1
|
Hassan S, Mushtaq M, Ganiee SA, Zaman M, Yaseen A, Shah AJ, Ganai BA. Microbial oases in the ice: A state-of-the-art review on cryoconite holes as diversity hotspots and their scientific connotations. ENVIRONMENTAL RESEARCH 2024; 252:118963. [PMID: 38640991 DOI: 10.1016/j.envres.2024.118963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cryoconite holes, small meltwater pools on the surface of glaciers and ice sheets, represent extremely cold ecosystems teeming with diverse microbial life. Cryoconite holes exhibit greater susceptibility to the impacts of climate change, underlining the imperative nature of investigating microbial communities as an essential module of polar and alpine ecosystem monitoring efforts. Microbes in cryoconite holes play a critical role in nutrient cycling and can produce bioactive compounds, holding promise for industrial and pharmaceutical innovation. Understanding microbial diversity in these delicate ecosystems is essential for effective conservation strategies. Therefore, this review discusses the microbial diversity in these extreme environments, aiming to unveil the complexity of their microbial communities. The current study envisages that cryoconite holes as distinctive ecosystems encompass a multitude of taxonomically diverse and functionally adaptable microorganisms that exhibit a rich microbial diversity and possess intricate ecological functions. By investigating microbial diversity and ecological functions of cryoconite holes, this study aims to contribute valuable insights into the broader field of environmental microbiology and enhance further understanding of these ecosystems. This review seeks to provide a holistic overview regarding the formation, evolution, characterization, and molecular adaptations of cryoconite holes. Furthermore, future research directions and challenges underlining the need for long-term monitoring, and ethical considerations in preserving these pristine environments are also provided. Addressing these challenges and resolutely pursuing future research directions promises to enrich our comprehension of microbial diversity within cryoconite holes, revealing the broader ecological and biogeochemical implications. The inferences derived from the present study will provide researchers, ecologists, and policymakers with a profound understanding of the significance and utility of cryoconite holes in unveiling the microbial diversity and its potential applications.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Misba Mushtaq
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
2
|
Singh P, Singh SM, Segawa T, Singh PK. Bacterial diversity and biopotentials of Hamtah glacier cryoconites, Himalaya. Front Microbiol 2024; 15:1362678. [PMID: 38751720 PMCID: PMC11094618 DOI: 10.3389/fmicb.2024.1362678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Cryoconite is a granular structure present on the glaciers and ice sheets found in polar regions including the Himalayas. It is composed of organic and inorganic matter which absorb solar radiations and reduce ice surface albedo, therefore impacting the melting and retreat of glaciers. Though climate warming has a serious impact on Himalayan glaciers, the biodiversity of sub-glacier ecosystems is poorly understood. Moreover, cryoconite holes are unique habitats for psychrophile biodiversity hotspots in the NW Himalayas, but unfortunately, studies on the microbial diversity of such habitats remain elusive. Therefore, the current study was designed to explore the bacterial diversity of the Hamtah Glacier Himalaya using both culturable and non-culturable approaches. The culturable bacterial count ranged from 2.0 × 103 to 8.8 × 105 colony-forming units (CFUs)/g at the different locations of the glacier. A total of 88 bacterial isolates were isolated using the culturable approach. Based on the 16S ribosomal RNA gene (16S rRNA), the identified species belong to seven genera, namely, Cryobacterium, Duganella, Janthinobacterium, Pseudomonas, Peribacillus, Psychrobacter, and Sphingomonas. In the non-culturable approach, high-throughput sequencing of 16S rRNA genes (using MiSeq) showed unique bacterial community profiles and represented 440 genera belonging to 20 phyla, namely, Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Acidobacteria, Planctomycetes, Cyanobacteria, Verrucomicrobia, Spirochaetes, Elusimicrobia, Armatimonadetes, Gemmatimonadetes, Deinococcus-Thermus, Nitrospirae, Chlamydiae, Chlorobi, Deferribacteres, Fusobacteria, Lentisphaerae, and others. High relative abundances of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were observed in the samples. Phototrophic (Cyanobacteria and Chloroflexi) and nitrifier (Nitrospirae) in bacterial populations indicated sustenance of the micro-ecosystem in the oligotrophic glacier environment. The isolates varied in their phenotypic characteristics, enzyme activities, and antibiotic sensitivity. Furthermore, the fatty acid profiles of bacterial isolates indicate the predominance of branched fatty acids. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a major proportion of the total fatty acid composition. High cold-adapted enzyme activities such as lipase and cellulase expressed by Cryobacterium arcticum (KY783365) and protease and cellulase activities by Pseudomonas sp. strains (KY783373, KY783377-79, KY783382) provide evidence of the possible applications of these organisms. Additionally, antibiotic tests indicated that most isolates were sensitive to antibiotics. In conclusion, the present study contributed for the first time to bacterial diversity and biopotentials of cryoconites of Hamtah Glacier, Himalayas. Furthermore, the cold-adapted enzymes and polyunsaturated fatty acids (PUFAs) may provide an opportunity for biotechnology in the Himalayas. Inductively coupled plasma mass spectrometry (ICPMS) analyses showed the presence of several elements in cryoconites, providing a clue for the accelerating melting and retreating of the Hamtah glacier.
Collapse
Affiliation(s)
- Purnima Singh
- Indian Institute of Technology, Banaras Hindu University (IIT-BHU), Varanasi, India
| | | | - Takahiro Segawa
- National Institute of Polar Research, Tachikawa-shi, Tokyo, Japan
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College, Mizoram University (A Central University), Aizawl, India
| |
Collapse
|
3
|
Haque MK, Uddin M, Kormoker T, Ahmed T, Zaman MRU, Rahman MS, Rahman MA, Hossain MY, Rana MM, Tsang YF. Occurrences, sources, fate and impacts of plastic on aquatic organisms and human health in global perspectives: What Bangladesh can do in future? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5531-5556. [PMID: 37382719 DOI: 10.1007/s10653-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Bangladesh is not an exception to the growing global environmental problem of plastic pollution. Plastics have been deemed a blessing for today's world thanks to their inexpensive production costs, low weight, toughness, and flexibility, but poor biodegradability and massive misuse of plastics are to blame for widespread contamination of the environmental components. Plastic as well as microplastic pollution and its adverse consequences have attracted significant investigative attention all over the world. Plastic pollution is a rising concern in Bangladesh, but scientific studies, data, and related information are very scarce in numerous areas of the plastic pollution problem. The current study examined the effects of plastic and microplastic pollution on the environment and human health, and it examined Bangladesh's existing knowledge of plastic pollution in aquatic ecosystems in light of the rapidly expanding international research in this field. We also made an effort to investigate the current shortcomings in Bangladesh's assessment of plastic pollution. This study proposed several management approaches to the persistent plastic pollution problem by analyzing studies from industrialized and emerging countries. Finally, this work pushed investigators to investigate Bangladesh's plastic contamination thoroughly and develop guidelines and policies to address the issue.
