1
|
Jackson SA, Duan M, Zhang P, Ihua MW, Stengel DB, Duan D, Dobson ADW. Isolation, identification, and biochemical characterization of a novel bifunctional phosphomannomutase/phosphoglucomutase from the metagenome of the brown alga Laminaria digitata. Front Microbiol 2022; 13:1000634. [PMID: 36212884 PMCID: PMC9537760 DOI: 10.3389/fmicb.2022.1000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Macroalgae host diverse epiphytic bacterial communities with potential symbiotic roles including important roles influencing morphogenesis and growth of the host, nutrient exchange, and protection of the host from pathogens. Macroalgal cell wall structures, exudates, and intra-cellular environments possess numerous complex and valuable carbohydrates such as cellulose, hemi-cellulose, mannans, alginates, fucoidans, and laminarin. Bacterial colonizers of macroalgae are important carbon cyclers, acquiring nutrition from living macroalgae and also from decaying macroalgae. Seaweed epiphytic communities are a rich source of diverse carbohydrate-active enzymes which may have useful applications in industrial bioprocessing. With this in mind, we constructed a large insert fosmid clone library from the metagenome of Laminaria digitata (Ochrophyta) in which decay was induced. Subsequent sequencing of a fosmid clone insert revealed the presence of a gene encoding a bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme 10L6AlgC, closely related to a protein from the halophilic marine bacterium, Cobetia sp. 10L6AlgC was subsequently heterologously expressed in Escherichia coli and biochemically characterized. The enzyme was found to possess both PMM and PGM activity, which had temperature and pH optima of 45°C and 8.0, respectively; for both activities. The PMM activity had a K m of 2.229 mM and V max of 29.35 mM min-1 mg-1, while the PGM activity had a K m of 0.5314 mM and a V max of 644.7 mM min-1 mg-1. Overall characterization of the enzyme including the above parameters as well as the influence of various divalent cations on these activities revealed that 10L6AlgC has a unique biochemical profile when compared to previously characterized PMM/PGM bifunctional enzymes. Thus 10L6AlgC may find utility in enzyme-based production of biochemicals with different potential industrial applications, in which other bacterial PMM/PGMs have previously been used such as in the production of low-calorie sweeteners in the food industry.
Collapse
Affiliation(s)
- Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Maohang Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Maureen W. Ihua
- School of Microbiology, University College Cork, Cork, Ireland
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Gagliano MC, Sampara P, Plugge CM, Temmink H, Sudmalis D, Ziels RM. Functional Insights of Salinity Stress-Related Pathways in Metagenome-Resolved Methanothrix Genomes. Appl Environ Microbiol 2022; 88:e0244921. [PMID: 35477253 PMCID: PMC9128505 DOI: 10.1128/aem.02449-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, methanogenic archaea belonging to the genus Methanothrix were reported to have a fundamental role in maintaining stable ecosystem functioning in anaerobic bioreactors under different configurations/conditions. In this study, we reconstructed three Methanothrix metagenome-assembled genomes (MAGs) from granular sludge collected from saline upflow anaerobic sludge blanket (UASB) reactors, where Methanothrix harundinacea was previously implicated with the formation of compact and stable granules under elevated salinity levels (up to 20 g/L Na+). Genome annotation and pathway analysis of the Methanothrix MAGs revealed a genetic repertoire supporting their growth under high salinity. Specifically, the most dominant Methanothrix (MAG_279), classified as a subspecies of Methanothrix_A harundinacea_D, had the potential to augment its salinity resistance through the production of different glycoconjugates via the N-glycosylation process, and via the production of compatible solutes as Nε-acetyl-β-lysine and ectoine. The stabilization and reinforcement of the cell membrane via the production of isoprenoids was identified as an additional stress-related pathway in this microorganism. The improved understanding of the salinity stress-related mechanisms of M. harundinacea highlights its ecological niche in extreme conditions, opening new perspectives for high-efficiency methanisation of organic waste at high salinities, as well as the possible persistence of this methanogen in highly-saline natural anaerobic environments. IMPORTANCE Using genome-centric metagenomics, we discovered a new Methanothrix harundinacea subspecies that appears to be a halotolerant acetoclastic methanogen with the flexibility for adaptation in the anaerobic digestion process both at low (5 g/L Na+) and high salinity conditions (20 g/L Na+). Annotation of the recovered M. harundinacea genome revealed salinity stress-related functions, including the modification of EPS glycoconjugates and the production of compatible solutes. This is the first study reporting these genomic features within a Methanothrix sp., a milestone further supporting previous studies that identified M. harundinacea as a key-driver in anaerobic granulation under high salinity stress.
