79 vs. 3.93±4.08, P=0.001) than those in the PD-only group. A significant association was found between mean PPD and RA (OR, 2.22; 95% CI, 1.16–4.31; P=0.016). Within the PD+RA group, moderate to severe periodontal disease was significantly more prevalent among participants with higher RA disease activity (P=0.042). The use of biologic disease-modifying antirheumatic drugs (bDMARDs) was associated with a lower BOP percentage (P=0.016). Conclusions In patients with PD, RA was associated with a higher mean PPD and number of missing teeth. The severity of PD was affected by the RA disease clinical activity and by treatment with bDMARDs, which were associated with a significantly lower mean BOP percentage.
Collapse
Affiliation(s)
- Adomas Rovas
- Institute of Odontology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Vilnius University Hospital Zalgiris Clinic, Vilnius, Lithuania.
| | - Alina Puriene
- Institute of Odontology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Vilnius University Hospital Zalgiris Clinic, Vilnius, Lithuania
| | - Egle Punceviciene
- Clinic of Rheumatology, Orthopedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Rheumatology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Irena Butrimiene
- Clinic of Rheumatology, Orthopedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Rheumatology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Kristina Stuopelyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
39
|
Hypothesis: Rheumatoid arthritis and periodontitis: A new possible link via prolactin hormone. Med Hypotheses 2020; 146:110350. [PMID: 33189451 DOI: 10.1016/j.mehy.2020.110350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Rheumatoid arthritis and periodontitis are two common chronic inflammatory diseases affecting human population worldwide. The association between the two conditions have been the focus of many researches, trying to explore the possible mechanisms underlying this association. Prolactin hormone, besides its known lactogenic effects acts as a cytokine secreted from various tissues other than the pituitary gland with multiple pleotropic actions in immunity and inflammation. Several data showed that prolactin levels are increased significantly in the synovial and periodontal tissues, and this increase is correlated with disease activity and tissue destruction. Our hypothesis suggests that local prolactin can represent a link between the two conditions. In this work, we suggest a possible mechanistic interactions, hypothesized to form a common path linking between rheumatoid arthritis, periodontitis and prolactin. This is because of the need to develop new treatment strategies for the most effective long term control of inflammation in both conditions.
Collapse
|
40
|
|
41
|
Lee YH, Baharuddin NA, Chan SW, Rahman MT, Bartold PM, Sockalingam S, Vaithilingam RD. Localisation of citrullinated and carbamylated proteins in inflamed gingival tissues from rheumatoid arthritis patients. Clin Oral Investig 2020; 25:1441-1450. [PMID: 32656595 DOI: 10.1007/s00784-020-03452-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES It has been proposed that citrullination and carbamylation occur in the inflamed periodontium and could be the plausible mechanisms for the generation of antigens involved in the development and progression of RA. The purpose of this study was to determine the presence and location of citrullinated and carbamylated proteins in the gingival tissues and compare their abundance in periodontitis (PD) patients with or without RA. MATERIALS AND METHODS Gingival tissue samples of healthy (n = 5), PD with RA (n = 5) and PD without RA (n = 5) were collected. Specimens were formalin fixed, paraffin embedded and sectioned at 4 μm. The tissue sections were analysed for the presence of citrullinated and carbamylated proteins by immunohistochemistry. Semi-quantitative analysis was performed to quantify and compare the protein abundance between groups. RESULTS The number of cells containing citrullinated and carbamylated proteins with higher intensity was markedly increased in gingival tissues from PD with or without RA in comparison with healthy controls. CONCLUSION Inflamed gingival tissue is a potential source of citrullinated and carbamylated proteins other than synovial tissues. The extent to which the local accumulation of these proteins contributes to the pathogenesis of RA needs further elucidation. CLINICAL RELEVANCE If PD is a potential source of post-translationally modified proteins, untreated PD should not be taken lightly in the context of RA. Hence, addressing gingival inflammation should be viewed as an important preventive measure in the general population not only for the progression of periodontal disease but also reducing the risk of developing extra-oral comorbidities.
