1
|
Zhang J, Chen C, Guo H, Huang Z, Urynowicz M. The variation of microorganisms and organics during methane production from lignite under an electric field. Biotechnol Lett 2023; 45:83-94. [PMID: 36441275 DOI: 10.1007/s10529-022-03327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The succession of microbial communities and intermediates during methane production was determined by pyrosequencing and GC-MS to investigate the mechanism of biomethanation enhancement from coal. RESULTS The maximum methane production at 1.2 V was significantly higher than that at 0 V. Bacterial flora have been changed as a result of the addition of an electric field, e.g., the abundance of Pseudomonas significantly increased to enhance the coal degradation which improved the methane yield by facilitating the electron transfer. The fungal structure was also found stabilized by the electric field when compared to the control after 7 days of cultivation. The predominance of Methanosarcina could also stimulate interspecies electron transfer. The GC-MS analysis revealed that the electric field can selectively promote the metabolism of refractory intermediates such as esters and aromatics during coal biodegradation. CONCLUSION The application of an electric field could enhance methane production from coal by changing the structure and succession of microbial communities, improving electron transfer, and enhancing the fermentation of intermediates during coal biodegradation.
Collapse
Affiliation(s)
- Jiayan Zhang
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, 79 Yingze West Road, Taiyuan, 030024, People's Republic of China
- Key Lab of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chao Chen
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, 79 Yingze West Road, Taiyuan, 030024, People's Republic of China
- Key Lab of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongguang Guo
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, 79 Yingze West Road, Taiyuan, 030024, People's Republic of China.
- Key Lab of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Zaixing Huang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
- Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Michael Urynowicz
- Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
2
|
Sánchez-Andrea I, van der Graaf CM, Hornung B, Bale NJ, Jarzembowska M, Sousa DZ, Rijpstra WIC, Sinninghe Damsté JS, Stams AJM. Acetate Degradation at Low pH by the Moderately Acidophilic Sulfate Reducer Acididesulfobacillus acetoxydans gen. nov. sp. nov. Front Microbiol 2022; 13:816605. [PMID: 35391737 PMCID: PMC8982180 DOI: 10.3389/fmicb.2022.816605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
In acid drainage environments, biosulfidogenesis by sulfate-reducing bacteria (SRB) attenuates the extreme conditions by enabling the precipitation of metals as their sulfides, and the neutralization of acidity through proton consumption. So far, only a handful of moderately acidophilic SRB species have been described, most of which are merely acidotolerant. Here, a novel species within a novel genus of moderately acidophilic SRB is described, Acididesulfobacillus acetoxydans gen. nov. sp. nov. strain INE, able to grow at pH 3.8. Bioreactor studies with strain INE at optimum (5.0) and low (3.9) pH for growth showed that strain INE alkalinized its environment, and that this was more pronounced at lower pH. These studies also showed the capacity of strain INE to completely oxidize organic acids to CO2, which is uncommon among acidophilic SRB. Since organic acids are mainly in their protonated form at low pH, which increases their toxicity, their complete oxidation may be an acid stress resistance mechanism. Comparative proteogenomic and membrane lipid analysis further indicated that the presence of saturated ether-bound lipids in the membrane, and their relative increase at lower pH, was a protection mechanism against acid stress. Interestingly, other canonical acid stress resistance mechanisms, such as a Donnan potential and increased active charge transport, did not appear to be active.