Collapse
Affiliation(s)
- Md Kamrul Haque
- Institute of Bangabandhu War of Liberation Bangladesh Studies, National University, Dhaka, 1209, Bangladesh
| | - Minhaz Uddin
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tapos Kormoker
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong.
| | - Tareq Ahmed
- Institute of Structural and Molecular Biology, Department of Biological Science, University of London, Birkbeck, UK
| | - Md Rahat Uz Zaman
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - M Safiur Rahman
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Shahbag, Dhaka, 1000, Bangladesh
| | - Md Ashekur Rahman
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Yeamin Hossain
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Masud Rana
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong
| |
Collapse
|
4
|
Purohit A, Pawar L, Yadav SK. Structural and functional insights of a cold-adaptive β-glucosidase with very high glucose tolerance from Microbacterium sp. CIAB417. Enzyme Microb Technol 2023; 169:110284. [PMID: 37406591 DOI: 10.1016/j.enzmictec.2023.110284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
A gene glu1 (WP_243232135.1) coding for β-glucosidase from the genome of Microbacterium sp. CIAB417 was characterized for its cold adaptive nature and tolerance to high levels of glucose and ethanol. The phylogenetic analysis suggested the close association of glu1 with a similar gene from a mesophilic bacterium Microbacterium indicum. The purified recombinant GLU1 displayed its optimal activity and stability at pH 5 and temperature 30ᴼC. Additionally, the presence of L3 loop in GLU1 suggested its cold adaptive nature. The glucose tolerant Gate keeper residues (Leu 174 & Trp 169) with a distance of ∼ 6.953 Å between them was also predicted in GLU1. The GLU1 enzyme showed ≥ 95% and ≥ 40% relative activity in the presence of 5 M glucose and 20% ethanol. The Vmax, Km, and Kcat values of GLU1 for cellobiose substrate were observed to be 45.22 U/mg, 3.5 mM, and 41.0157 s-1, respectively. The GLU1 was found to be highly efficient in hydrolysis of celloologosaccharides (C2-C5), lactose and safranal picrocrocin into glucose. Hence, cold adaptive GLU1 with very high glucose and ethanol tolerance could be very useful in bio-refinery, dairy, and flavor industries.
Collapse
Affiliation(s)
- Anjali Purohit
- Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Lata Pawar
- Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Sudesh Kumar Yadav
- Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali 140306, Punjab, India; Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India.
| |
Collapse
|
5
|
Yamada R, Han SR, Park H, Oh TJ. Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. Microorganisms 2023; 11:1480. [PMID: 37374983 DOI: 10.3390/microorganisms11061480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes.
Collapse
Affiliation(s)
- Ryoichi Yamada
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
6
|
Yang Z, Huang Z, Wu Q, Tang X, Huang Z. Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst. Int J Mol Sci 2023; 24:ijms24108532. [PMID: 37239878 DOI: 10.3390/ijms24108532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The modern biotechnology industry has a demand for macromolecules that can function in extreme environments. One example is cold-adapted proteases, possessing advantages such as maintaining high catalytic efficiency at low temperature and low energy input during production and inactivation. Meanwhile, cold-adapted proteases are characterised by sustainability, environmental protection, and energy conservation; therefore, they hold significant economic and ecological value regarding resource utilisation and the global biogeochemical cycle. Recently, the development and application of cold-adapted proteases have gained gaining increasing attention; however, their applications potential has not yet been fully developed, which has seriously restricted the promotion and application of cold-adapted proteases in the industry. This article introduces the source, related enzymology characteristics, cold resistance mechanism, and the structure-function relationship of cold-adapted proteases in detail. This is in addition to discussing related biotechnologies to improve stability, emphasise application potential in clinical medical research, and the constraints of the further developing of cold-adapted proteases. This article provides a reference for future research and the development of cold-adapted proteases.
Collapse
Affiliation(s)
- Zhengfeng Yang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
| | - Zhendi Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Xianghua Tang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Zunxi Huang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650000, China
| |
Collapse
|
7
|
Nguyen LH, Nguyen BS, Le DT, Alomar TS, AlMasoud N, Ghotekar S, Oza R, Raizada P, Singh P, Nguyen VH. A concept for the biotechnological minimizing of emerging plastics, micro- and nano-plastics pollutants from the environment: A review. ENVIRONMENTAL RESEARCH 2023; 216:114342. [PMID: 36181894 DOI: 10.1016/j.envres.2022.114342] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Plastics, micro- and nano-plastics pollution are undoubtedly a severe and crucial ecological threat due to the durability of plastics and their destructive impacts on humans and wildlife. Most scientific investigations have addressed the classification, types, distribution, ingestion, fate, impacts, degradation, and various adverse effect of plastics. Heretofore, scanty reports have addressed implementing strategies for the remediation and mitigation of plastics. Therefore, in this paper, we review the current studies on the degradation of plastics, micro- and nano-plastics aided by microorganisms, and explore the relevant degradation properties and mechanisms. Diverse microorganisms are classified, such as bacteria, fungi, algae, cyanobacteria, wax worms, and enzymes that can decompose various plastics. Furthermore, bio-degradation is influenced by microbial features and environmental parameters; therefore, the ecological factors affecting plastic degradation and the resulting degradation consequences are discussed. In addition, the mechanisms underlying microbial-mediated plastic degradation are carefully studied. Finally, upcoming research directions and prospects for plastics degradation employing microorganisms are addressed. This review covers a comprehensive overview of the microorganism-assisted degradation of plastics, micro- and nano-plastics, and serves as a resource for future research into sustainable plastics pollution management methods.
Collapse
Affiliation(s)
- Lan Huong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Ba-Son Nguyen
- Department of Renewable Energy, HCMC University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Duy-Tien Le
- Faculty of Pharmacy, Lac Hong University, Dong Nai Province, Viet Nam.
