1
|
Bozyel B, Doğan Ö, Elgün S, Özdemir B. Hypoxic Responses in Periodontal Tissues: Influence of Smoking and Periodontitis. J Clin Periodontol 2025; 52:249-257. [PMID: 39491490 PMCID: PMC11743020 DOI: 10.1111/jcpe.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
AIM This study aimed to investigate the hypoxic changes in periodontal tissues resulting from smoking and periodontitis by assessing levels of hypoxia-inducible factors (HIF-1α, HIF-2α, HIF-3α) and vascular endothelial growth factor (VEGF) in gingival crevicular fluid (GCF). MATERIALS AND METHODS The study comprised 22 periodontally healthy non-smokers (Group H), 22 periodontally healthy smokers (Group HS), 22 non-smokers with periodontitis (Group P) and 22 smokers with periodontitis (Group PS). Clinical periodontal parameters were documented, and GCF samples were collected and analysed using enzyme-linked immunosorbent assay (ELISA). RESULTS Significantly elevated levels of HIF-1α, HIF-3α and VEGF were observed in Groups HS, P and PS compared to Group H (p < 0.05). Moreover, higher HIF-2α levels were detected in the Groups HS and P compared to Group H (p < 0.05). Significant correlations were detected between all evaluated hypoxia biomarkers in the Group P (p < 0.05) except HIF-2α and HIF-3α. However, in the PS group, significant correlation appeared only between HIF-1α and HIF-2α (p < 0.05). CONCLUSION Our findings indicate that smoking and periodontitis induce comparable hypoxic effects in periodontal tissues, as evidenced by the evaluated biomarkers. Further research is warranted to gain a deeper understanding of the mechanisms underlying hypoxia in periodontal tissues.
Collapse
Affiliation(s)
- Bejna Bozyel
- Department of PeriodontologyFaculty of Dentistry, Gazi UniversityAnkaraTurkey
| | - Özlem Doğan
- Department of Medical BiochemistryFaculty of Medicine, Ankara UniversityAnkaraTurkey
| | - Serenay Elgün
- Department of Medical BiochemistryFaculty of Medicine, Ankara UniversityAnkaraTurkey
| | - Burcu Özdemir
- Department of PeriodontologyFaculty of Dentistry, Gazi UniversityAnkaraTurkey
| |
Collapse
|
2
|
Villoria GEM, Fischer RG, Tinoco EMB, Meyle J, Loos BG. Periodontal disease: A systemic condition. Periodontol 2000 2024; 96:7-19. [PMID: 39494478 PMCID: PMC11579822 DOI: 10.1111/prd.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
For decades, periodontitis has been considered to be a local inflammatory disease of the periodontal tissues in the oral cavity. Initially, associations of periodontitis with a multitude of noncommunicable diseases were each studied separately, and relationships were shown. The associations of periodontitis with morbidities, such as cardiovascular diseases, rheumatoid arthritis, diabetes mellitus, respiratory diseases, have been demonstrated. As most such studies were cross-sectional in nature, questions about causality cannot be univocally answered. And periodontitis as an independent risk factor for one systemic disease, becomes even more difficult to assess since recently periodontitis has also been associated with multimorbidity. Periodontitis and many systemic diseases share environmental, lifestyle and genetic risk factors, and share immunopathology. Moreover, suffering from one common noncommunicable disease may increase the susceptibility for another such chronic disease; the systemic effects of one condition may be one of various risk factors for another such disease. The overarching effect of any systemic disease is it causing a pro-inflammatory state in the individual; this has also been shown for periodontitis. Moreover, in periodontitis a prothrombotic state and elevated immunological activity have been shown. As such, when we consider periodontal disease as another systemic disease, it can affect the susceptibility and progression of other systemic diseases, and importantly, vice versa. And with this, it is not surprising that periodontitis is associated with a variety of other noncommunicable diseases. The medical definition of a systemic disease includes diseases that affect different organs and systems. Thus, the aim of this opinion paper is to propose that periodontitis should be considered a systemic disease in its own right and that it affects the individual's systemic condition and wellbeing. The dental and medical profession and researchers alike, should adapt this paradigm shift, advancing periodontal disease out of its isolated anatomical location into the total of chronic noncommunicable diseases, being for some conditions a comorbid disease and, vice versa, comorbidities can affect initiation and progression of periodontal disease.