Collapse
Affiliation(s)
- Yin Hui Lee
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Adinar Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew Wui Chan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - P Mark Bartold
- Department of Dentistry, University of Adelaide, Adelaide, Australia
| | - Sargunan Sockalingam
- Department of Rheumatology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Emrizal R, Nor Muhammad NA. Phylogenetic comparison between Type IX Secretion System (T9SS) protein components suggests evidence of horizontal gene transfer. PeerJ 2020; 8:e9019. [PMID: 32617187 PMCID: PMC7323717 DOI: 10.7717/peerj.9019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/28/2020] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is one of the major bacteria that causes periodontitis. Chronic periodontitis is a severe form of periodontal disease that ultimately leads to tooth loss. Virulence factors that contribute to periodontitis are secreted by Type IX Secretion System (T9SS). There are aspects of T9SS protein components that have yet to be characterised. Thus, the aim of this study is to investigate the phylogenetic relationship between members of 20 T9SS component protein families. The Bayesian Inference (BI) trees for 19 T9SS protein components exhibit monophyletic clades for all major classes under Bacteroidetes with strong support for the monophyletic clades or its subclades that is consistent with phylogeny exhibited by the constructed BI tree of 16S rRNA. The BI tree of PorR is different from the 19 BI trees of T9SS protein components as it does not exhibit monophyletic clades for all major classes under Bacteroidetes. There is strong support for the phylogeny exhibited by the BI tree of PorR which deviates from the phylogeny based on 16S rRNA. Hence, it is possible that the porR gene is subjected to horizontal transfer as it is known that virulence factor genes could be horizontally transferred. Seven genes (porR included) that are involved in the biosynthesis of A-LPS are found to be flanked by insertion sequences (IS5 family transposons). Therefore, the intervening DNA segment that contains the porR gene might be transposed and subjected to conjugative transfer. Thus, the seven genes can be co-transferred via horizontal gene transfer. The BI tree of UgdA does not exhibit monophyletic clades for all major classes under Bacteroidetes which is similar to the BI tree of PorR (both are a part of the seven genes). Both BI trees also exhibit similar topology as the four identified clusters with strong support and have similar relative positions to each other in both BI trees. This reinforces the possibility that porR and the other six genes might be horizontally transferred. Other than the BI tree of PorR, the 19 other BI trees of T9SS protein components also exhibit evidence of horizontal gene transfer. However, their genes might undergo horizontal gene transfer less frequently compared to porR because the intervening DNA segment that contains porR is easily exchanged between bacteria under Bacteroidetes due to the presence of insertion sequences (IS5 family transposons) that flank it. In conclusion, this study can provide a better understanding about the phylogeny of T9SS protein components.
Collapse
Affiliation(s)
- Reeki Emrizal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | |
Collapse
|
43
|
Qiao Y, Wang Z, Li Y, Han Y, Zhou Y, Cao X. Rheumatoid arthritis risk in periodontitis patients: A systematic review and meta-analysis. Joint Bone Spine 2020; 87:556-564. [PMID: 32593704 DOI: 10.1016/j.jbspin.2020.04.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Many clinical studies have been carried out to investigate the relationship between periodontitis and rheumatoid arthritis (RA). Owing to limited evidence and inconsistent findings among these studies, it is unclear whether periodontitis would increase the risk for RA. This meta-analysis was performed to evaluate whether periodontitis represents a risk factor for RA. METHODS PubMed, Cochrane Library, Embase, Web of Science, and Wanfang were searched for eligible studies that compared periodontitis patients with controls. A pooled odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the association between periodontitis and RA. RESULTS Thirteen studies including a total of 706611 periodontitis patients and 349983 control subjects were included. The pooled OR of RA risk between periodontitis and controls was (OR: 1.69; 95% CI: 1.31-2.17; P<0.0001), indicating that the patients in periodontitis group had a 69% greater risk for RA than people in control group. When stratified by disease type, the pooled results showed periodontitis represents a risk factor for incident RA (OR=1.70, 95%CI: 0.75-3.85, P<0.001) and mixed RA (OR=1.61, 95%CI: 1.26-2.06; P<0.001). When stratified by disease duration, the pooled results showed periodontitis represents a risk factor for RA disease duration>5 years (OR=2.88, 95%CI: 0.66-12.62, P=0.018), disease duration<5 years (OR=2.59, 95%CI: 0.83-8.11, P<0.001), mixed disease duration (OR=1.53; 95%CI: 1.05-2.22, P<0.001). CONCLUSION Our meta-analysis revealed an increased risk of RA in patients with periodontitis compared to healthy controls. Moreover, when stratified by disease type, there was a higher risk between incident RA and periodontitis. When stratified by disease duration, the patients with periodontitis might be more closely associated with the RA patients with disease duration >5 years.