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, 422 605, Maharashtra, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Chengalpattu District, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
8
|
Life from a Snowflake: Diversity and Adaptation of Cold-Loving Bacteria among Ice Crystals. CRYSTALS 2022. [DOI: 10.3390/cryst12030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Incredible as it is, researchers have now the awareness that even the most extreme environment includes special habitats that host several forms of life. Cold environments cover different compartments of the cryosphere, as sea and freshwater ice, glaciers, snow, and permafrost. Although these are very particular environmental compartments in which various stressors coexist (i.e., freeze–thaw cycles, scarce water availability, irradiance conditions, and poorness of nutrients), diverse specialized microbial communities are harbored. This raises many intriguing questions, many of which are still unresolved. For instance, a challenging focus is to understand if microorganisms survive trapped frozen among ice crystals for long periods of time or if they indeed remain metabolically active. Likewise, a look at their site-specific diversity and at their putative geochemical activity is demanded, as well as at the equally interesting microbial activity at subzero temperatures. The production of special molecules such as strategy of adaptations, cryoprotectants, and ice crystal-controlling molecules is even more intriguing. This paper aims at reviewing all these aspects with the intent of providing a thorough overview of the main contributors in investigating the microbial life in the cryosphere, touching on the themes of diversity, adaptation, and metabolic potential.
Collapse
|
9
|
Mukhia S, Kumar A, Kumari P, Kumar R, Kumar S. Multilocus sequence based identification and adaptational strategies of Pseudomonas sp. from the supraglacial site of Sikkim Himalaya. PLoS One 2022; 17:e0261178. [PMID: 35073328 PMCID: PMC8786180 DOI: 10.1371/journal.pone.0261178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms inhabiting the supraglacial ice are biotechnologically significant as they are equipped with unique adaptive features in response to extreme environmental conditions of high ultraviolet radiations and frequent freeze-thaw. In the current study, we obtained eleven strains of Pseudomonas from the East Rathong supraglacial site in Sikkim Himalaya that showed taxonomic ambiguity in terms of species affiliation. Being one of the most complex and diverse genera, deciphering the correct taxonomy of Pseudomonas species has always been challenging. So, we conducted multilocus sequence analysis (MLSA) using five housekeeping genes, which concluded the taxonomic assignment of these strains to Pseudomonas antarctica. This was further supported by the lesser mean genetic distances with P. antarctica (0.73%) compared to P. fluorescens (3.65%), and highest ANI value of ~99 and dDDH value of 91.2 of the representative strains with P. antarctica PAMC 27494. We examined the multi-tolerance abilities of these eleven Pseudomonas strains. Indeed the studied strains displayed significant tolerance to freezing for 96 hours compared to the mesophilic control strain, while except for four strains, seven strains exhibited noteworthy tolerance to UV-C radiations. The genome-based findings revealed many cold and radiation resistance-associated genes that supported the physiological findings. Further, the bacterial strains produced two or more cold-active enzymes in plate-based assays. Owing to the polyadaptational attributes, the strains ERGC3:01 and ERGC3:05 could be most promising for bioprospection.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Poonam Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
10
|
Chattopadhyay I. Role of microbiome and biofilm in environmental plastic degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Farooq S, Nazir R, Ganai BA, Mushtaq H, Dar GJ. Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring. Biomolecules 2021; 11:biom11101488. [PMID: 34680121 PMCID: PMC8533204 DOI: 10.3390/biom11101488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022] Open
Abstract
The continual plastic accumulation in the environment and the hazardous consequences determine the interest in thermophiles as possible effective plastic degraders, due to their unique metabolic mechanisms and change of plastic properties at elevated temperatures. PCL is one of major biodegradable plastics with promising application to replace existing non-biodegradable polymers. Metagenomic analysis of the phylogenetic diversity in plastic contaminated area of Marikostinovo hot spring, Bulgaria revealed a higher number taxonomic groups (11) in the sample enriched without plastic (Marikostinovo community, control sample, MKC-C) than in that enriched in the presence of poly-ε-caprolactone (PCL) (MKC-P), (7). A strong domination of the phylum Proteobacteria was observed for MKC-C, while the dominant phyla in MKC-P were Deinococcus-Thermus and Firmicutes. Among the strains isolated from MKC-P, the highest esterase activity was registered for Brevibacillus thermoruber strain 7 at 55 °C. Its co-cultivation with another isolate resulted in ~10% increase in enzyme activity. During a 28-day biodegradation process, a decrease in PCL molecular weight and weight loss were established resulting in 100% degradation by MKC-P and 63.6% by strain 7. PCL degradation intermediate profiles for MKC-P and pure strain were similar. Broken plastic pieces from PCL surface and formation of a biofilm by MKC-P were observed by SEM, while the pure strain caused significant deformation of PCL probes without biofilm formation.
Collapse
|
13
|
Abstract
AbstractThe research was focused on the level and distribution of 90Sr in various parts of the terrestrial environment of Spitsbergen. The mean activity concentrations were noted lower in peats and soils than in cryoconite. Analysis of vertical variation of 90Sr for soils and peats as well as isotopic ratios of 137Cs/90Sr and 239+240Pu/90Sr for cryoconite clearly showed substantial migration or depletion of the considered radionuclide. Due to the large dispersion of isotopic signatures, the 90Sr provenance was difficult to identify in the examined region. However, observed high mobility of the 90Sr might indicate the global fallout origin.
Collapse
|
14
|
Engineering Burkholderia xenovorans LB400 BphA through Site-Directed Mutagenesis at Position 283. Appl Environ Microbiol 2020; 86:AEM.01040-20. [PMID: 32709719 DOI: 10.1128/aem.01040-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Biphenyl dioxygenase (BPDO), which is a Rieske-type oxygenase (RO), catalyzes the initial dioxygenation of biphenyl and some polychlorinated biphenyls (PCBs). In order to enhance the degradation ability of BPDO in terms of a broader substrate range, the BphAES283M, BphAEp4-S283M, and BphAERR41-S283M variants were created from the parent enzymes BphAELB400, BphAEp4, and BphAERR41, respectively, by a substitution at one residue, Ser283Met. The results of steady-state kinetic parameters show that for biphenyl, the k cat/Km values of BphAES283M, BphAEp4-S283M, and BphAERR41-S283M were significantly increased compared to those of their parent enzymes. Meanwhile, we determined the steady-state kinetics of BphAEs toward highly chlorinated biphenyls. The results suggested that the Ser283Met substitution enhanced the catalytic activity of BphAEs toward 2,3',4,4'-tetrachlorobiphenyl (2,3',4,4'-CB), 2,2',6,6'-tetrachlorobiphenyl (2,2',6,6'-CB), and 2,3',4,4',5-pentachlorobiphenyl (2,3',4,4',5-CB). We compared the catalytic reactions of BphAELB400 and its variants toward 2,2'-dichlorobiphenyl (2,2'-CB), 2,5-dichlorobiphenyl (2,5-CB), and 2,6-dichlorobiphenyl (2,6-CB). The biochemical data indicate that the Ser283Met substitution alters the orientation of the substrate inside the catalytic site and, thereby, its site of hydroxylation, and this was confirmed by docking experiments. We also assessed the substrate ranges of BphAELB400 and its variants with degradation activity. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the 3-6-chlorinated biphenyls, which are generally very poorly oxidized by most dioxygenases. Collectively, the present work showed a significant effect of mutation Ser283Met on substrate specificity/regiospecificity in BPDO. These will certainly be meaningful elements for understanding the effect of the residue corresponding to position 283 in other Rieske oxygenase enzymes.IMPORTANCE The segment from positions 280 to 283 in BphAEs is located at the entrance of the catalytic pocket, and it shows variation in conformation. In previous works, results have suggested but never proved that residue Ser283 of BphAELB400 might play a role in substrate specificity. In the present paper, we found that the Ser283Met substitution significantly increased the specificity of the reaction of BphAE toward biphenyl, 2,3',4,4'-CB, 2,2',6,6'-CB, and 2,3',4,4',5-CB. Meanwhile, the Ser283Met substitution altered the regiospecificity of BphAE toward 2,2'-dichlorobiphenyl and 2,6-dichlorobiphenyl. Additionally, this substitution extended the range of PCBs metabolized by the mutated BphAE. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the more highly chlorinated biphenyls (3 to 6 chlorines), which are generally very poorly oxidized by most dioxygenases. We used modeled and docked enzymes to identify some of the structural features that explain the new properties of the mutant enzymes. Altogether, the results of this study provide better insights into the mechanisms by which BPDO evolves to change and/or expand its substrate range and its regiospecificity.