Collapse
Affiliation(s)
- Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Irene Sánchez-Andrea,
| | | | - Bastian Hornung
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Monika Jarzembowska
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
3
|
Velázquez-Ríos IO, Rincón-Rosales R, Gutiérrez-Miceli FA, Alcántara-Hernández RJ, Ruíz-Valdiviezo VM. Prokaryotic diversity across a pH gradient in the “El Chichón” crater-lake: a naturally thermo-acidic environment. Extremophiles 2022; 26:8. [DOI: 10.1007/s00792-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
|
4
|
Alves JI, Salvador AF, Castro AR, Zheng Y, Nijsse B, Atashgahi S, Sousa DZ, Stams AJM, Alves MM, Cavaleiro AJ. Long-Chain Fatty Acids Degradation by Desulfomonile Species and Proposal of " Candidatus Desulfomonile Palmitatoxidans". Front Microbiol 2021; 11:539604. [PMID: 33391191 PMCID: PMC7773648 DOI: 10.3389/fmicb.2020.539604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial communities with the ability to convert long-chain fatty acids (LCFA) coupled to sulfate reduction can be important in the removal of these compounds from wastewater. In this work, an enrichment culture, able to oxidize the long-chain fatty acid palmitate (C16 : 0) coupled to sulfate reduction, was obtained from anaerobic granular sludge. Microscopic analysis of this culture, designated HP culture, revealed that it was mainly composed of one morphotype with a typical collar-like cell wall invagination, a distinct morphological feature of the Desulfomonile genus. 16S rRNA gene amplicon and metagenome-assembled genome (MAG) indeed confirmed that the abundant phylotype in HP culture belong to Desulfomonile genus [ca. 92% 16S rRNA gene sequences closely related to Desulfomonile spp.; and ca. 82% whole genome shotgun (WGS)]. Based on similar cell morphology and average nucleotide identity (ANI) (77%) between the Desulfomonile sp. in HP culture and the type strain Desulfomonile tiedjei strain DCB-1T, we propose a novel species designated as "Candidatus Desulfomonile palmitatoxidans." This bacterium shares 94.3 and 93.6% 16S rRNA gene identity with Desulfomonile limimaris strain DCB-MT and D. tiedjei strain DCB-1T, respectively. Based on sequence abundance of Desulfomonile-morphotype in HP culture, its predominance in the microscopic observations, and presence of several genes coding for enzymes involved in LCFA degradation, the proposed species "Ca. Desulfomonile palmitatoxidans" most probably plays an important role in palmitate degradation in HP culture. Analysis of the growth of HP culture and D. tiedjei strain DCB-1T with short- (butyrate), medium- (caprylate) and long-chain fatty acids (palmitate, stearate, and oleate) showed that both cultures degraded all fatty acids coupled to sulfate reduction, except oleate that was only utilized by HP culture. In the absence of sulfate, neither HP culture, nor D. tiedjei strain DCB-1T degraded palmitate when incubated with Methanobacterium formicicum as a possible methanogenic syntrophic partner. Unlike D. tiedjei strain DCB-1T, "Ca. Desulfomonile palmitatoxidans" lacks reductive dehalogenase genes in its genome, and HP culture was not able to grow by organohalide respiration. An emended description of the genus Desulfomonile is proposed. Our study reveals an unrecognized LCFA degradation feature of the Desulfomonile genus.
Collapse
Affiliation(s)
- Joana I Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - A Rita Castro
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ying Zheng
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Bart Nijsse
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Diana Z Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J M Stams
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana J Cavaleiro
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
5
|
Rodrigues C, Núñez-Gómez D, Follmann HVDM, Silveira DD, Nagel-Hassemer ME, Lapolli FR, Lobo-Recio MÁ. Biostimulation of sulfate-reducing bacteria and metallic ions removal from coal mine-impacted water (MIW) using shrimp shell as treatment agent. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122893. [PMID: 33027875 DOI: 10.1016/j.jhazmat.2020.122893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This paper comprises several assays aiming to identify the basis for the bioremediation of mine-impacted water (MIW). To do so, the conditions for build anoxic microcosms for treating this effluent were varied, containing MIW, and a source of chitin, to biostimulate sulfate-reducing bacteria (SRB). The chitin sources were: commercial chitin (CHIT) and shrimp shell (SS), which in addition to chitin, contains CaCO3, and proteins in its composition. The CHIT assays were not successful in sulfate-reduction, even when the pH was increased with CaCO3. However, in all SS assays the SRB development was successful (85% sulfate removal for assay 3), including the metal-free (MF-SS) assay (75% for assay 5). High-throughput sequencing analysis revealed the structure of bacterial community in the SS assay: the most abundant genera were Clostridium and Klebsiella, both fermentative and chitinase producers; a few SRB from the genera Desulfovibrio and Desulfosporosinus were also detected. In the MF-SS assay, Desulfovibrio genuswas detected but Comamonas was dominant. It could be deduced that SS is a suitable substrate for SRB development, but CHIT is not. The sulfate-reduction process was provided by the cooperation between fermentative/chitinase-producer bacteria together with SRB, which leads to efficient MIW treatment, removing sulfate and metallic ions.
