1
|
Bibi A, Dhanawat M, Aman S, Chauhan S, Chalotra R, Mujwar S, Kaur N, Maivagna CH, Gupta S. Evaluation of Moringa Oleifera Leaf Extract for its In vitro Antibacterial Properties, Mechanism of Action, and In vivo Corneal Ulcer Healing Effects in Rabbits' Eyes. Curr Drug Deliv 2025; 22:107-122. [PMID: 38638050 DOI: 10.2174/0115672018275561240228065755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND M. oleifera is the most adapted tree species in different medicinal eco-systems and has resilience against climate changes. This multiple-use tree provides healthy foods, snacks, honey, and fuel. Besides this, it has immense promising applications by offering antimicrobial and antibacterial activities for targeted uses. This validates the court of Hippocrates that let food be the medicine and medicine be the food for which moringa qualifies. OBJECTIVE The objective of this study is to assess the antioxidant properties of M. oleifera, in vitro antibacterial activity of hydro-ethanolic extract, and further investigate in vivo healing potential of M. oleifera for corneal ulcers and in silico analysis. METHODS To evaluate the antioxidant and in vitro antibacterial potency of the hydro-ethanolic extract of M. oleifera on clinically isolated multidrug-resistant strains of Staphylococcus aureus using agar well diffusion assay. Furthermore, in vivo, healing response of M. oleifera extract was analysed on corneal ulcers induced in rabbit eyes infected with methicillin-resistant Staphylococcus aureus. RESULTS The M. oleifera extract exhibited exponential antioxidant activity. In-vitro antibacterial activity was evaluated by agar well diffusion assay showing zone of inhibition ranging from 11.05 ± 0.36 to 20 ± 0.40 mm at concentrations of 20, 40, 80, and 160 mg/ml, whereas, in our finding, no zone of inhibition was observed below 20 mg/ml concentration, which indicated that there is threshold limit below which the antibacterial activity of M. oleifera extract is not observed. Furthermore, continuous application of 3% and 5% M. oleifera extract (eye drop) four times a day for 14 consecutive days showed a significant healing response of the eyes of rabbits with corneal ulcers. CONCLUSION These results suggest that M. oleifera extract could be a viable alternative or in combination could be used in existing antibacterial therapies for corneal ulcers. Additionally, there is a possibility of commercial formulation of M. oleifera extract in the form of deliverable pharmaceutical products; therefore, it should be explored further.
Collapse
Affiliation(s)
- Ayesha Bibi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | | | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rishabh Chalotra
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
- Department of Pharmacology, Central University of Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Narinder Kaur
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Chamasse Homary Maivagna
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
2
|
Kumari D, Palmo T, Mujwar S, Singh K. Harnessing computational and experimental approaches to identify potent hits against Leishmania donovani sterol C-24 methyltransferase from ChemBridge library. Acta Trop 2024; 260:107473. [PMID: 39551420 DOI: 10.1016/j.actatropica.2024.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Leishmaniasis is a neglected tropical disease and is one of the major causes of mortality in poverty-stricken areas. A limited chemotherapeutics arsenal is available to tackle this deadly infection. Thus, identifying novel potent scaffolds using innovative strategies is the need of the hour. High-throughput screening (HTS) is a critical technique that can accelerate the process of drug discovery by evaluating millions of drug-like molecules using various automation tools and biological assays. In the present study, we have employed the HTS strategy to identify potent hits against Leishmania donovani sterol C-24 methyltransferase (LdSMT) from the in-house ChemBridge library. Firstly, a robust dataset was prepared with previously reported sterol C-24 methyltransferase inhibitors, belonging to diverse structural classes. Then, ligand-based virtual screening using similarity search was performed to screen the ChemBridge library having ∼20,000 molecules. This computational approach yielded 81 candidate compounds, which were selected for further molecular docking and biological evaluation. Anti-leishmanial assays revealed that out of 81 molecules, seven showed potential parasitic killing. Three molecules namely IIIM-CB-14, IIIM-CB-29, and IIIM-CB-45 were the most potent ones with 50 % inhibitory concentration (IC50) of 5.76, 8.08, and 10.64 µg/mL, respectively. SEM analyses suggest that these potent hits cause considerable morphological alterations. ADME studies of the potent hit molecules indicate that all the hits have considerable drug-likeness properties. Further, molecular dynamics studies were also performed to check the stable confirmation of LdSMT protein with the top two hits (IIIM-CB-14 and IIIM-CB-45). Thus, the present study harnesses computational and experimental approaches to unravel potent anti-leishmanial scaffolds.