Collapse
Affiliation(s)
- German E. M. Villoria
- Department of Periodontology, School of DentistryRio de Janeiro State UniversityRio de JaneiroBrazil
- Department of Periodontology, School of DentistryFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Ricardo G. Fischer
- Department of Periodontology, School of DentistryRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Eduardo M. B. Tinoco
- Department of Periodontology, School of DentistryRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Joerg Meyle
- Dental SchoolUniversity of BerneBerneSwitzerland
| | - Bruno G. Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
da Silva Barbirato D, Nogueira NS, Guimarães TC, Zajdenverg L, Sansone C. Improvement of post-periodontitis-therapy inflammatory state in diabetics: a meta-analysis of randomized controlled trials. Clin Oral Investig 2024; 28:514. [PMID: 39235621 DOI: 10.1007/s00784-024-05905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVES This systematic review aimed to evaluate the impact of periodontal therapy on systemic biomarkers of inflammation and oxidative stress in patients with type 2 diabetes mellitus (T2DM) and periodontitis. MATERIALS AND METHODS An electronic search without restriction on dates or languages was performed in six electronic databases, protocol records and other sources until May 2024. To develop the search strategy, clinical question was formulated using the PICOD method. Eligibility criteria included randomized controlled trials on the effects of periodontitis-therapy on the inflammatory parameters of T2DM patients. Risk of bias and certainty of evidence were assessed by RoB2 and GRADE tools, respectively. The review protocol was registered in PROSPERO platform (CRD42020206295). RESULTS Of 1,062 records screened, the authors determined that 14 studies enrolling 1223 participants proved eligible. Moderate-quality evidence suggested a positive effect of periodontitis-therapy on serum levels of c-reactive protein [0.39 (CI95%: 0.27-0.5)], even without the use of antibiotics [0.34 (CI95%: 0.22-0.46)], in T2DM patients. The significant reduction in C-reactive protein (CRP) among smokers in favor of periodontitis-therapy was greatest at six months of follow-up. CONCLUSIONS Non-surgical periodontal therapy improved short-term biomarkers of systemic inflammation in T2DM patients, with moderate evidence of improvement in serum levels of high sensitivity-CRP. CLINICAL RELEVANCE Systemic inflammation in T2DM patients can be reduced after non-surgical periodontal therapy, which also has the potential to reduce the risk of other important systemic outcomes, such as cardiovascular disease.
Collapse
Affiliation(s)
- Davi da Silva Barbirato
- Division of Periodontics, Dental School, Federal University of Rio de Janeiro, CidadeUniversitária, 325 Prof. Rodolpho Paulo Rocco St, Rio de Janeiro, RJ, Brazil.
- Department of Basic and Oral Biology, University of Sao Paulo - USP (FORP/USP), Ribeirão Preto, Brazil.
| | - Natasha Soares Nogueira
- Division of Periodontics, Dental School, Federal University of Rio de Janeiro, CidadeUniversitária, 325 Prof. Rodolpho Paulo Rocco St, Rio de Janeiro, RJ, Brazil
| | - Taísa Coelho Guimarães
- Division of Periodontics, Dental School, Federal University of Rio de Janeiro, CidadeUniversitária, 325 Prof. Rodolpho Paulo Rocco St, Rio de Janeiro, RJ, Brazil
| | - Lenita Zajdenverg
- Department of Medical Clinic, Division of Nutrology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carmelo Sansone
- Division of Periodontics, Dental School, Federal University of Rio de Janeiro, CidadeUniversitária, 325 Prof. Rodolpho Paulo Rocco St, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Alshamsi MHA, Koippallil Gopalakrishnan AR, Rahman B, Acharya AB. Evaluation of salivary placental growth factor in Health and Periodontitis. BMC Oral Health 2024; 24:493. [PMID: 38671416 PMCID: PMC11046858 DOI: 10.1186/s12903-024-04282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Various immune mediators have a role in the progression of periodontitis. Placental Growth Factor (PLGF) is important during pregnancy and also is involved in the pathology of several diseases. Hence, this study aimed to evaluate salivary PLGF in health and periodontitis that seemingly has not been reported earlier. METHODS Fifty participants were grouped as healthy and periodontitis patients. Clinical history, periodontal parameters [Plaque Index (PI), Gingival Index (GI), probing pocket depth (PPD), clinical attachment loss (CAL), bleeding on probing (BoP)] were recorded; saliva was collected and PLGF was estimated using a commercially available ELISA kit. The data were statistically analyzed using Shapiro-Wilk's test, Kruskal-Wallis test, Dunn's post hoc test with Bonferroni correction, and Spearman's rank-order correlation coefficient. The significance level was set at p ≤ 0.05 for all tests. RESULTS Salivary PLGF levels comparison between the two groups showed no significant difference between both groups. Quantitatively, females had higher salivary PLGF levels than males. No significant association was observed between salivary PLGF levels and the severity of periodontitis. The periodontitis group showed statistically significant correlations between salivary PLGF levels, BoP(p = 0.005) and PPD(p = 0.005), and significant correlations of PLGF with PPD (p = 0.035) for both groups. CONCLUSIONS PLGF can be detected and measured in the saliva of healthy individuals and periodontitis patients. However, the role of PLGF in periodontal pathology needs to be further confirmed based on their salivary levels.