Collapse
|
15
|
Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic. SUSTAINABILITY 2020. [DOI: 10.3390/su12166477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To understand the microbial composition and diversity patterns, cryoconite granules were collected from two geographical areas, i.e., Nepali Himalaya and Greenland, Arctic. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of the four glaciers. The total 13 species of bacteria such as Bacillus aryabhattai, Bacillus simplex, Brevundimonas vesicularis, Cryobacterium luteum, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Glaciihabitans tibetensis, Leifsonia kafniensis, Paracoccus limosus, Polaromonas glacialis, Sporosarcina globispora, Staphylococcus saprophyticus, Variovorax ginsengisoli, and 4 species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Dothideomycetes sp., Helotiales sp. were recorded from Nepali Himalaya. Among these, 12 species of bacteria and 4 species of fungi are new contributions to Himalaya. In contrast to this, six species of bacteria such as Bacillus cereus, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Enhydrobacter aerosaccus, Glaciihabitans tibetensis, Subtercola frigoramans, and nine species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Naganishia vaughanmartiniae, Piskurozyma fildesensis, Rhodotorula svalbardensis, Alatospora acuminata, Articulospora sp., Phialophora sp., Thelebolus microspores, and Dothideomycetes sp.), were recorded from Qaanaaq, Isunnguata Sermia and Thule glaciers, Greenland. Among these, five species of bacteria and seven species of fungi are new contributions to Greenland cryoconite. Microbial analyses indicate that the Nepali Himalayan cryoconite colonize higher numbers of microbial species compared to the Greenland cryoconite.
Collapse
|
16
|
Liu Y, Shen L, Zeng Y, Xing T, Xu B, Wang N. Genomic Insights of Cryobacterium Isolated From Ice Core Reveal Genome Dynamics for Adaptation in Glacier. Front Microbiol 2020; 11:1530. [PMID: 32765445 PMCID: PMC7381226 DOI: 10.3389/fmicb.2020.01530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/12/2020] [Indexed: 11/30/2022] Open
Abstract
Glacier is the dominant cold habitat in terrestrial environments, providing a model ecosystem to explore extremophilic strategies and study early lives on Earth. The dominant form of life in glaciers is bacteria. However, little is known about past evolutionary processes that bacteria underwent during adaptation to the cryosphere and the connection of their genomic traits to environmental stressors. Aiming to test the hypothesis that bacterial genomic content and dynamics are driven by glacial environmental stressors, we compared genomes of 21 psychrophilic Cryobacterium strains, including 14 that we isolated from three Tibetan ice cores, to their mesophilic counterparts from the same family Microbacteriaceae of Actinobacteria. The results show that psychrophilic Cryobacterium underwent more dynamic changes in genome content, and their genomes have a significantly higher number of genes involved in stress response, motility, and chemotaxis than their mesophilic counterparts (P < 0.05). The phylogenetic birth-and-death model imposed on the phylogenomic tree indicates a vast surge in recent common ancestor of psychrophilic Cryobacterium (gained the greatest number of genes by 1,168) after the division of the mesophilic strain Cryobacterium mesophilum. The expansion in genome content brought in key genes primarily of the categories “cofactors, vitamins, prosthetic groups, pigments,” “monosaccharides metabolism,” and “membrane transport.” The amino acid substitution rates of psychrophilic Cryobacterium strains are two orders of magnitude lower than those in mesophilic strains. However, no significantly higher number of cold shock genes was found in psychrophilic Cryobacterium strains, indicating that multi-copy is not a key factor for cold adaptation in the family Microbacteriaceae, although cold shock genes are indispensable for psychrophiles. Extensive gene acquisition and low amino acid substitution rate might be the strategies of psychrophilic Cryobacterium to resist low temperature, oligotrophy, and high UV radiation on glaciers. The exploration of genome evolution and survival strategies of psychrophilic Cryobacterium deepens our understanding of bacterial cold adaptation.
Collapse
Affiliation(s)
- Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yonghui Zeng
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tingting Xing
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.,College of Urban and Environmental Science, Northwest University, Xi'an, China
| |
Collapse
|
17
|
Ajith N, Arumugam S, Parthasarathy S, Manupoori S, Janakiraman S. Global distribution of microplastics and its impact on marine environment-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25970-25986. [PMID: 32382901 DOI: 10.1007/s11356-020-09015-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/22/2020] [Indexed: 05/18/2023]
Abstract
Microplastics are the major environmental health hazards spotted in almost all the marine habitats and biota of world. The earlier research on microplastics have mainly focused on studying abundance and distribution as well as impacts on organisms, while the existing review articles have reviewed on any one of the above aspects or the environmental fate of microplastics. The current review focuses on all the above facets thereby bringing out the incompleteness in information globally in the respective facets. Our findings suggest that among 192 countries of the world, only 22.9% (44) of the countries have carried out research regarding microplastics, while impacts on organisms have mostly targeted fish (38%), whereas studies on other highly affected organisms such as turtles (1%) are not well documented. Therefore, we suggest expanding research in all the above aspects of microplastics considering that there are several pristine marine environments and organisms that are yet unexplored. Quantifying research in these regards would enable to propose a microplastic threshold level and formulate control measures to reduce the use of plastics and its subsequent threat to the marine environment.