Collapse
Affiliation(s)
- Caroline Rodrigues
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Dámaris Núñez-Gómez
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Hioná V Dal Magro Follmann
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Daniele D Silveira
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Maria Eliza Nagel-Hassemer
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Flávio R Lapolli
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - María Ángeles Lobo-Recio
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil; Department of Energy and Sustainability, UFSC, 88906-072, Araranguá, SC, Brazil.
| |
Collapse
|
6
|
van der Graaf CM, Sánchez-España J, Yusta I, Ilin A, Shetty SA, Bale NJ, Villanueva L, Stams AJM, Sánchez-Andrea I. Biosulfidogenesis Mediates Natural Attenuation in Acidic Mine Pit Lakes. Microorganisms 2020; 8:E1275. [PMID: 32825668 PMCID: PMC7565709 DOI: 10.3390/microorganisms8091275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Acidic pit lakes are abandoned open pit mines filled with acid mine drainage (AMD)-highly acidic, metalliferous waters that pose a severe threat to the environment and are rarely properly remediated. Here, we investigated two meromictic, oligotrophic acidic mine pit lakes in the Iberian Pyrite Belt (IPB), Filón Centro (Tharsis) (FC) and La Zarza (LZ). We observed a natural attenuation of acidity and toxic metal concentrations towards the lake bottom, which was more pronounced in FC. The detection of Cu and Zn sulfides in the monimolimnion of FC suggests precipitation of dissolved metals as metal sulfides, pointing to biogenic sulfide formation. This was supported by microbial diversity analysis via 16S rRNA gene amplicon sequencing of samples from the water column, which showed the presence of sulfidogenic microbial taxa in FC and LZ. In the monimolimnion of FC, sequences affiliated with the putative sulfate-reducing genus Desulfomonile were dominant (58%), whereas in the more acidic and metal-enriched LZ, elemental sulfur-reducing Acidianus and Thermoplasma spp., and disproportionating Desulfocapsa spp. were more abundant. Furthermore, the detection of reads classified as methanogens and Desulfosporosinus spp., although at low relative abundance, represents one of the lowest pH values (2.9 in LZ) at which these taxa have been reported, to our knowledge. Analysis of potential biomarker lipids provided evidence that high levels of phosphocholine lipids with mixed acyl/ether glycerol core structures were associated with Desulfomonile, while ceramide lipids were characteristic of Microbacter in these environments. We propose that FC and LZ function as natural bioremediation reactors where metal sulfide precipitation is mediated by biosulfidogenesis starting from elemental sulfur reduction and disproportionation at an early stage (LZ), followed by sulfate reduction at a later stage (FC).