Collapse
Affiliation(s)
| | | | - Betul Rahman
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Anirudh B Acharya
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
5
|
Gürsoy UK, Özdemir Kabalak M, Gürsoy M. Advances in periodontal biomarkers. Adv Clin Chem 2024; 120:145-168. [PMID: 38762240 DOI: 10.1016/bs.acc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Due to technologic advancements, periodontology has witnessed a boost in biomarker research over the past three decades. Indeed, with the aid of omics, our understanding of the healthy periodontium, pathogenesis of periodontal diseases, and healing after periodontal treatment has improved significantly. Yet, the traditional methods, periodontal probing and radiographies, remain the most common methods to diagnose periodontal disease and monitor treatment. Although these approaches can produce reliable diagnostic outcomes, they generally detect disease only after significant tissue degradation thus making treatment outcome highly uncertain. Accordingly, laboratories worldwide have collaborated with clinicians to design accurate, rapid and cost-effective biomarkers for periodontal disease diagnosis. Despite these efforts, biomarkers that can be widely used in early disease diagnosis and for treatment outcome prediction are far from daily use. The aim of this chapter is to give a general overview on periodontal health and diseases, and review recent advancements in periodontal biomarker research. A second aim will discuss the strengths and limitations of translating periodontal biomarker research to clinical practice. Genetic biomarkers of periodontitis are not discussed as the available confirmatory data is scarce.
Collapse
Affiliation(s)
| | | | - Mervi Gürsoy
- Periodontology, Institute of Dentistry, University of Turku, Turku, Finland; Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| |
Collapse
|
6
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
7
|
Reckelkamm SL, Kamińska I, Baumeister SE, Ponce-de-Leon M, Ehmke B, Rodakowska E, Baginska J, Nolde M, Kamiński KA. Targeted proteomics in a population-based study identifies serum PECAM-1 and TRIM21 as inflammation markers for periodontitis. Clin Oral Investig 2023; 28:59. [PMID: 38157091 PMCID: PMC10756891 DOI: 10.1007/s00784-023-05442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Periodontitis (PD) can cause systematic inflammation and is associated with various metabolic processes in the body. However, robust serum markers for these relationships are still lacking. This study aims to identify novel circulating inflammation-related proteins associated with PD using targeted proteomics. MATERIALS AND METHODS We used population-based, cross-sectional data from 619 participants of the Polish Longitudinal University Study (Bialystok PLUS). Mean pocket probing depth (mPPD) and proportion of bleeding on probing (pBOP) served as exposure variables. Fifty-two inflammation-related proteins were measured using the Olink Target 96 Cardiovascular III and the Olink Target 96 Immune Response panels. Associations between periodontal measures and proteins were tested using covariate-adjusted linear regression models. RESULTS At a false discovery rate of < 0.05, we identified associations of mPPD and pBOP with platelet-endothelial cell adhesion molecule-1 (PECAM-1) and tripartite motif-containing protein 21 (TRIM21). CONCLUSION This study revealed novel associations between PD and serum levels of PECAM-1 and TRIM21. Our results suggest that these proteins might be affected by molecular processes that take place in the inflamed periodontium. CLINICAL RELEVANCE Novel associations of PECAM-1 and TRIM21 with PD indicate promising serum markers for understanding the disease's pathophysiological processes and call for further biomedical investigations.