Collapse
Affiliation(s)
- Nithin Ajith
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608502, India
| | - Sundaramanickam Arumugam
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608502, India.
| | - Surya Parthasarathy
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608502, India
| | - Sathish Manupoori
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608502, India
| | - Sivamani Janakiraman
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608502, India
| |
Collapse
|
18
|
Thomas FA, Sinha RK, Krishnan KP. Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:135264. [PMID: 31848061 DOI: 10.1016/j.scitotenv.2019.135264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The bacterial community composition of a valley glacier in Svalbard, its pro-glacial channels, and the associated downstream fjord ecosystem was investigated so as to figure out the degree to which downslope transport of microbes from the glacier systems along a hydrological continuum impose an effect on the patterns of diversity in the fjord system. A combination of culture based and high-throughput amplicon sequencing approach was followed which resulted in significant variation (R = 0.873, p = 0.001) in the bacterial community structure between these ecosystems. Dominance of sequences belonging to class β-Proteobacteria was seen in the glacier snow, ice and melt waters (MW) while a relatively higher abundance of OTUs belonging to α-Proteobacteria and Verrucomicrobiae demarcated the fjord waters. Similarity percentage (SIMPER) analysis of the Operational Taxonomic Units (OTUs) showed that OTU 1,105,280 (9.15%) and OTU 331 (6.5%) belonging to Burkholderiaceae (β-proteobacteria) and OTU 101,660 (5.76%) and OTU 520 (5.07%) belonging to Rhodobacteraceae (α-proteobacteria) contributed maximum to the overall dissimilarity between the sampling sites. The bacterial community from the MWs were found to be true signatures of the glacier ecosystem while the Kongsfjorden bacterial fraction mostly represented heterotrophic marine taxa influenced by warm Atlantic waters and presence of organic matter. Significant presence of unknown taxa in the MWs suggests the need to study such unexplored, transient niches for a better understanding of the associated microbial processes. Among the various environmental parameters measured, nutrients (NO3- and SiO42-) were found to exhibit strong association with the MW bacterial community while temperature, trace metals, Cl- and SO42- ions were found to influence the fjord bacterial community. The significant differences in the bacterial community composition between the glacier and the fjord ecosystem suggest the unique nature of these systems which in turn is influenced by the associated environmental parameters.
Collapse
Affiliation(s)
- Femi Anna Thomas
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau Goa 403206, India
| | - Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
19
|
Valdespino-Castillo PM, Cerqueda-García D, Espinosa AC, Batista S, Merino-Ibarra M, Taş N, Alcántara-Hernández RJ, Falcón LI. Microbial distribution and turnover in Antarctic microbial mats highlight the relevance of heterotrophic bacteria in low-nutrient environments. FEMS Microbiol Ecol 2019; 94:5047302. [PMID: 29982398 DOI: 10.1093/femsec/fiy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/04/2018] [Indexed: 11/14/2022] Open
Abstract
Maritime Antarctica has shown the highest increase in temperature in the Southern Hemisphere. Under this scenario, biogeochemical cycles may be altered, resulting in rapid environmental change for Antarctic biota. Microbes that drive biogeochemical cycles often form biofilms or microbial mats in continental meltwater environments. Limnetic microbial mats from the Fildes Peninsula were studied using high-throughput 16S rRNA gene sequencing. Mat samples were collected from 15 meltwater stream sites, comprising a natural gradient from ultraoligotrophic glacier flows to meltwater streams exposed to anthropogenic activities. Our analyses show that microbial community structure differences between mats are explained by environmental NH4+, NO3-, DIN, soluble reactive silicon and conductivity. Microbial mats living under ultraoligotrophic meltwater conditions did not exhibit a dominance of cyanobacterial photoautotrophs, as has been documented for other Antarctic limnetic microbial mats. Instead, ultraoligotrophic mat communities were characterized by the presence of microbes recognized as heterotrophs and photoheterotrophs. This suggests that microbial capabilities for recycling organic matter may be a key factor to dwell in ultra-low nutrient conditions. Our analyses show that phylotype level assemblages exhibit coupled distribution patterns in environmental oligotrophic inland waters. The evaluation of these microbes suggests the relevance of reproductive and structural strategies to pioneer these psychrophilic ultraoligotrophic environments.
Collapse
Affiliation(s)
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Ana Cecilia Espinosa
- LANCIS, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Silvia Batista
- Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
| | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
20
|
Shen L, Liu Y, Wang N, Adhikari NP. Genomic Insights of Dyadobacter tibetensis Y620-1 Isolated from Ice Core Reveal Genomic Features for Succession in Glacier Environment. Microorganisms 2019; 7:E211. [PMID: 31336655 PMCID: PMC6680632 DOI: 10.3390/microorganisms7070211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
Glaciers have been recognized as biomes, dominated by microbial life. Many novel species have been isolated from glacier ecosystems, and their physiological features are well characterized. However, genomic features of bacteria isolated from the deep ice core are poorly understood. In this study, we performed a comparative genomic analysis to uncover the genomic features of strain Dyadobacter tibetensis Y620-1 isolated from a 59 m depth of the ice core drilled from a Tibetan Plateau glacier. Strain D. tibetensis Y620-1 had the smallest genome among the 12 cultured Dyadobacter strains, relatively low GC content, and was placed at the root position of the phylogenomic tree. The gene family based on a nonmetric multidimensional scaling (NMDS) plot revealed a clear separation of strain D. tibetensis Y620-1 from the reference strains. The genome of the deep ice core isolated strain contained the highest percentage of new genes. The definitive difference is that all genes required for the serine-glyoxylate cycle in one-carbon metabolism were only found in strain D. tibetensis Y620-1, but not in any of the reference strains. The placement of strain D. tibetensis Y620-1 in the root of the phylogenomic tree suggests that these new genes and functions are of ancient origin. All of these genomic features may contribute to the survival of D. tibetensis Y620-1 in the glacier.