Collapse
Affiliation(s)
- Maria Cristina Gagliano
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Pranav Sampara
- Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline M. Plugge
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hardy Temmink
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Department of Environmental Technology, Wageningen University and Research, Wageningen, the Netherlands
| | - Dainis Sudmalis
- Department of Environmental Technology, Wageningen University and Research, Wageningen, the Netherlands
| | - Ryan M. Ziels
- Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Sueda R, Yoshida K, Onodera M, Fukui T, Yatsunami R, Nakamura S. Characterization of a GlgC homolog from extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 2021; 85:1441-1447. [PMID: 33749776 DOI: 10.1093/bbb/zbab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/16/2021] [Indexed: 11/12/2022]
Abstract
Glycogen synthesis in bacteria is mainly organized by the products of glgB, glgC, and glgA genes comprising the widely known glg operon. On the genome of extremely halophilic archaeon Haloarcula japonica, there was a gene cluster analogous to the bacterial glg operon. In this study, we focused on a GlgC homolog of Ha. japonica, and its recombinant enzyme was prepared and characterized. The enzyme showed highest activity toward GTP and glucose-1-phosphate as substrates in the presence of 2.6 m KCl and predicted to be work as "GDP-glucose pyrophosphorylase" in Ha. japonica.
Collapse
Affiliation(s)
- Rin Sueda
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Kento Yoshida
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Masahiko Onodera
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Rie Yatsunami
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.,National Institute of Technology, Numazu College, Numazu, Shizuoka, Japan
| |
Collapse
|
4
|
Trincone A. Application-Oriented Marine Isomerases in Biocatalysis. Mar Drugs 2020; 18:md18110580. [PMID: 33233366 PMCID: PMC7700177 DOI: 10.3390/md18110580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
The class EC 5.xx, a group of enzymes that interconvert optical, geometric, or positional isomers are interesting biocatalysts for the synthesis of pharmaceuticals and pharmaceutical intermediates. This class, named “isomerases,” can transform cheap biomolecules into expensive isomers with suitable stereochemistry useful in synthetic medicinal chemistry, and interesting cases of production of l-ribose, d-psicose, lactulose, and d-phenylalanine are known. However, in two published reports about potential biocatalysts of marine origin, isomerases are hardly mentioned. Therefore, it is of interest to deepen the knowledge of these biocatalysts from the marine environment with this specialized in-depth analysis conducted using a literature search without time limit constraints. In this review, the focus is dedicated mainly to example applications in biocatalysis that are not numerous confirming the general view previously reported. However, from this overall literature analysis, curiosity-driven scientific interest for marine isomerases seems to have been long-standing. However, the major fields in which application examples are framed are placed at the cutting edge of current biotechnological development. Since these enzymes can offer properties of industrial interest, this will act as a promoter for future studies of marine-originating isomerases in applied biocatalysis.