Collapse
Affiliation(s)
- Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany.
| | - Inga Kamińska
- Department of Integrated Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Sebastian-Edgar Baumeister
- Institute of Health Services Research in Dentistry, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Mariana Ponce-de-Leon
- Chair of Epidemiology at the University Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Ewa Rodakowska
- Department of Clinical Dentistry-Cariology Section, University of Bergen, 5020, Bergen, Norway
| | - Joanna Baginska
- Department of Dentistry Propaedeutics, Medical University of Bialystok, 15-295, Białystok, Poland
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Önder C, Akdoğan N, Kurgan Ş, Balci N, Serdar CC, Serdar MA, Günhan M. Does smoking influence tryptophan metabolism in periodontal inflammation? A cross-sectional study. J Periodontal Res 2023; 58:1041-1051. [PMID: 37526075 DOI: 10.1111/jre.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVES The aim of this study was to identify the effects of smoking and periodontal inflammation on tryptophan-kynurenine metabolism as well as the correlation between these findings and clinical periodontal parameters. BACKGROUND It has been shown that the tryptophan amino acid's primary catabolic pathway, the kynurenine pathway (KP), may serve as a key biomarker for periodontal disease. Although there are studies investigating the effect of smoking on KYN-TRP metabolism, the effect of smoking on periodontal disease through KP has not been revealed so far. METHODS The salivary and serum samples were gathered from 24 nonsmoker (NS-P) stage III, grade B generalized periodontitis and 22 smoker (S-P) stage III, grade C generalized periodontitis patients, in addition to 24 nonsmoker (NS-C) and 24 smoker (S-C) periodontally healthy control individuals. Saliva and serum IL-6, kynurenine (KYN), and tryptophan (TRP) values, and KYN/TRP ratio were analyzed by liquid chromatography-mass spectrometry. Clinical periodontal measurements were recorded. RESULTS Salivary TRP values were significantly higher in both periodontitis groups than control groups (p < .05). Salivary KYN values were highest in NS-P group (p < .05). Salivary KYN values did not differ significantly between periodontitis groups (p = .84). Salivary KYN/TRP ratio was significantly lower in NS-P group compared to other groups (p < .001). Serum TRP value is higher in S-P group than other groups; however, significant difference was found in S-C group (p < .05). Serum KYN values were significantly lower in smokers than nonsmokers. Serum KYN/TRP ratio is higher in NS-P group. NS-P group has the highest salivary IL-6 levels, NS-C group has the lowest values (p < .05). CONCLUSIONS Our results point out that smoking exacerbates inflammation in the periodontium and increases TRP destruction and decreases IDO activity by suppressing KP in serum. As a result, kynurenine and its metabolites may be significant biomarkers in the link between smoking and periodontal disease.
Collapse
Affiliation(s)
- Canan Önder
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Nihan Akdoğan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Nur Balci
- Department of Periodontology, Faculty of Dentistry, Medipol University, İstanbul, Turkey
| | - Ceyhan Ceran Serdar
- Department of Medical Biology and Genetics, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, Faculty of Medicine, Acıbadem University, Ankara, Turkey
| | - Meral Günhan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Reckelkamm SL, Kamińska I, Baumeister SE, Holtfreter B, Alayash Z, Rodakowska E, Baginska J, Kamiński KA, Nolde M. Optimizing a Diagnostic Model of Periodontitis by Using Targeted Proteomics. J Proteome Res 2023. [PMID: 37269315 DOI: 10.1021/acs.jproteome.3c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Periodontitis (PD), a widespread chronic infectious disease, compromises oral health and is associated with various systemic conditions and hematological alterations. Yet, to date, it is not clear whether serum protein profiling improves the assessment of PD. We collected general health data, performed dental examinations, and generated serum protein profiles using novel Proximity Extension Assay technology for 654 participants of the Bialystok PLUS study. To evaluate the incremental benefit of proteomics, we constructed two logistic regression models assessing the risk of having PD according to the CDC/AAP definition; the first one contained established PD predictors, and in addition, the second one was enhanced by extensive protein information. We then compared both models in terms of overall fit, discrimination, and calibration. For internal model validation, we performed bootstrap resampling (n = 2000). We identified 14 proteins, which improved the global fit and discrimination of a model of established PD risk factors, while maintaining reasonable calibration (area under the curve 0.82 vs 0.86; P < 0.001). Our results suggest that proteomic technologies offer an interesting advancement in the goal of finding easy-to-use and scalable diagnostic applications for PD that do not require direct examination of the periodontium.