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Urban and Environmental Science, Northwest University, Xian 710069, China
| | - Namita Paudel Adhikari
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Liu Q, Liu HC, Zhou YG, Xin YH. Genetic diversity of glacier-inhabiting Cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Syst Appl Microbiol 2019; 42:168-177. [DOI: 10.1016/j.syapm.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
22
|
Survivability of Soil and Permafrost Microbial Communities after Irradiation with Accelerated Electrons under Simulated Martian and Open Space Conditions. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8080298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the prior current astrobiological tasks is revealing the limits of microbial resistance to extraterrestrial conditions. Much attention is paid to ionizing radiation, since it can prevent the preservation and spread of life outside the Earth. The aim of this research was to study the impact of accelerated electrons (~1 MeV) as component of space radiation on microbial communities in their natural habitat—the arid soil and ancient permafrost, and also on the pure bacterial cultures that were isolated from these ecotopes. The irradiation was carried out at low pressure (~0.01 Torr) and low temperature (−130 °C) to simulate the conditions of Mars or outer space. High doses of 10 kGy and 100 kGy were used to assess the effect of dose accumulation in inactive and hypometabolic cells, depending on environmental conditions under long-term irradiation estimated on a geological time scale. It was shown that irradiation with accelerated electrons in the applied doses did not sterilize native samples from Earth extreme habitats. The data obtained suggests that viable Earth-like microorganisms can be preserved in the anabiotic state for at least 1.3 and 20 million years in the regolith of modern Mars in the shallow subsurface layer and at a 5 m depth, respectively. In addition, the results of the study indicate the possibility of maintaining terrestrial like life in the ice of Europa at a 10 cm depth for at least ~170 years or for at least 400 thousand years in open space within meteorites. It is established that bacteria in natural habitat has a much higher resistance to in situ irradiation with accelerated electrons when compared to their stability in pure isolated cultures. Thanks to the protective properties of the heterophase environment and the interaction between microbial populations even radiosensitive microorganisms as members of the native microbial communities are able to withstand very high doses of ionizing radiation.
Collapse
|
23
|
Łokas E, Zawierucha K, Cwanek A, Szufa K, Gaca P, Mietelski JW, Tomankiewicz E. The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia). Sci Rep 2018; 8:10802. [PMID: 30018384 PMCID: PMC6050279 DOI: 10.1038/s41598-018-29076-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/02/2018] [Indexed: 11/12/2022] Open
Abstract
Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many years. This study evaluates the contamination level of artificial and natural radionuclides in cryoconite holes from Adishi glacier (Georgia) and identifies the sources of contamination based on activity or mass ratios among artificial radionuclides. Results revealed high activity concentrations of fallout radionuclides reaching 4900 Bq/kg, 2.5 Bq/kg, 107 Bq/kg and 68 Bq/kg for 137Cs, 238Pu, 239+240Pu and 241Am, respectively. The main source of Pu is global fallout, but the low 240Pu/239Pu atomic ratios also indicated local tropospheric source of 239Pu, probably from the Kapustin Yar nuclear test site. Also, high activity ratios of 241Am/239+240Pu could originate from Kapustin Yar. The natural radionuclides originate from the surrounding rocks and were measured to control the environmental processes. 210Pb in cryoconite granules comes predominantly from the atmospheric deposition, and its activity concentrations reach high values up to 12000 Bq/kg.
Collapse
Affiliation(s)
- Edyta Łokas
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland.
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Cwanek
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| | - Katarzyna Szufa
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| | - Paweł Gaca
- GAU-Radioanalytical Laboratories, Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton, United Kingdom
| | - Jerzy W Mietelski
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| | - Ewa Tomankiewicz
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| |
Collapse
|
24
|
Urbanek AK, Rymowicz W, Mirończuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 2018; 102:7669-7678. [PMID: 29992436 PMCID: PMC6132502 DOI: 10.1007/s00253-018-9195-y] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
Synthetic plastics present in everyday materials constitute the main anthropogenic debris entering the Earth’s oceans. The oceans provide important and valuable resources such as food, energy, and water. They are also the main way of international trade and the main stabilizer of the climate. Hence, changes in the marine ecosystem caused by anthropogenic influences such as plastic pollution can have a dramatic impact on a global scale. Although the problem of plastics still remains unsolved, different ways are being considered to reduce their impact on the environment. One of them is to use microorganisms capable of degradation of plastic. A particularly interesting area is the application of microorganisms isolated from cold regions in view of their unique characteristics. Nevertheless, the interactions between plastic and microorganisms are still poorly known. Here, we present a review of current knowledge on plastic degradation and plastic-microorganism interactions in cold marine habitats. Moreover, we highlight the advantages of microorganisms isolated from this environment for eliminating plastic waste from ecosystems.
Collapse
Affiliation(s)
- Aneta K Urbanek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| |
Collapse
|
25
|
Cold active pectinase, amylase and protease production by yeast isolates obtained from environmental samples. Extremophiles 2018. [DOI: 10.1007/s00792-018-1020-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Maharana AK, Singh SM. A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23. J Basic Microbiol 2018; 58:331-342. [PMID: 29442377 DOI: 10.1002/jobm.201700638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/27/2017] [Accepted: 01/20/2018] [Indexed: 11/12/2022]
Abstract
Psychrotolerant yeast Rhodotorula sp. Y-23 was isolated from the sediment core sub-samples of Nella Lake, East Antarctica. Isolate was screened for lipase production using plate assay method followed by submerged fermentation. Production optimization revealed the maximum lipase production by using palmolein oil (5% v/v), pH 8.0 and inoculum size of 2.5% v/v at 15 °C. The potential inducers for lipase were 1% w/v of galactose and KNO3 , and MnCl2 (0.1% w/v). Final productions with optimized conditions gave 5.47-fold increase in lipase production. Dialyzed product gave a purification fold of 5.63 with specific activity of 26.83 U mg-1 and 15.67% yields. This lipase was more stable at pH 5.0 and -20 °C whereas more activity was found at pH 8.0 and 35 °C. Stability was more in 50 mM Fe3+ , EDTA-Na (20 mM), sodium deoxycholate (20 mM), H2 O2 (1% v/v), and almost all organic solvents (50% v/v). Tolerance capacity at wider range of pH and temperature with having lower Km value i.e., 0.08 mg ml-1 and higher Vmax 385.68 U mg-1 at 15 °C make the studied lipase useful for industrial applications. Besides this, the lipase was compatible with commercially available detergents, and its addition to them increases lipid degradation performances making it a potential candidate in detergent formulation.