Collapse
Affiliation(s)
- Charlotte M. van der Graaf
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (S.A.S.); (A.J.M.S.)
| | - Javier Sánchez-España
- Geochemistry and Sustainable Mining Unit, Dept of Geological Resources, Spanish Geological Survey (IGME), Calera 1, Tres Cantos, 28760 Madrid, Spain;
| | - Iñaki Yusta
- Dept of Mineralogy and Petrology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain; (I.Y.); (A.I.)
| | - Andrey Ilin
- Dept of Mineralogy and Petrology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain; (I.Y.); (A.I.)
| | - Sudarshan A. Shetty
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (S.A.S.); (A.J.M.S.)
| | - Nicole J. Bale
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Landsdiep 4, 1797 SZ ‘t Horntje, The Netherlands; (N.J.B.); (L.V.)
| | - Laura Villanueva
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Landsdiep 4, 1797 SZ ‘t Horntje, The Netherlands; (N.J.B.); (L.V.)
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (S.A.S.); (A.J.M.S.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (S.A.S.); (A.J.M.S.)
| |
Collapse
|
7
|
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies. Curr Microbiol 2019; 77:657-674. [DOI: 10.1007/s00284-019-01771-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/09/2019] [Indexed: 11/27/2022]
|
8
|
Ly T, Wright JR, Weit N, McLimans CJ, Ulrich N, Tokarev V, Valkanas MM, Trun N, Rummel S, Grant CJ, Lamendella R. Microbial Communities Associated With Passive Acidic Abandoned Coal Mine Remediation. Front Microbiol 2019; 10:1955. [PMID: 31507566 PMCID: PMC6716070 DOI: 10.3389/fmicb.2019.01955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/08/2019] [Indexed: 02/01/2023] Open
Abstract
Acid mine drainage (AMD) is an environmental issue that can be characterized by either acidic or circumneutral pH and high dissolved metal content in contaminated waters. It is estimated to affect roughly 3000 miles of waterways within the state of Pennsylvania, with half being acidic and half being circumneutral. To negate the harmful effects of AMD, ∼300 passive remediation systems have been constructed within the state of Pennsylvania. In this study, we evaluated the microbial community structure and functional capability associated with Middle Branch passive remediation system in central PA. Sediment and water samples were collected from each area within the passive remediation system and its receiving stream. Environmental parameters associated with the remediation system were found to explain a significant amount of variation in microbial community structure. This study revealed shifts in microbial community structure from acidophilic bacteria in raw AMD discharge to a more metabolically diverse set of taxa (i.e., Acidimicrobiales, Rhizobiales, Chthoniobacteraceae) toward the end of the system. Vertical flow ponds and the aerobic wetland showed strong metabolic capability for sulfur redox environments. These findings are integral to the understanding of designing effective passive remediation systems because it provides insight as to how certain bacteria [sulfate reducing bacteria (SRBs) and sulfur oxidizing bacteria (SOBs)] are potentially contributing to a microbially mediated AMD remediation process. This study further supports previous investigations that demonstrated the effectiveness of SRBs in the process of removing sulfate and heavy metals from contaminated water.
Collapse
Affiliation(s)
- Truc Ly
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | | | - Nicholas Weit
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | | | - Nikea Ulrich
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | | | - Michelle M Valkanas
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Nancy Trun
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | | | | | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, PA, United States.,Wright Labs LLC., Huntingdon, PA, United States
| |
Collapse
|
9
|
Rodrigues C, Núñez-Gómez D, Silveira DD, Lapolli FR, Lobo-Recio MA. Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW). JOURNAL OF HAZARDOUS MATERIALS 2019; 375:330-338. [PMID: 30826155 DOI: 10.1016/j.jhazmat.2019.02.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/30/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
This study aims to know the basis of sulfate-reducing bacteria (SRB) and chitin source relationship for the development of a biotreatment system for mine-impacted water (MIW). The MIW consists of river water impacted by coal acid mine drainage (AMD), an extremely acid effluent, rich in sulfate and dissolved metal ions, with a high pollutant potential. Chitin was used as metal ion sorbent and biostimulant of SRB, whose anaerobic dissimilatory metabolism reduces sulfate to sulfide. Microcosms were built in an oxygen-free atmosphere using chitin from two different sources: commercial chitin and shrimp shell waste, which contains calcium carbonate, an acidity removal agent, in addition to chitin. The results indicate that the shrimp shell performs best in removing sulfate (99.75%), iron (99.04%), aluminum (98.47%), and manganese (100%) ions. The iron ion sorption kinetics of the sediments were also studied; pseudo-second order behavior was observed. High-throughput sequencing analysis revealed the present bacterial community and its abundance in the microcosms after 11 and 30 treatment days: SRB were detected but were not the majority. Thus, this research aims to contribute to the sustainable treatment MIW through the employment of an abundant and low-cost biomaterial.