Collapse
Affiliation(s)
- Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster 48149, Germany
| | - Inga Kamińska
- Department of Integrated Dentistry, Medical University of Bialystok, Bialystok 15-276, Poland
| | | | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald 17475, Germany
| | - Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster 48149, Germany
| | - Ewa Rodakowska
- Department of Clinical Dentistry-Cariology Section, University of Bergen, Bergen 5020, Norway
| | - Joanna Baginska
- Department of Dentistry Propaedeutics, Medical University of Bialystok, Białystok 15-276, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok 15-269, Poland
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster 48149, Germany
| |
Collapse
|
10
|
Alqaderi H, Abdullah A, Finkelman M, Abufarha M, Devarajan S, Abubaker J, Ramesh N, Tavares M, Al-Mulla F, Bin-Hasan S. The relationship between sleep and salivary and serum inflammatory biomarkers in adolescents. Front Med (Lausanne) 2023; 10:1175483. [PMID: 37305117 PMCID: PMC10250646 DOI: 10.3389/fmed.2023.1175483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives Poor sleep behavior can trigger an inflammatory response and contribute to the development of inflammatory diseases. Cytokines can act as indicators of inflammation and may precede the onset of inflammatory diseases. This study aimed to determine the association between sleep timing parameters (bedtime, sleep duration, sleep debt, and social jetlag) and the levels of nine serum and salivary inflammatory and metabolic biomarkers. Methods Data were collected from 352 adolescents aged 16-19 years enrolled in Kuwait's public high schools. The levels of C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), adiponectin, leptin, and insulin were measured from saliva and serum samples. We conducted mixed-effect multiple linear regression modeling to account for the school variable as a random effect to assess the relationship between the sleep variables and salivary and serum biomarkers. Mediation analysis was conducted to check if BMI was a mediator between bedtime and the biomarkers. Results There was a statistically significant elevation in serum IL-6 level associated with later bedtime (0.05 pg./mL, p = 0.01). Adolescents with severe sleep debt of ≥2 h had an increase in salivary IL-6 biomarker levels (0.38 pg./mL, p = 0.01) compared to those who had sleep debt of <1 h. Adolescents with sleep debt of ≥2 h had significantly higher levels of serum CRP (0.61 μg/mL, p = 0.02) than those without sleep debt. Additionally, we found that the inflammatory biomarkers (CRP, IL-6, IL-8, IL-10, VEGF, and MCP-1) and metabolic biomarkers (adiponectin, leptin, and insulin) had more statistically significant associations with the bedtime variables than with sleep duration variables. CRP, IL-6, and IL-8 were associated with sleep debt, and IL-6, VEGF, adiponectin, and leptin levels were associated with social jetlag. BMIz was a full mediator in the relationship between late bedtime and increased serum levels of CRP, IL-6, and insulin. Conclusion Adolescents who go to bed at or later than midnight had dysregulated levels of salivary and serum inflammatory biomarkers, suggesting that disrupted circadian rhythm can trigger higher levels of systemic inflammation and potentially exacerbate chronic inflammation and the risk of metabolic diseases.