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Aloui M, El fadili M, Mujwar S, Er-rahmani S, Abuelizz HA, Er-rajy M, Zarougui S, Elhallaoui M. Design of novel potent selective survivin inhibitors using 2D-QSAR modeling, molecular docking, molecular dynamics, and ADMET properties of new MX-106 hydroxyquinoline scaffold derivatives. Heliyon 2024; 10:e38383. [PMID: 39397921 PMCID: PMC11467593 DOI: 10.1016/j.heliyon.2024.e38383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Given the critical role of survivin (BIRC5) in tumor cell regulation, developing novel inhibitors represents a promising approach for cancer therapy. This study details the design of innovative survivin inhibitors based on the hydroxyquinoline scaffold of our previously reported lead compound, MX-106. Our study identified nine compounds whose inhibitory activity is expected to be superior to that of the most active molecule in the series. These compounds demonstrated potent suppression of MDA-MB-435 breast cancer cell proliferation in vitro and exhibited enhanced metabolic stability compared to the series' most active member. To evaluate these derivatives as potential survivin inhibitors, we employed a multi-faceted approach combining 2D-QSAR methods, molecular docking, molecular dynamics, and ADMET property assessment. Our molecular modeling studies led to the design of nine novel compounds (Pred1-Pred9) predicted to exhibit potent survivin inhibitory activity based on MLR models. To assess their suitability as drug candidates, we recommend a thorough evaluation of their ADMET properties. These compounds hold promise as innovative anticancer agents targeting survivin, similar to the established MX-106.
Collapse
Affiliation(s)
- Mourad Aloui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sara Er-rahmani
- Dipartimento di Chimica, Università di Torino, 10125, Torino, Italy
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed Er-rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Kumari D, Jamwal V, Singh A, Singh SK, Mujwar S, Ansari MY, Singh K. Repurposing FDA approved drugs against Sterol C-24 methyltransferase of Leishmania donovani: A dual in silico and in vitro approach. Acta Trop 2024; 258:107338. [PMID: 39084482 DOI: 10.1016/j.actatropica.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Leishmaniasis is a disease caused by the parasite Leishmania donovani affecting populations belonging to developing countries. The present study explores drug repurposing as an innovative strategy to identify new uses for approved clinical drugs, reducing the time and cost required for drug discovery. The three-dimensional structure of Leishmania donovani Sterol C-24 methyltransferase (LdSMT) was modeled and 1615 FDA-approved drugs from the ZINC database were computationally screened to identify the potent leads. Fulvestrant, docetaxel, indocyanine green, and iohexol were shortlisted as potential leads with the highest binding affinity and fitness scores for the concerned pathogenic receptor. Molecular dynamic simulation studies showed that the macromolecular complexes of indocyanine green and iohexol with LdSMT remained stable throughout the simulation and can be further evaluated experimentally for developing an effective drug. The proposed leads have further demonstrated promising safety profiles during cytotoxicity analysis on the J774.A1 macrophage cell line. Mechanistic analysis with these two drugs also revealed significant morphological alterations in the parasite, along with reduced intracellular parasitic load. Overall, this study demonstrates the potential of drug repurposing in identifying new treatments for leishmaniasis and other diseases affecting developing countries, highlighting the importance of considering approved clinical drugs for new applications.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishwani Jamwal
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajeet Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shashank K Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Md Yousuf Ansari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Gavandi TC, Basrani ST, Chougule SA, Patil SB, Nille OS, Kolekar GB, Yankanchi SR, Karuppayil SM, Jadhav AK. Vidarabine as a novel antifungal agent against Candida albicans: insights on mechanism of action. Int Microbiol 2024:10.1007/s10123-024-00565-z. [PMID: 39126447 DOI: 10.1007/s10123-024-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/11/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Around 1.5 million mortality cases due to fungal infection are reported annually, posing a massive threat to global health. However, the effectiveness of current antifungal therapies in the treatment of invasive fungal infections is limited. Repurposing existing antifungal drugs is an advisable alternative approach for enhancing their effectiveness. This study evaluated the antifungal efficacy of the antiviral drug vidarabine against Candida albicans ATCC 90028. Antifungal susceptibility testing was performed by microbroth dilution assay and further processed to find the minimum fungicidal concentration. Investigation on probable mode of vidarabine action against C. albicans was assessed by using the ergosterol reduction assay, reactive oxygen species (ROS) accumulation, nuclear condensation, and apoptosis assay. Results revealed that C. albicans was susceptible to vidarabine action and exhibited minimum inhibitory concentration at 150 µg/ml. At a concentration of 300 µg/ml, vidarabine had fungicidal activity against C. albicans. 300 µg/ml vidarabine-treated C. albicans cells demonstrated 91% reduced ergosterol content. Annexin/FITC/PI assay showed that vidarabine (150 µg/ml) had increased late apoptotic cells up to 31%. As per the fractional inhibitory concentration index, vidarabine had synergistic activity with fluconazole and caspofungin against this fungus. The mechanism underlying fungicidal action of vidarabine was evaluated at the intracellular level, and probably because of increased nuclear condensation, enhanced ROS generation, and cell cycle arrest. In conclusion, this data is the first to report that vidarabine has potential to be used as a repurposed antifungal agent alone or in combination with standard antifungal drugs, and could be a quick and safe addition to existing therapies for treating fungal infections.