Collapse
Affiliation(s)
- Caroline Rodrigues
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Dámaris Núñez-Gómez
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Daniele D Silveira
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Flávio R Lapolli
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - María A Lobo-Recio
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil; Department of Energy and Sustainability, Federal University of Santa Catarina (UFSC), 88900-000, Araranguá, SC, Brazil.
| |
Collapse
|
10
|
Tan S, Liu J, Fang Y, Hedlund BP, Lian ZH, Huang LY, Li JT, Huang LN, Li WJ, Jiang HC, Dong HL, Shu WS. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. THE ISME JOURNAL 2019; 13:2044-2057. [PMID: 30962514 PMCID: PMC6776010 DOI: 10.1038/s41396-019-0415-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/15/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022]
Abstract
Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs across Southeast China correlated strongly with ferrous iron. Reconstructed metabolic pathways and gene expression profiles showed that they were likely facultatively anaerobic autotrophs capable of nitrogen fixation. In addition to dissimilatory sulfate reduction, encoded by dsrAB, dsrD, dsrL, and dsrEFH genes, these microorganisms might also oxidize sulfide, depending on oxygen concentration and/or oxidation reduction potential. Several genes with homology to those involved in iron metabolism were also identified, suggesting their potential role in iron cycling. In addition, the expression of abundant resistance genes revealed the mechanisms of adaptation and response to the extreme environmental stresses endured by these organisms in the AMD environment. These findings shed light on the distribution, diversity, and potential ecological role of the new order Ca. Acidulodesulfobacterales in nature.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jun Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA
| | - Yun Fang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Guangdong Magigene Biotechnology Co. Ltd., 510000, Guangzhou, China
| | - Li-Ying Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hai-Liang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083, Beijing, China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
11
|
Giordani A, Hayashi EA, Rodriguez RP, Damasceno LHS, Azevedo H, Brucha G. POTENTIAL OF AUTOCHTHONOUS SULFATE-REDUCING MICROBIAL COMMUNITIES FOR TREATING ACID MINE DRAINAGE IN A BENCH-SCALE SULFIDOGENIC REACTOR. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20170662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Martínez-Cruz M, de Moor JM, Pieper DH, Chavarría M. Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO 2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica. Extremophiles 2019; 23:177-187. [PMID: 30600357 DOI: 10.1007/s00792-018-01072-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Here we report the chemical and microbial characterization of the surface water of a CO2-rich hydrothermal vent known in Costa Rica as Borbollones, located at Tenorio Volcano National Park. The Borbollones showed a temperature surrounding 60 °C, a pH of 2.4 and the gas released has a composition of ~ 97% CO2, ~ 0.07% H2S, ~ 2.3% N2 and ~ 0.12% CH4. Other chemical species such as sulfate and iron were found at high levels with respect to typical fresh water bodies. Analysis by 16S rRNA gene metabarcoding revealed that in Borbollones predominates an archaeon from the order Thermoplasmatales and one bacterium from the genus Sulfurimonas. Other sulfur- (genera Thiomonas, Acidithiobacillus, Sulfuriferula, and Sulfuricurvum) and iron-oxidizing bacteria (genera Sideroxydans, Gallionella, and Ferrovum) were identified. Our results show that CO2-influenced surface water of Borbollones contains microorganisms that are usually found in acid rock drainage environments or sulfur-rich hydrothermal vents. To our knowledge, this is the first microbiological characterization of a CO2-dominated hydrothermal spring from Central America and expands our understanding of those extreme ecosystems.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Institute of Microbiology, Technical University of Braunschweig, 38106, Brunswick, Germany.,Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany.,Molecular Bacteriology Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - María Martínez-Cruz
- Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), 2386-3000, Heredia, Costa Rica
| | - J Maarten de Moor
- Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), 2386-3000, Heredia, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica. .,Escuela de Química, Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, 11501-2060, San José, Costa Rica. .,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, 11501-2060, San José, Costa Rica.