Collapse
Affiliation(s)
- Abhas K Maharana
- Polar Biology Laboratory, National Center for Antarctic and Ocean Research, Vasco-da-Gama, Goa, India
| | - Shiv M Singh
- Polar Biology Laboratory, National Center for Antarctic and Ocean Research, Vasco-da-Gama, Goa, India
| |
Collapse
|
27
|
Singh P, Singh SM, Singh RN, Naik S, Roy U, Srivastava A, Bölter M. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic. J Basic Microbiol 2017; 57:1018-1036. [DOI: 10.1002/jobm.201700061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Purnima Singh
- Birla Institute of Technology and Science (BITS); Pilani-K.K. Birla Goa Campus; Zuarinagar Goa India
| | - Shiv M. Singh
- National Centre for Antarctic and Ocean Research; Ministry of Earth Sciences; Vasco-Da-Gama Goa India
| | - Ram N. Singh
- National Bureau of Agriculturally Important Microorganisms (NBAIM); Uttar Pradesh India
| | - Simantini Naik
- National Centre for Antarctic and Ocean Research; Ministry of Earth Sciences; Vasco-Da-Gama Goa India
| | - Utpal Roy
- Birla Institute of Technology and Science (BITS); Pilani-K.K. Birla Goa Campus; Zuarinagar Goa India
| | - Alok Srivastava
- National Bureau of Agriculturally Important Microorganisms (NBAIM); Uttar Pradesh India
| | - Manfred Bölter
- Institute of Ecosystem Research; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| |
Collapse
|
28
|
Dong J, Gasmalla MAA, Zhao W, Sun J, Liu W, Wang M, Han L, Yang R. Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas
sp. strain. Biotechnol Appl Biochem 2017; 64:686-699. [DOI: 10.1002/bab.1525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/03/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Dong
- State Key Laboratory of Food Science & Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
- College of Food Science and Engineering; Shihezi University; Shihezi Xinjiang People's Republic of China
| | - Mohammed A. A. Gasmalla
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Jingtao Sun
- College of Food Science and Engineering; Shihezi University; Shihezi Xinjiang People's Republic of China
| | - Wenyu Liu
- Xinjiang Shihezi Vocational Technical College; Shihezi Xinjiang People's Republic of China
| | - Mingming Wang
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Liang Han
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu People's Republic of China
| |
Collapse
|
29
|
Weiland-Bräuer N, Fischer MA, Schramm KW, Schmitz RA. Polychlorinated Biphenyl (PCB)-Degrading Potential of Microbes Present in a Cryoconite of Jamtalferner Glacier. Front Microbiol 2017; 8:1105. [PMID: 28663747 PMCID: PMC5471330 DOI: 10.3389/fmicb.2017.01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Aiming to comprehensively survey the potential pollution of an alpine cryoconite (Jamtalferner glacier, Austria), and its bacterial community structure along with its biodegrading potential, first chemical analyses of persistent organic pollutants, explicitly polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) as well as polycyclic aromatic hydrocarbons (PAHs), revealed a significant contamination. In total, 18 PCB congeners were detected by high resolution gas chromatography/mass spectrometry with a mean concentration of 0.8 ng/g dry weight; 16 PAHs with an average concentration of 1,400 ng/g; and 26 out of 29 OCPs with a mean concentration of 2.4 ng/g. Second, the microbial composition was studied using 16S amplicon sequencing. The analysis revealed high abundances of Proteobacteria (66%), the majority representing α-Proteobacteria (87%); as well as Cyanobacteria (32%), however high diversity was due to 11 low abundant phyla comprising 75 genera. Biodegrading potential of cryoconite bacteria was further analyzed using enrichment cultures (microcosms) with PCB mixture Aroclor 1242. 16S rDNA analysis taxonomically classified 37 different biofilm-forming and PCB-degrading bacteria, represented by Pseudomonas, Shigella, Subtercola, Chitinophaga, and Janthinobacterium species. Overall, the combination of culture-dependent and culture-independent methods identified degrading bacteria that can be potential candidates to develop novel bioremediation strategies.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Martin A. Fischer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Karl-Werner Schramm
- Molecular EXposomics, German Research Center for Environmental Health, Helmholtz Zentrum München GmbHNeuherberg, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| |
Collapse
|
30
|
Oves M, Qari HA, Felemban NM, Khan MZ, Rehan ZA, Ismail IMI. Marinobacter lipolyticus from Red Sea for lipase production and modulation of silver nanomaterials for anti-candidal activities. IET Nanobiotechnol 2017; 11:403-410. [PMID: 28530189 PMCID: PMC8676228 DOI: 10.1049/iet-nbt.2016.0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, the bacterial strain CEES 33 was isolated from the coastal area of the Red Sea, Jeddah, Kingdom of Saudi Arabia. The bacterium isolate was identified and characterized by using biochemical and molecular methods. The isolate CEES 33 has been identified as Gram-negative rod shaped and cream pigmented spherical colonies. It also demonstrated a positive result for nitrate reduction, oxidase, catalase, citrate utilization, lipase and exopolysaccharide production. Strain CEES 33 was characterized at the molecular level by partial 16S rRNA sequencing and it has been identified as Marinobacter lipolyticus (EMBL|LN835275.1). The lipolytic activity of the isolate was also observed 2.105 nkatml-1. Furthermore, the bacterial aqueous extract was used for green synthesis of silver nanoparticles (AgNPs), which was further confirmed by UV-visible spectra (430 nm), XRD and SEM analysis. Moreover, the biological functional group that involved in AgNPs synthesis was confirmed by FTIR spectra. The biological activities of AgNPs were also investigated, which showed a significant growth inhibition of Candida albicans with 16 ± 2 mm zone of inhibition at 10 μg dose/wells. Therefore, bacterium Marinobacter lipolyticus might be used in future for lipase production and nanoparticles fabrication for biomedical application, to control fungal diseases caused by C. albicans.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.
| | - Huda A Qari
- Department of Biological Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Nadeen M Felemban
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad Z Khan
- Department of Chemistry, Division Industrial Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Zulfiqar A Rehan
- Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Iqbal M I Ismail
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Comparative genomic analysis reveals the environmental impacts on two Arcticibacter strains including sixteen Sphingobacteriaceae species. Sci Rep 2017; 7:2055. [PMID: 28515455 PMCID: PMC5435697 DOI: 10.1038/s41598-017-02191-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/27/2017] [Indexed: 01/30/2023] Open
Abstract
How the genomic diversity of species is driven by geographical isolation and environmental factors are not well understood for cold environments. Here, the environmental stress responses of two phylogenetically close Arcticibacter strains, A. eurypsychrophilus MJ9-5 and A. svalbardensis MN12-7, isolated from a Tibetan Plateau glacier and Svalbard soil, were analyzed. The comparative genomic analysis was performed with sixteen other related Sphingobacteriaceae species. Analyses of the relationships between growth temperature and genome composition, cold and heat shock genes showed that genomic adaption characteristics were more obvious when the strains were grouped by their upper limit in growth temperature, rather than by their minimal or optimal growth temperatures for Sphingobacteriaceae species. The very divergent genetic distance of genome fractions assigned to the functions of ‘secondary metabolism’, ‘dormancy and sporulation’ and ‘metabolism of aromatic compounds’ indicated the heterogeneous evolution of genes under different environmental pressures of the Sphingobacteriaceae species. The greatest differences between strains MJ9-5 and MN12-7 occurred in the genes devoted to the CRISPRs, osmotic adaption and metabolism of monosaccharides, nitrogen and aromatic compounds. These distinctions corresponded to two different environmental pressures, salinity and nutritional level, in the glacier ice and Svalbard soil environments.