Collapse
Affiliation(s)
- Tanjila C Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Sargun T Basrani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Sayali A Chougule
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Shivani B Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India
| | - Omkar S Nille
- Department of Chemistry, Shivaji University, Kolhapur, 416-004, Maharashtra, India
| | - Govind B Kolekar
- Department of Chemistry, Shivaji University, Kolhapur, 416-004, Maharashtra, India
| | | | - S Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India.
| | - Ashwini K Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416-003, Maharashtra, India.
| |
Collapse
|
6
|
El Fadili M, Er-Rajy M, Mujwar S, Ajala A, Bouzammit R, Kara M, Abuelizz HA, Er-Rahmani S, Elhallaoui M. In silico insights into the design of novel NR2B-selective NMDA receptor antagonists: QSAR modeling, ADME-toxicity predictions, molecular docking, and molecular dynamics investigations. BMC Chem 2024; 18:142. [PMID: 39085870 PMCID: PMC11293250 DOI: 10.1186/s13065-024-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Based on a structural family of thirty-two NR2B-selective N-Methyl-D-Aspartate receptor (NMDAR) antagonists, two phenylpiperazine derivatives labeled C37 and C39 were conceived thanks to molecular modeling techniques, as novel NMDAR inhibitors exhibiting the highest analgesic activities (of pIC50 order) against neuropathic pain, with excellent ADME-toxicity profiles, and good levels of molecular stability towards the targeted protein of NMDA receptor. Initially, the quantitative structure-activity relationships (QSARs) models were developed using multiple linear regression (MLR), partial least square regression (PLSR), multiple non-linear regression (MNLR), and artificial neural network (ANN) techniques, revealing that analgesic activity was strongly correlated with dipole moment, octanol/water partition coefficient, Oxygen mass percentage, electronegativity, and energy of the lowest unoccupied molecular orbital, whose the correlation coefficients of generated models were: 0.860, 0.758, 0.885 and 0.977, respectively. The predictive capacity of each model was evaluated by an external validation with correlation coefficients of 0.703, 0.851, 0.778, and 0.981 respectively, followed by a cross-validation technique with the leave-one-out procedure (CVLOO) with Q2cv of 0.785, more than Y-randomization test, and applicability domain (AD), in addition to Fisher's and Student's statistical tests. Thereafter, ten novel molecules were designed based on MLR QSAR model, then predicted with their ADME-Toxicity profiles and subsequently examined for their similarity to the drug candidates. Finally, two of the most active compounds (C37 and C39) were chosen for molecular docking and molecular dynamics (MD) investigations during 100 ns of MD simulation time in complex with the targeted protein of NMDA receptor (5EWJ.pdb).
Collapse
Affiliation(s)
- Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco.
| | - Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Abduljelil Ajala
- Department of chemistry, Faculty of physical sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Rachid Bouzammit
- Engineering Laboratory of Organometallic, Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorization of Naturals Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sara Er-Rahmani
- Dipartimento di Chimica, Università di Torino, Torino, 10125, Italy
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
7
|
Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, Singh TG, Singh SK, Gupta G, Adams J, MacLoughlin R, Oliver BGG, Hansbro PM, Chellappan DK, Dua K. Agarwood oil nanoemulsion counteracts LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. Pathol Res Pract 2023; 251:154895. [PMID: 37879146 DOI: 10.1016/j.prp.2023.154895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro. METHODS The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR. RESULTS LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components. CONCLUSIONS We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.