Collapse
Affiliation(s)
- Hend Alqaderi
- Dasman Diabetes Institute, Dasman, Kuwait
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Abeer Abdullah
- Department of Preventive Dental Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matthew Finkelman
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, Boston, MA, United States
| | | | | | | | - Nikitha Ramesh
- Boston University School of Public Health, Boston, MA, United States
| | - Mary Tavares
- Department of Health Policy and Health Services Research, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, United States
| | | | | |
Collapse
|
11
|
Ríos S, Álvarez S, Smith PC, Sáez CG, Andrade C, Pinto N, Martínez CE. Smoking habits do not affect biological responses induced by leucocyte and platelet-rich fibrin in periodontal ligament cells. J Oral Pathol Med 2023; 52:169-180. [PMID: 36258298 DOI: 10.1111/jop.13374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Leucocyte- and platelet-rich fibrin has been developed to stimulate wound healing response. However, it is currently unknown whether smoking affects the biological responses elicited by leucocyte- and platelet-rich fibrin on periodontal ligament-derived mesenchymal stromal cells. This study analyzes the kinetics of biomolecule release from leucocyte- and platelet-rich fibrin derived from smokers and nonsmokers and their effect on periodontal ligament cell proliferation and migration as essential biological activities during wound healing. METHODS Biomolecules present in leucocyte- and platelet-rich fibrin exudates and conditioned media collected from smokers and nonsmokers were analyzed by Luminex arrays. Periodontal ligament-derived mesenchymal stromal cell obtained from one nonsmoker were treated with leucocyte- and platelet-rich fibrin exudates or leucocyte- and platelet-rich fibrin conditioned media derived from both smokers and nonsmokers. The parameters evaluated included cell proliferation, determined by Ki67 immunostaining and migration assessed using transwell assays. Also, cells were treated with nicotine in the presence of fetal bovine serum 10% or leucocyte- and platelet-rich fibrin conditioned media. RESULTS A similar biomolecular profile was detected in leucocyte- and platelet-rich fibrin exudates and leucocyte- and platelet-rich fibrin conditioned media from smokers and nonsmokers, stimulating (periodontal ligament-derived mesenchymal stromal cell) proliferation, and migration to a comparable degree. Nicotine reduced cell proliferation and migration of periodontal cells; however, this effect was recovered in the presence of leucocyte- and platelet-rich fibrin conditioned media. CONCLUSION Leucocyte- and platelet-rich fibrin derived from smokers could be an autologous source of biomolecules to stimulate cell biological activities involved in wound healing in smokers who have difficulties in ceasing this habit. Clinical trials are required to evaluate the impact of leucocyte- and platelet-rich fibrin on healing responses in smokers.
Collapse
Affiliation(s)
- Susana Ríos
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Simón Álvarez
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia G Sáez
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Nelson Pinto
- Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Constanza E Martínez
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Analyzing Human Periodontal Soft Tissue Inflammation and Drug Responses In Vitro Using Epithelium-Capillary Interface On-a-Chip. BIOSENSORS 2022; 12:bios12050345. [PMID: 35624646 PMCID: PMC9138963 DOI: 10.3390/bios12050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
The gingival epithelium–capillary interface is a unique feature of periodontal soft tissue, preserving periodontal tissue homeostasis and preventing microorganism and toxic substances from entering the subepithelial tissue. However, the function of the interface is disturbed in periodontitis, and mechanisms of the breakdown of the interface are incompletely understood. To address these limitations, we developed a microfluidic epithelium–capillary barrier with a thin culture membrane (10 μm) that closely mimics the in vivo gingival epithelial barrier with an immune micro-environment. To test the validity of the fabricated gingival epithelial barrier model, epithelium–capillary interface-on-a-chip was cultured with human gingival epithelial cells (HGECs) and human vascular endothelial cells (HUVEC). Their key properties were tested using optical microscope, transepithelial/transendothelial electrical resistance (TEER), and permeability assays. The clear expression of VE-cadherin revealed the tight junctions in endothelial cells. Live/dead assays indicated a high cell viability, and the astrocytic morphology of HGE cells was confirmed by F-actin immunostaining. By the third day of cell culture, TEER levels typically exceeded in co-cultures. The resultant permeability coefficients showed a significant difference between 70 kDa and 40 kDa FITC-dextran. The expression of protein intercellular cell adhesion molecule (ICAM-1) and human beta defensin-2 (HBD2) decreased when exposed to TNF-α and LPS, but recovered with the NF-κB inhibitor treatment- Pyrrolidinedithiocarbamic acid (PDTC), indicating the stability of the fabricated chip. These results demonstrate that the developed epithelium-capillary interface system is a valid model for studying periodontal soft tissue function and drug delivery.