| |
Collapse
|
13
|
Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P. Low-Abundance Members of the Firmicutes Facilitate Bioremediation of Soil Impacted by Highly Acidic Mine Drainage From the Malanjkhand Copper Project, India. Front Microbiol 2018; 9:2882. [PMID: 30619102 PMCID: PMC6297179 DOI: 10.3389/fmicb.2018.02882] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
Sulfate- and iron-reducing heterotrophic bacteria represented minor proportion of the indigenous microbial community of highly acidic, oligotrophic acid mine drainage (AMD), but they can be successfully stimulated for in situ bioremediation of an AMD impacted soil (AIS). These anaerobic microorganisms although played central role in sulfate- and metal-removal, they remained inactive in the AIS due to the paucity of organic carbon and extreme acidity of the local environment. The present study investigated the scope for increasing the abundance and activity of inhabitant sulfate- and iron-reducing bacterial populations of an AIS from Malanjkhand Copper Project. An AIS of pH 3.5, high soluble SO4 2- (7838 mg/l) and Fe (179 mg/l) content was amended with nutrients (cysteine and lactate). Thorough geochemical analysis, 16S rRNA gene amplicon sequencing and qPCR highlighted the intrinsic metabolic abilities of native bacteria in AMD bioremediation. Following 180 days incubation, the nutrient amended AIS showed marked increase in pH (to 6.6) and reduction in soluble -SO4 2- (95%), -Fe (50%) and other heavy metals. Concomitant to physicochemical changes a vivid shift in microbial community composition was observed. Members of the Firmicutes present as a minor group (1.5% of total community) in AIS emerged as the single most abundant taxon (∼56%) following nutrient amendments. Organisms affiliated to Clostridiaceae, Peptococcaceae, Veillonellaceae, Christensenellaceae, Lachnospiraceae, Bacillaceae, etc. known for their fermentative, iron and sulfate reducing abilities were prevailed in the amended samples. qPCR data corroborated with this change and further revealed an increase in abundance of dissimilatory sulfite reductase gene (dsrB) and specific bacterial taxa. Involvement of these enhanced populations in reductive processes was validated by further enrichments and growth in sulfate- and iron-reducing media. Amplicon sequencing of these enrichments confirmed growth of Firmicutes members and proved their sulfate- and iron-reduction abilities. This study provided a better insight on ecological perspective of Firmicutes members within the AMD impacted sites, particularly their involvement in sulfate- and iron-reduction processes, in situ pH management and bioremediation.