Collapse
Affiliation(s)
- Yiqiang Qiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Zao Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China; Zhengzhou Stomotology Hospital, Zhengzhou, 450000, P. R. China
| | - Yafang Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China; Zhengzhou Stomotology Hospital, Zhengzhou, 450000, P. R. China
| | - Yafei Han
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Yanheng Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Xuanping Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China.
| |
Collapse
|
44
|
Möller B, Kollert F, Sculean A, Villiger PM. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front Immunol 2020; 11:1108. [PMID: 32582191 PMCID: PMC7283532 DOI: 10.3389/fimmu.2020.01108] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease of unknown origin, which is predominantly affecting the joints. Antibodies against citrullinated peptides are a rather specific immunological hallmark of this heterogeneous entity. Furthermore, certain sequences of the third hypervariable region of human leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so called "shared epitope" sequences, appear to promote autoantibody positive types of RA. However, MHC-II molecule and other genetic associations with RA could not be linked to immune responses against specific citrullinated peptides, nor do genetic factors fully explain the origin of RA. Consequently, non-genetic factors must play an important role in the complex interaction of endogenous and exogenous disease factors. Tobacco smoking was the first environmental factor that was associated with onset and severity of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore, smoking is associated with extra-articular RA manifestations such as interstitial lung disease in anatomical proximity to the airway mucosa, but also with subcutaneous rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen with unique citrullinating capacity of foreign microbial antigens as well as candidate RA autoantigens. Although the original hypothesis that this single pathogen is causative for RA remained unproven, epidemiological as well as experimental evidence linking periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed to play a specific immunodominant role in context of RA. However, demonstration of T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically healthy subjects with citrulline directed immune responses and was correlated with RA onset. In conclusion, we retrieved more than one line of evidence for mucosal sites and different microbial taxa to be potentially involved in the development of RA. This review gives an overview of infectious agents and mucosal pathologies, and discusses the current evidence for causality between different exogenous or mucosal factors and systemic inflammation in RA.
Collapse
Affiliation(s)
- Burkhard Möller
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Florian Kollert
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Bartold PM, Lopez‐Oliva I. Periodontitis and rheumatoid arthritis: An update 2012‐2017. Periodontol 2000 2020; 83:189-212. [DOI: 10.1111/prd.12300] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Mark Bartold
- Department of Dentistry University of Adelaide Adelaide South Australia Australia
| | | |
Collapse
|
46
|
Maldonado A, Pirracchio L, Imber JC, Bürgin W, Möller B, Sculean A, Eick S. Citrullination in periodontium is associated with Porphyromonas gingivalis. Arch Oral Biol 2020; 114:104695. [PMID: 32315811 DOI: 10.1016/j.archoralbio.2020.104695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To analyse the citrulline level in the periodontium in association with the presence of or antibody levels against Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. DESIGN Gingival crevicular fluid (GCF), subgingival biofilm and blood serum were sampled from 98 subjects (26 with RA, 72 without RA (NoRA)). GCF was analyzed for the level of citrulline, for interleukin (IL)-1β, IL-17, IL-10 and monocyte-chemoattractant protein (MCP)-1. Microorganisms were identified in subgingival biofilms. Antibodies againstP. gingivalis, and Aggregatibacter actinomycetemcomitans were quantified in serum. RESULTS GCF citrulline level was the lowest (by trend) in NoRA group without periodontitis. In NoRA, but not in RA an association between GCF citrulline level and P. gingivalis antibody levels was found and the GCF citrulline levels were higher in P. gingivalis positive samples. Any association of A. actinomycetemcomitans with GCF citrulline level did not exist. A model of univariate variance analysis (p = 0.001) showed a dependence of GCF citrulline level from the number of sites with PD (probing depth) ≥5 mm (p = 0.003) and the GCF MCP-1/CCL2 level (p = 0.019). Compared with NoRA in RA the number of teeth was lower, the number of sites with PD ≥ 5 mm was less, GCF levels of interleukin-17 and MCP-1/CCL2 were higher and those of IL-10 lower. Yeasts were only cultured in 15 RA patients (p < 0.001). CONCLUSION Citrullination in periodontium might be associated with P. gingivalis supporting the potential role as a trigger in the development of RA. Pathogenesis of periodontal disease in RA patients seems to differ from that in NoRA and should be investigated further.