Collapse
|
14
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Görgülü NG, Doğan B. Effect of Non-surgical Periodontal Treatment on Salivary and Serum Biomarkers in Stage III Grade B and C Periodontitis. J Periodontol 2022; 93:1191-1205. [PMID: 35043972 DOI: 10.1002/jper.21-0536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND This study aimed to evaluate the levels of total matrix metalloproteinase-8 (MMP-8), macrophage-activating factors (MAF), macrophage inflammatory protein (MIP)-1α, macrophage colony-stimulating factor (M-CSF), interleukin (IL)-34 in saliva and serum of periodontally healthy, periodontitis stage III grade B (P-III-B) and grade C (P-III-C) participants and to compare the changes after non-surgical periodontal treatment (NSPT). METHODS A total of non-smoker and systemically healthy 65 participants, 20 periodontally healthy, 20 P-III-B, and 25 P-III-C were recruited for the study. The periodontal parameters were recorded, saliva and serum samples were obtained from all participants at baseline. In periodontitis groups, the periodontal parameters were reevaluated, and the samples were recollected at 1 and 3 months following the NSPT. MMP-8, MAF, MIP-1α, M-CSF, and IL34 levels were measured by ELISA. Receiver operating characteristics curve was performed for estimating the area under the curve (AUC). RESULTS All periodontal parameters were improved in periodontitis groups after NSPT (p<0.05). Among tested molecules, salivary MMP-8 and MAF were higher in both periodontitis groups compared to healthy controls (p<0.05) at baseline and significantly decreased after NSPT (p<0.05) to healthy levels or below. Salivary MMP-8 had the highest diagnostic ability both for P-III-B (AUC:0.78 sensitivity: 80%; specificity: 80%) and P-III-C (AUC:0.88 sensitivity: 88%; specificity: 80%). Moreover, after adjusting for age, periodontitis groups were associated with salivary MMP-8 and MAF levels (p<0.05). CONCLUSION The present study showed that high salivary MMP-8 and MAF levels were associated with non-smoker, systemically healthy P-III-B and P-III-C. Moreover, NSPT was remarkably reduced their levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nimet Gül Görgülü
- Department of Periodontology, Institute of Health Science, Marmara University, Istanbul, Turkey
| | - Başak Doğan
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
16
|
Cytokine/Chemokine/Growth Factor Profiles Contribute to Understanding the Pathogenesis of the Salivary Gland Dysfunction in Euthyroid Hashimoto's Thyroiditis Patients. Mediators Inflamm 2021; 2021:3192409. [PMID: 34335085 PMCID: PMC8289575 DOI: 10.1155/2021/3192409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is one of the most common autoimmune diseases. It is suggested that, in addition to thyroid gland dysfunction, HT is responsible for impaired secretion from the salivary glands. The aim of this study was to evaluate the extent of symptoms of salivary gland dysfunction. We also assessed the relationship between the levels of selected cytokines, chemokines, and growth factors in unstimulated whole saliva (UWS) and the rate of UWS secretion and symptoms of xerostomia in HT patients. The study group consisted of 25 female patients diagnosed with Hashimoto's disease in its spontaneous euthyroid state who had never received hormonal treatment. In more than half of the examined patients, we observed the level of UWS secretion below 0.2 mL/min, indicating impaired secretory function of the salivary glands. Moreover, we demonstrated that the clinical symptoms of salivary gland dysfunction worsen with disease duration. Nevertheless, the inflammatory changes occurring in these glands are independent of general inflammation in the course of HT. Our results clearly indicate an abnormal profile of cytokines, chemokines, and growth factors in the UWS of HT euthyroid women as well as the fact that concentrations of IL-6 and IL-1 as well as INF-γ, TNF-α, and IL-12 may be potential biomarkers for salivary gland dysfunction in the course of HT. Furthermore, salivary IL-12 (p40) may be helpful in assessing the progression of autoimmunity-related inflammation in the course of HT. In conclusion, secretory dysfunction of the salivary glands is closely related to autoimmunity-related inflammation in the course of HT, which leads to objective and subjective symptoms of dry mouth.