Collapse
Affiliation(s)
- Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Avishek Dutta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayeeta Sarkar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mruganka Kumar Panigrahi
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
14
|
Mardanov AV, Beletskii AV, Ivasenko DA, Pimenov NV, Karnachuk OV, Ravin NV. Sulfate-reducing bacteria in the microbial community of acidic drainage from a gold deposit tailing storage. Microbiology (Reading) 2017. [DOI: 10.1134/s002626171702014x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E, Rojas L, Cambronero JC, Pieper DH, Timmis KN, Chavarría M. Pristine but metal-rich Río Sucio (Dirty River) is dominated by Gallionella and other iron-sulfur oxidizing microbes. Extremophiles 2016; 21:235-243. [PMID: 27933457 DOI: 10.1007/s00792-016-0898-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022]
Abstract
Whether the extreme conditions of acidity and heavy metal pollution of streams and rivers originating in pyritic formations are caused primarily by mining activities or by natural activities of metal-oxidizing microbes living within the geological formations is a subject of considerable controversy. Most microbiological studies of such waters have so far focused on acid mine drainage sites, which are heavily human-impacted environments, so it has been problematic to eliminate the human factor in the question of the origin of the key metal compounds. We have studied the physico-chemistry and microbiology of the Río Sucio in the Braulio Carrillo National Park of Costa Rica, 22 km from its volcanic rock origin. Neither the remote origin, nor the length of the river to the sampling site, have experienced human activity and are thus pristine. The river water had a characteristic brownish-yellow color due to high iron-dominated minerals, was slightly acidic, and rich in chemolithoautotrophic iron- and sulfur-oxidizing bacteria, dominated by Gallionella spp. Río Sucio is thus a natural acid-rock drainage system whose metal-containing components are derived primarily from microbial activities.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Institute of Microbiology, Technical University of Braunschweig, 38106, Brunswick, Germany
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Fernando Puente-Sánchez
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Eduardo Libby
- Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica
| | - Leonardo Rojas
- Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica
| | - Juan Carlos Cambronero
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University of Braunschweig, 38106, Brunswick, Germany
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica.
- Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica.
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica.
| |
Collapse
|
16
|
Torregrosa-Crespo J, Martínez-Espinosa RM, Esclapez J, Bautista V, Pire C, Camacho M, Richardson DJ, Bonete MJ. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study. Adv Microb Physiol 2016; 68:41-85. [PMID: 27134021 DOI: 10.1016/bs.ampbs.2016.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.
Collapse
Affiliation(s)
| | | | - J Esclapez
- Universidad de Alicante, Alicante, Spain
| | - V Bautista
- Universidad de Alicante, Alicante, Spain
| | - C Pire
- Universidad de Alicante, Alicante, Spain
| | - M Camacho
- Universidad de Alicante, Alicante, Spain
| | | | - M J Bonete
- Universidad de Alicante, Alicante, Spain
| |
Collapse
|
17
|
Mingo FS, Diekert G, Studenik S. Enrichment of Desulfitobacterium spp. from forest and grassland soil using the O-demethylation of phenyl methyl ethers as a growth-selective process. Microbiology (Reading) 2016; 162:224-235. [DOI: 10.1099/mic.0.000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Felix Sebastian Mingo
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Sandra Studenik
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
18
|
Microbially influenced corrosion communities associated with fuel-grade ethanol environments. Appl Microbiol Biotechnol 2015; 99:6945-57. [PMID: 26092755 PMCID: PMC4513208 DOI: 10.1007/s00253-015-6729-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023]
Abstract
Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these “newer fuels” as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.
Collapse
|
19
|
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 2015; 6:475. [PMID: 26074887 PMCID: PMC4448039 DOI: 10.3389/fmicb.2015.00475] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.
Collapse
Affiliation(s)
| | - Ana I. Peláez
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | - Victoria Mesa
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | - Jesús Sánchez
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | | | - Manuel Ferrer
- Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Institute of CatalysisMadrid, Spain
| |
Collapse
|
20
|
Río tinto: a geochemical and mineralogical terrestrial analogue of Mars. Life (Basel) 2014; 4:511-34. [PMID: 25370383 PMCID: PMC4206857 DOI: 10.3390/life4030511] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 11/24/2022] Open
Abstract
The geomicrobiological characterization of the water column and sediments of Río Tinto (Huelva, Southwestern Spain) have proven the importance of the iron and the sulfur cycles, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals), but also in maintaining the high level of microbial diversity detected in the basin. It has been proven that the extreme acidic conditions of Río Tinto basin are not the product of 5000 years of mining activity in the area, but the consequence of an active underground bioreactor that obtains its energy from the massive sulfidic minerals existing in the Iberian Pyrite Belt. Two drilling projects, MARTE (Mars Astrobiology Research and Technology Experiment) (2003–2006) and IPBSL (Iberian Pyrite Belt Subsurface Life Detection) (2011–2015), were developed and carried out to provide evidence of subsurface microbial activity and the potential resources that support these activities. The reduced substrates and the oxidants that drive the system appear to come from the rock matrix. These resources need only groundwater to launch diverse microbial metabolisms. The similarities between the vast sulfate and iron oxide deposits on Mars and the main sulfide bioleaching products found in the Tinto basin have given Río Tinto the status of a geochemical and mineralogical Mars terrestrial analogue.