Collapse
Affiliation(s)
- Alejandra Maldonado
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland.
| | - Luca Pirracchio
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Walter Bürgin
- Ressort Research, University of Bern, School of Dental Medicine, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Burkhard Möller
- Clinic of Rheumatology, Immunology and Allergology, University Hospital Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Sigrun Eick
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| |
Collapse
|
47
|
Abstract
Rheumatoid Arthritis (RA) is a severe, chronic autoimmune disease that affects 1% of the world's population. Familial risk contributes 50% of the risk of seropositive RA, with strongest risks seen in first-degree relatives. Smoking increases the risk of developing anti-citrullinated peptide antibody (ACPA)+ RA, particularly in individuals with high-risk RA-susceptibility alleles. Other contributory environmental risks including particulate exposure, periodontal disease, bronchiectasis, diet, obesity and the oral contraceptive impact respiratory, oral, intestinal and genital tract mucosal sites. Furthermore, the first signs of autoimmunity may appear at mucosal sites e.g. sputum ACPA-IgA and IgG. While oral and faecal dysbiosis are well described, there is no consistent single bacterial species that appears to drive RA. Animal and human data suggest a model in which multiple environmental influences impact mucosal immune function through the host genetics through enhanced mucosal permeability and the traffic of pro-inflammatory PAMPs and the amplification of autoimmune responses. In some cases, autoimmunity may be driven by cross-reactivity, or mimicry, to pathogen-specific antigens, particularly where the host immune system fails to support their rapid control and elimination.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-UQ, Faculty of Medicine, University of Queensland, Brisbane, 4102, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
48
|
Rahajoe PS, de Smit M, Schuurmans G, Raveling-Eelsing E, Kertia N, Vissink A, Westra J. Increased IgA anti-citrullinated protein antibodies in the periodontal inflammatory exudate of healthy individuals compared to rheumatoid arthritis patients. J Clin Periodontol 2020; 47:552-560. [PMID: 32141631 PMCID: PMC7318198 DOI: 10.1111/jcpe.13277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Aim To assess rheumatoid arthritis (RA)‐associated autoantibodies in the gingivocrevicular fluid (GCF) of RA patients and healthy controls with or without periodontal disease, as chronic mucosal inflammation in periodontal disease is hypothesized to contribute to the formation of these autoantibodies. Materials and methods Anti‐citrullinated protein antibodies (ACPA), rheumatoid factor (RF), and their IgA isotypes were assessed in the serum and GCF of RA patients (n = 72) and healthy controls (HC, n = 151). The presence and levels of these antibodies were studied in relation to interleukin (IL)‐8 and periodontal disease. Results In contrast to the HC, the levels of ACPA and RF in the serum and GCF of the RA patients were strongly correlated (p < .0001). The HC with high levels of IgA‐ACPA (n = 27) also had significantly higher levels of total IgG, total IgA, and IL‐8 in the GCF than the HC with low levels of IgA‐ACPA in the GCF (n = 124). Periodontal inflammation and smoking were seen more frequently in the group with high levels of IgA‐ACPA compared to the group with low IgA‐ACPA. Conclusion The IgA‐ACPA in the GCF of HC may be associated with periodontal inflammation and smoking, and could be involved in the progression to RA.