Collapse
Affiliation(s)
- Raniya Malik
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jessie Shen
- De'Aurora Pty Ltd., Dean, VIC 3363, Australia
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 602105, Tamil Nadu, India; School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
8
|
Sangwan N, Singh J, Chauhan A, Prakash A, Khanduja KL, Medhi B, Avti PK. Structure and dynamic simulation-based interactions of benzenoids, pyrroles and organooxygen compounds for effective targeting of GPX4 in ischemic stroke. J Biomol Struct Dyn 2023; 41:9143-9156. [PMID: 36326469 DOI: 10.1080/07391102.2022.2141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
The discovery of a novel drug for ischemic stroke is plagued by expensive and unsuccessful outcomes. FDA-approved drugs could be a viable repurposing strategy for stroke therapy. Emerging evidence suggests the regulating role of Glutathione peroxidase (GPX4) in stroke and attracts as a potential target. To overcome limited therapeutic interventions, a drug repurposing in silico investigation of FDA-approved drugs is proposed for the GPX4 receptor in distinctive species (Homo sapiens and Mus musculus). The GPX4 UniProt wild type ids, that is, P36969 (Homo sapiens), P36970 (Rattus norvegicus) and O70325 (Mus musculus) are Swiss modelled, and resultant templates are 2OBI and 6HN3 for Homo sapiens, and 5L71 for Mus musculus with a sequence identity of ∼88%. Enrichment analysis reveals high sensitivity and ranked actives with ROC and AUC values of 0.59 and 0.61, respectively. Virtual screening at extra precision resulted hit Acarbosum, is similar between 2OBI and 6HN3, demonstrating a multiple-target specificity and Iopromide, targeting 2OBI. MD simulation at 100 ns following trajectory analysis provides RMSD (∼1.2-1.8Å), RMSF (∼1.6-2.7Å), Rgyr (∼15-15.6Å) depicting stabilisation of receptor-ligand complexes. Furthermore, average B-factor value of 2OBI, 6HN3 and 5L71 is 25Å, 24Å and 60Å with a defined resolution of 1.55Å, 1.01Å and 1.80Å, respectively, depicting the thermodynamic stability of the protein structures. The dynamic cross-correlation and principal component analysis of residual fluctuations reveal more positive correlation, high atomic displacements and greater residual clustering of residues from atomic coordinates. Therefore, Acarbosum, an FDA-approved drug, could act as a potential repurposing drug with a multi-target approach translating from preclinical to clinical stages.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
9
|
Bhatia S, Singh M, Sharma P, Mujwar S, Singh V, Mishra KK, Singh TG, Singh T, Ahmad SF. Scaffold Morphing and In Silico Design of Potential BACE-1 (β-Secretase) Inhibitors: A Hope for a Newer Dawn in Anti-Alzheimer Therapeutics. Molecules 2023; 28:6032. [PMID: 37630283 PMCID: PMC10459662 DOI: 10.3390/molecules28166032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the prime cause of 65-80% of dementia cases and is caused by plaque and tangle deposition in the brain neurons leading to brain cell degeneration. β-secretase (BACE-1) is a key enzyme responsible for depositing extracellular plaques made of β-amyloid protein. Therefore, efforts are being applied to develop novel BACE-1 enzyme inhibitors to halt plaque build-up. In our study, we analyzed some Elenbecestat analogues (a BACE-1 inhibitor currently in clinical trials) using a structure-based drug design and scaffold morphing approach to achieve a superior therapeutic profile, followed by in silico studies, including molecular docking and pharmacokinetics methodologies. Among all the designed compounds, SB306 and SB12 showed good interactions with the catalytic dyad motifs (Asp228 and Asp32) of the BACE-1 enzyme with drug-likeliness properties and a high degree of thermodynamic stability confirmed by the molecular dynamic and stability of the simulated system indicating the inhibitory nature of the SB306 and SB12 on BACE 1.
Collapse
Affiliation(s)
- Shiveena Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (P.S.); (S.M.); (T.G.S.)
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (P.S.); (S.M.); (T.G.S.)
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (P.S.); (S.M.); (T.G.S.)
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (P.S.); (S.M.); (T.G.S.)
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India;
| | - Krishna Kumar Mishra
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India;
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (P.S.); (S.M.); (T.G.S.)