Collapse
|
21
|
Kruse T, Levisson M, de Vos WM, Smidt H. vanI: a novel D-Ala-D-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense. Microb Biotechnol 2014; 7:456-66. [PMID: 25042042 PMCID: PMC4229326 DOI: 10.1111/1751-7915.12139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/25/2014] [Indexed: 01/28/2023] Open
Abstract
The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A chromosomal vancomycin resistance gene cluster was previously described for the anaerobic Desulfitobacterium hafniense Y51. We demonstrate that this gene cluster, characterized by its d-Ala-d-Lac ligase-encoding vanI gene, is present in all strains of D. hafniense, D. chlororespirans and some strains of Desulfosporosinus spp. This gene cluster was not found in vancomycin-sensitive Desulfitobacterium or Desulfosporosinus spp., and we show that this antibiotic resistance can be exploited as an intrinsic selection marker for Desulfitobacterium hafniense and D. chlororespirans. The gene cluster containing vanI is phylogenetically only distantly related with those described from soil and gut bacteria, but clusters instead with vancomycin resistance genes found within the phylum Actinobacteria that include several vancomycin-producing bacteria. It lacks a vanH homologue, encoding a D-lactate dehydrogenase, previously thought to always be present within vancomycin resistance gene clusters. The location of vanH outside the resistance gene cluster likely hinders horizontal gene transfer. Hence, the vancomycin resistance cluster in D. hafniense should be regarded a novel one that we here designated vanI after its unique d-Ala-d-Lac ligase.
Collapse
Affiliation(s)
- Thomas Kruse
- Laboratory of Microbiology, Wageningen University, Wageningen, HB 6703, The Netherlands
| | | | | | | |
Collapse
|
22
|
Sánchez-Andrea I, Sanz JL, Bijmans MFM, Stams AJM. Sulfate reduction at low pH to remediate acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:98-109. [PMID: 24444599 DOI: 10.1016/j.jhazmat.2013.12.032] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 05/25/2023]
Abstract
Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.
Collapse
Affiliation(s)
- Irene Sánchez-Andrea
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | - Jose Luis Sanz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Martijn F M Bijmans
- Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Microbial Diversity in Acidic Anaerobic Sediments at the Geothermal Caviahue-Copahue System, Argentina. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.825.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we have examined the bacterial diversity from the hot spring sediment Agua del Limón (AL1) present at the geothermal Caviahue-Copahue system using a combination of molecular and cultivation techniques, with particular emphasis on indigenous anaerobic prokaryotes. Microorganisms involved in the iron (Acidithiobacillus ferrooxidansandLeptospirillumspp.) and sulphur (Acidithiobacillusspp., Thermotogales-like bacteria,Thiomonassp., andDesulfurellasp.) cycles were identified in the clone library. Although no obvious sulfate-reducing bacteria were detected by culture-independent techniques, several isolates related to the mesophilic, spore-forming sulfate-reducer"Desulfobacillus acidavidus"strain CL4 were isolated at 30°C and 40°C. The 16S rRNA gene of another isolate showed 94% similarity toDesulfotomaculum thermobenzoicum. Sulfate-reducing enrichment cultures of the Copahue samples were also dominated by"Dsb. acidavidus"CL4.
Collapse
|