Collapse
Affiliation(s)
| | - Menke de Smit
- Department of Oral Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerbrich Schuurmans
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth Raveling-Eelsing
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nyoman Kertia
- Department of Rheumatology, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Arjan Vissink
- Department of Oral Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
49
|
Larsen DN, Mikkelsen CE, Kierkegaard M, Bereta GP, Nowakowska Z, Kaczmarek JZ, Potempa J, Højrup P. Citrullinome of Porphyromonas gingivalis Outer Membrane Vesicles: Confident Identification of Citrullinated Peptides. Mol Cell Proteomics 2020; 19:167-180. [PMID: 31754044 PMCID: PMC6944236 DOI: 10.1074/mcp.ra119.001700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a key pathogen in chronic periodontitis and has recently been mechanistically linked to the development of rheumatoid arthritis via the activity of peptidyl arginine deiminase generating citrullinated epitopes in the periodontium. In this project the outer membrane vesicles (OMV) from P. gingivalis W83 wild-type (WT), a W83 knock-out mutant of peptidyl arginine deiminase (ΔPPAD), and a mutant strain expressing PPAD with the active site cysteine mutated to alanine (C351A), have been analyzed using a two-dimensional HFBA-based separation system combined with LC-MS. For optimal and positive identification and validation of citrullinated peptides and proteins, high resolution mass spectrometers and strict MS search criteria were utilized. This may have compromised the total number of identified citrullinations but increased the confidence of the validation. A new two-dimensional separation system proved to increase the strength of validation, and along with the use of an in-house build program, Citrullia, we establish a fast and easy semi-automatic (manual) validation of citrullinated peptides. For the WT OMV we identified 78 citrullinated proteins having a total of 161 citrullination sites. Notably, in keeping with the mechanism of OMV formation, the majority (51 out of 78) of citrullinated proteins were predicted to be exported via the inner membrane and to reside in the periplasm or being translocated to the bacterial surface. Citrullinated surface proteins may contribute to the pathogenesis of rheumatoid arthritis. For the C351A-OMV a single citrullination site was found and no citrullinations were identified for the ΔPPAD-OMV, thus validating the unbiased character of our method of citrullinated peptide identification.
Collapse
Affiliation(s)
| | | | | | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Z Kaczmarek
- Research and Development Department, Ovodan Biotech A/S, 5000 Odense, Denmark
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, Kentucky
| | - Peter Højrup
- University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| |
Collapse
|
50
|
Volkov M, van Schie KA, van der Woude D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. Immunol Rev 2019; 294:148-163. [PMID: 31845355 PMCID: PMC7065213 DOI: 10.1111/imr.12829] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation. In the last few decades, new insights into RA‐specific autoantibodies and B cells have greatly expanded our understanding of the disease. The best‐known autoantibodies in RA—rheumatoid factor (RF) and anti‐citrullinated protein antibodies (ACPA)—are present long before disease onset, and both responses show signs of maturation around the time of the first manifestation of arthritis. A very intriguing characteristic of ACPA is their remarkably high abundance of variable domain glycans. Since these glycans may convey an important selection advantage of citrulline‐reactive B cells, they may be the key to understanding the evolution of the autoimmune response. Recently discovered autoantibodies targeting other posttranslational modifications, such as anti‐carbamylated and anti‐acetylated protein antibodies, appear to be closely related to ACPA, which makes it possible to unite them under the term of anti‐modified protein antibodies (AMPA). Despite the many insights gained about these autoantibodies, it is unclear whether they are pathogenic or play a causal role in disease development. Autoreactive B cells from which the autoantibodies originate have also received attention as perhaps more likely disease culprits. The development of autoreactive B cells in RA largely depends on the interaction with T cells in which HLA “shared epitope” and HLA DERAA may play an important role. Recent technological advances made it possible to identify and characterize citrulline‐reactive B cells and acquire ACPA monoclonal antibodies, which are providing valuable insights and help to understand the nature of the autoimmune response underlying RA. In this review, we summarize what is currently known about the role of autoantibodies and autoreactive B cells in RA and we discuss the most prominent hypotheses aiming to explain the origins and the evolution of autoimmunity in RA.
Collapse
Affiliation(s)
- Mikhail Volkov
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Anna van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|