Collapse
|
17
|
Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol 2021; 110:565-576. [PMID: 34043832 DOI: 10.1002/jlb.4mr0421-750r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is characterized by the periodontium's pathologic destruction due to the host's overwhelmed inflammation to the dental plaque. The bacterial infections and subsequent host immune responses have shaped a distinct microenvironment, which generally affects resident periodontal ligament stem cells (PDLSCs). Interestingly, recent studies have revealed that impaired PDLSCs may also contribute to the disturbance of periodontal homeostasis. The putative vicious circle underlying the interesting "positive feedback" of PDLSCs in the periodontitis niche remains a hot research topic, whereas the inseparable interactions between resident PDLSCs and the periodontitis niche are still not fully understood. This review provides a microscopic view on the periodontitis progression, especially the quick but delicate immune responses to oral dysbacterial infections. We also summarize the interesting crosstalk of the resident PDLSCs with their surrounding periodontitis niche and potential mechanisms. Particularly, the microenvironment reduces the osteogenic properties of resident PDLSCs, which are closely related to their reparative activity. Reciprocally, these impaired PDLSCs may disrupt the microenvironment by aggravating the host immune responses, promoting aberrant angiogenesis, and facilitating the osteoclastic activity. We further recommend that more in-depth studies are required to elucidate the interactions of PDLSCs with the periodontal microenvironment and provide novel interventions for periodontitis.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Deng
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hao
- Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Santonocito S, Polizzi A, Palazzo G, Isola G. The Emerging Role of microRNA in Periodontitis: Pathophysiology, Clinical Potential and Future Molecular Perspectives. Int J Mol Sci 2021; 22:5456. [PMID: 34064286 PMCID: PMC8196859 DOI: 10.3390/ijms22115456] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
During the last few decades, it has been established that messenger ribonucleic acid (mRNA) transcription does not inevitably lead to protein translation, but there are numerous processes involved in post-transcriptional regulation, which is a continuously developing field of research. MicroRNAs (miRNAs) are a group of small non-coding RNAs, which negatively regulate protein expression and are implicated in several physiological and pathological mechanisms. Aberrant expression of miRNAs triggers dysregulation of multiple cellular processes involved in innate and adaptive immune responses. For many years, it was thought that miRNAs acted only within the cell in which they were synthesised, but, recently, they have been found outside cells bound to lipids and proteins, or enclosed in extracellular vesicles, namely exosomes. They can circulate throughout the body, transferring information between cells and altering gene expression in the recipient cells, as they can fuse with and be internalised by the recipient cells. Numerous studies on miRNAs have been conducted in order to identify possible biomarkers that can be used in the diagnosis of periodontal disease. However, as therapeutic agents, single miRNAs can target several genes and influence multiple regulatory networks. The aim of this review was to examine the molecular role of miRNAs and exosomes in the pathophysiology of periodontal disease and to evaluate possible clinical and future implications for a personalised therapeutical approach.
Collapse
Affiliation(s)
| | | | | | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.P.); (G.P.)
| |
Collapse
|
19
|
Silva H. Tobacco Use and Periodontal Disease-The Role of Microvascular Dysfunction. BIOLOGY 2021; 10:441. [PMID: 34067557 PMCID: PMC8156280 DOI: 10.3390/biology10050441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022]
Abstract
Periodontal disease consists in highly prevalent wide-ranging inflammatory conditions that affect the supporting apparatus of teeth. Tobacco use is the most important risk factor for periodontal disease as it increases disease severity and periodontal surgery complications. Tobacco use is harmful for the vasculature by causing microvascular dysfunction, which is known to negatively affect periodontal disease. To the author's knowledge this paper is the first comprehensive review on the mechanisms by which tobacco use affects oral microcirculation and impacts the pathophysiology of periodontal disease. In healthy subjects, acute nicotine administration or tobacco use (smoking/smokeless forms) increases the blood flow in the oral mucosa due to local irritation and increased blood pressure, which overcome neural- and endocrine-mediated vasoconstriction. Chronic tobacco smokers display an increased gingival microvascular density, which is attributed to an increased capillary recruitment, however, these microcirculatory units show higher tortuosity and lower caliber. These morphological changes, together with the repetitive vasoconstrictive insults, contribute to lower gingival perfusion in chronic smokers and do not completely regress upon smoking cessation. In periodontal disease there is considerable gingival inflammation and angiogenesis in non-smokers which, in chronic smokers, are considerably suppressed, in part due to local immune suppression and oxidative stress. Tobacco exposure, irrespective of the form of use, causes long-term microvascular dysfunction that increases the risk of complications due to the natural disease course or secondary therapeutic strategies.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| |
Collapse
|
20
|
Vascular Endothelial Growth Factor: A Translational View in Oral Non-Communicable Diseases. Biomolecules 2021; 11:biom11010085. [PMID: 33445558 PMCID: PMC7826734 DOI: 10.3390/biom11010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are expressed in response to soluble mediators, such as cytokines and growth factors. Their physiologic functions include blood vessel formation, regulation of vascular permeability, stem cell and monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition, angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflammatory immune diseases and bone loss. According to their prevalence, morbidity and mortality, inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst the most prevalent chronic inflammatory conditions affecting humans and also represent the main cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF signaling in common oral diseases is expanding, new potential translational applications emerge. In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and destructive periodontal inflammatory diseases, with emphasis in its translational applications as potential biomarkers and therapeutic targets.
Collapse
|