Collapse
|
32
|
Makowska N, Zawierucha K, Mokracka J, Koczura R. First report of microorganisms of Caucasus glaciers (Georgia). Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Bagshaw EA, Wadham JL, Tranter M, Perkins R, Morgan A, Williamson CJ, Fountain AG, Fitzsimons S, Dubnick A. Response of Antarctic cryoconite microbial communities to light. FEMS Microbiol Ecol 2016; 92:fiw076. [PMID: 27095815 PMCID: PMC4864406 DOI: 10.1093/femsec/fiw076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2016] [Indexed: 11/28/2022] Open
Abstract
Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage. Microbial communities in cryoconite holes and cryolakes on glaciers in Antarctica are adapted to low light levels and exhibit stress when exposed to high light.
Collapse
Affiliation(s)
- Elizabeth A Bagshaw
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Jemma L Wadham
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Rupert Perkins
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Alistair Morgan
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Christopher J Williamson
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Andrew G Fountain
- Departments of Geology and Geography, Portland State University, Portland, Oregon OR 97201, USA
| | - Sean Fitzsimons
- Department of Geography, University of Otago, Dunedin, PO Box 56, New Zealand
| | - Ashley Dubnick
- Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, TG6 2E3, Canada
| |
Collapse
|
34
|
Chen WM, Chen YL, Sheu SY. Flavobacterium brevivitae sp. nov., isolated from river water. Int J Syst Evol Microbiol 2016; 66:1705-1712. [DOI: 10.1099/ijsem.0.000928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan
| | - Yi-Ling Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan
| |
Collapse
|
35
|
De Santi C, Altermark B, de Pascale D, Willassen NP. Bioprospecting around Arctic islands: Marine bacteria as rich source of biocatalysts. J Basic Microbiol 2015; 56:238-53. [PMID: 26662844 DOI: 10.1002/jobm.201500505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/22/2015] [Indexed: 01/25/2023]
Abstract
We have investigated the biotechnological potential of Arctic marine bacteria for their ability to produce a broad spectrum of cold-active enzymes. Marine bacteria exhibiting these features are of great interest for both fundamental research and industrial applications. Macrobiota, water and sediment samples have been collected during 2010 and 2011 expeditions around the Lofoten and Svalbard islands. Bacteria were isolated from this material and identified through 16S rRNA gene sequence analysis for the purpose of establishing a culture collection of marine Arctic bacteria. Herein, we present the functional screening for different extracellular enzymatic activities from 100 diversely chosen microbial isolates incubated at 4 and 20 °C. The production of esterase/lipase, DNase, and protease activities were revealed in 67, 53, and 56% of the strains, respectively, while 41, 23, 9, and 7% of the strains possessed amylase, chitinase, cellulase, and xylanase activities, respectively. Our findings show that phylogenetically diverse bacteria, including many new species, could be cultured from the marine arctic environment. The Arctic polar environment is still an untapped reservoir of biodiversity for bioprospecting.
Collapse
Affiliation(s)
- Concetta De Santi
- NorStruct, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- NorStruct, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Nils-Peder Willassen
- NorStruct, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
36
|
Singh P, Singh SM, Roy U. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic. J Basic Microbiol 2015; 56:275-85. [PMID: 26567474 DOI: 10.1002/jobm.201500298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/18/2015] [Indexed: 11/05/2022]
Abstract
Glacier ice and firn cores have ecological and biotechnological importance. The present study is aimed at characterizing bacteria in crustal ice cores from Svalbard, the Arctic. Counts of viable isolates ranged from 10 to 7000 CFU/ml (mean 803 CFU/ml) while the total bacterial numbers ranged from 7.20 × 10(4) to 2.59 × 10(7) cells ml(-1) (mean 3.12 × 10(6) cells ml(-1) ). Based on 16S rDNA sequence data, the identified species belonged to seven species, namely Bacillus barbaricus, Pseudomonas orientalis, Pseudomonas oryzihabitans, Pseudomonas fluorescens, Pseudomonas syncyanea, Sphingomonas dokdonensis, and Sphingomonas phyllosphaerae, with a sequence similarity ranging between 93.5 and 99.9% with taxa present in the database. The isolates exhibited unique phenotypic properties, and three isolates (MLB-2, MLB-5, and MLB-9) are novel species, yet to be described. To the best of our knowledge, this is the first report on characterization of cultured bacterial communities from Svalbard ice cores. We conclude that high lipase, protease, cellulase, amylase, and urease activities expressed by most of the isolates provide a clue to the potential industrial applications of these organisms. These microbes, producing cold-adapted enzymes may provide an opportunity for biotechnological research.
Collapse
Affiliation(s)
- Purnima Singh
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| | - Shiv Mohan Singh
- National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa-403804, India
| | - Utpal Roy
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
37
|
Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677-90. [PMID: 26344407 DOI: 10.1038/nrmicro3522] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.
Collapse
Affiliation(s)
- Antje Boetius
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Alexandre M Anesio
- Bristol Glaciology Center, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA
| | - Jill A Mikucki
- Department of Biology, 276 Bicentennial Way, Middlebury College, Middlebury, Vermont 05753, USA
| | - Josephine Z Rapp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
38
|
Microbial community changes along the Ecology Glacier ablation zone (King George Island, Antarctica). Polar Biol 2015. [DOI: 10.1007/s00300-015-1767-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Draft genome of Cryobacterium sp. MLB-32, an obligate psychrophile from glacier cryoconite holes of high Arctic. Mar Genomics 2015; 21:25-6. [DOI: 10.1016/j.margen.2015.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
|
40
|
Zawierucha K, Kolicka M, Takeuchi N, Kaczmarek Ł. What animals can live in cryoconite holes? A faunal review. J Zool (1987) 2014. [DOI: 10.1111/jzo.12195] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K. Zawierucha
- Department of Animal Taxonomy and Ecology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| | - M. Kolicka
- Department of Animal Taxonomy and Ecology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| | - N. Takeuchi
- Department of Earth Sciences; Graduate School of Science; Chiba University; Chiba Japan
| | - Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
- Laboratorio de Ecología Natural y Aplicada de Invertebrados; Universidad Estatal Amazónica; Puyo Ecuador
| |
Collapse
|
41
|
Tiwari R, Singh S, Shukla P, Nain L. Novel cold temperature active β-glucosidase from Pseudomonas lutea BG8 suitable for simultaneous saccharification and fermentation. RSC Adv 2014. [DOI: 10.1039/c4ra09784j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|