Collapse
Affiliation(s)
- Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
5
|
Gogoi P, Mordina P, Kanaujia SP. Exploiting the rationale behind substrate recognition by promiscuous thermophilic NDP-sugar pyrophosphorylase for expanding glycorandomization: an in silico study. J Biomol Struct Dyn 2020; 39:6099-6111. [PMID: 32692307 DOI: 10.1080/07391102.2020.1796795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The fundamental substrates for protein glycosylation are provided by a group of enzymes known as NDP-sugar pyrophosphorylases (NSPases) which utilize nucleotide triphosphate (NTP) and sugar 1-phosphate to catalyze the formation of nucleotide diphospho-sugar (NDP-sugar). The promiscuous nature of NSPases is often exploited during chemoenzymatic glycorandomization in the pursuit of novel therapeutics. However, till date, the number of inherently promiscuous NSPases reported and the rationale behind their promiscuity is meager. In this study, we have identified a set of NSPases from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 to identify probable candidates for glycorandomization. We identified a set of NSPases that include both substrate-specific and substrate-promiscuous NSPases with a visible predominance of the latter group. The rationale behind the promiscuity (or specificity) vividly lies in the repertoire of amino acid residues that assemble the active site for recognition of the substrate moiety. Furthermore, the absence of a function-specific auxiliary domain promotes substrate promiscuity in NSPases. This study, thus, provides a novel set of thermophilic NSPases that can be employed for chemoenzymatic glycorandomization. More importantly, identification of the residues that render substrate promiscuity (or specificity) would assist in sequence-based rational engineering of NSPases for enhanced glycorandomization. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prerana Gogoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Prerana Mordina
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
6
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
7
|
Pomel S, Mao W, Ha-Duong T, Cavé C, Loiseau PM. GDP-Mannose Pyrophosphorylase: A Biologically Validated Target for Drug Development Against Leishmaniasis. Front Cell Infect Microbiol 2019; 9:186. [PMID: 31214516 PMCID: PMC6554559 DOI: 10.3389/fcimb.2019.00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 01/02/2023] Open
Abstract
Leishmaniases are neglected tropical diseases that threaten about 350 million people in 98 countries around the world. In order to find new antileishmanial drugs, an original approach consists in reducing the pathogenic effect of the parasite by impairing the glycoconjugate biosynthesis, necessary for parasite recognition and internalization by the macrophage. Some proteins appear to be critical in this way, and one of them, the GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of specific inhibitors as it is essential for Leishmania survival and it presents significant differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B, have been identified in two distinct studies by high throughput screening and by a rational approach based on molecular modeling, respectively. Compound B was found to be the most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and antileishmanial activities at the micromolar range with interesting selectivity indexes, as opposed to compound A. Therefore, compound B can be used as a pharmacological tool for the development of new specific antileishmanial drugs.
Collapse
Affiliation(s)
- Sébastien Pomel
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Wei Mao
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tâp Ha-Duong
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Cavé
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe M Loiseau
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
8
|
The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12. Extremophiles 2018; 22:433-445. [DOI: 10.1007/s00792-018-1006-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
|
9
|
Chi S, Liu T, Wang X, Wang R, Wang S, Wang G, Shan G, Liu C. Functional genomics analysis reveals the biosynthesis pathways of important cellular components (alginate and fucoidan) of Saccharina. Curr Genet 2018; 64:259-273. [PMID: 28825126 PMCID: PMC5778160 DOI: 10.1007/s00294-017-0733-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
Abstract
Although alginate and fucoidan are unique cellular components and have important biological significance in brown algae, and many possible involved genes are present in brown algal genomes, their functions and regulatory mechanisms have not been fully revealed. Both polysaccharides may play important roles in the evolution of multicellular brown algae, but specific and in-depth studies are still limited. In this study, a functional genomics analysis of alginate and fucoidan biosynthesis routes was conducted in Saccharina, and the key events in these pathways in brown algae were identified. First, genes from different sources, including eukaryotic hosts via endosymbiotic gene transfer and bacteria via horizontal gene transfer, were combined to build a complete pathway framework. Then, a critical event occurred to drive these pathways to have real function: one of the mannose-6-phosphate isomerase homologs that arose by gene duplication subsequently adopted the function of the mannose-1-phosphate guanylyltransferase (MGP) gene, which was absent in algal genomes. Further, downstream pathway genes proceeded with gene expansions and complex transcriptional mechanisms, which may be conducive to the synthesis of alginate and fucoidan with diverse structures and contents depending on the developmental stage, tissue structure, and environmental conditions. This study revealed the alginate and fucoidan synthesis pathways and all included genes from separate phylogenetic sources in brown algae. Enzyme assays confirmed the function of key genes and led to the determination of a substitute for the missing MPG. All gene families had constitutively expressed member(s) to maintain the basic synthesis; and the gene function differentiation, enzyme characterization and gene expression regulation differences separated brown algae from other algae lineages and were considered to be the major driving forces for sophisticated system evolution of brown algae.
Collapse
Affiliation(s)
- Shan Chi
- Ocean University of China, Qingdao, Shandong Province, People's Republic of China
- Qingdao Haida BlueTek Biotechnology Co., Ltd, Qingdao, Shandong Province, People's Republic of China
| | - Tao Liu
- Ocean University of China, Qingdao, Shandong Province, People's Republic of China.
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ren Wang
- Ocean University of China, Qingdao, Shandong Province, People's Republic of China
| | - Shanshan Wang
- Ocean University of China, Qingdao, Shandong Province, People's Republic of China
| | - Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guangle Shan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Cui Liu
- Qingdao Haida BlueTek Biotechnology Co., Ltd, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|