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77807, USA
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
10
|
Kumar M, Rani I, Mujwar S, Narang R, Devgun M, Khokra SL. In-Silico Design, Synthesis, and Pharmacological Evaluation of Oxadiazole-Based Selective Cyclo-oxygenase-2 Inhibitors. Assay Drug Dev Technol 2023; 21:166-179. [PMID: 37318837 DOI: 10.1089/adt.2022.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
A series of oxadiazole-based five-membered heterocyclic derivatives was designed and synthesized with the intent of exclusive cyclo-oxygenase-2 (COX-2) inhibition to acquire anti-inflammatory activity without the presence of gastric toxicity. Oxadiazole-based novel analogs were designed by using bioisosteric substitutions and were screened against the macromolecular target by using docking-based virtual screening to identify their potential inhibitors. These selective COX-2 inhibitors were further evaluated for their stability within the binding cavity of macromolecular complex by performing molecular dynamic simulation for 100 ns. Selected compounds were synthesized by using Naphthalene-2-yl-acetic acid as a starting material based on the fundamental structure of naphthalene. The naphthalene ring and methylene bridge of naphthalene-2-yl-acetic acid were retained in the rational molecular design by replacing the carboxyl group with biologically significant groups like 1,3,4-oxadiazoles, with the goal of obtaining a novel, superior, and relatively safe anti-inflammatory molecule with better efficacy and optimized pharmacokinetics. Anti-inflammatory as well as analgesic properties of the compounds were evaluated experimentally for their pharmacological efficiency.
Collapse
Affiliation(s)
- Manish Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Isha Rani
- Spurthy College of Pharmacy, Bengaluru, Karnataka, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
11
|
Ahmed MS, Khan IJ, Aman S, Chauhan S, Kaur N, Shriwastav S, Goel K, Saini M, Dhankar S, Singh TG, Dev J, Mujwar S. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2023; 11:380-393. [DOI: 10.18006/2023.11(2).380.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Euphorbia milii Des Moul is a deciduous bush indigenous to Madagascar. The present study aims to investigate the presence of the phytochemical, in-vitro antioxidant and antimicrobial potency, and in-silico computational analysis of ethanolic and aqueous preparations of E. milii leaves and flowers. The ethanolic and aqueous extracts were tested for in-vitro antioxidant activity by DPPH, H2O2, TAC, and FRAP assay. In addition, antimicrobial potentials were assayed by agar well diffusion technique against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans for various clinical isolates. The qualitative phytochemical analysis results confirmed the existence of alkaloids, flavonoids, phenolics, and tannins. The quantitative analysis elicits the availability of a magnificent number of alkaloids, flavonoids, phenolics, flavonols, and tannins. Among all the extracts, aqueous extracts of leaves exhibited potent antioxidant activity in DPPH, FRAP, and H2O2 assay with the IC50 value of 30.70, 60.05, and 82.92µg/mL, respectively. In agar well diffusion assay, all extracts displayed zone of inhibition varies from 2-24mm at different concentrations ranging from 10-320 mg/mL, whereas no activity was observed against Candida albicans. Furthermore, docking-based computational analysis has revealed that beta-sitosterol and taraxerol are the plant's active constituents responsible for their antimicrobial and antioxidant activities. Research findings suggest that the E. milii plant has an excellent prospect for further study for its extended antioxidative and antimicrobial potential. It could be a natural source of various ailments and can be utilized to develop new drugs.
Collapse
|
12
|
Sharma V, Mujwar S, Sharma D, Das R, Kumar Mehta D, Shah K. Computational Design of Plant-Based Antistress Agents Targeting Nociceptin Receptor. Chem Biodivers 2023; 20:e202201038. [PMID: 36644820 DOI: 10.1002/cbdv.202201038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
Stress is the body's reaction to the challenges it faces, and it produces a multitude of chemical molecules known as stressors as a result of these reactions. It's also a misalignment of the sympathetic and parasympathetic nervous systems causing changes in a variety of physiological reactions and perhaps leading to stress disorders. The reduction in neurotransmitter & neurohormonal hormones is mainly governed by the nociceptin receptor as G-protein coupled receptor and increased the level of reactive oxygen species. Various synthetic medicines that target nociceptin receptors were utilized to reduce the effects of stress but they come up with a variety of side effects. Because of the widespread utilization and renewed interest in medicinal herbal plants considered to be alternative antistress therapy. Our present work is an approach to decipher the molecular nature of novel herbal leads by targeting nociceptin receptor, under which herbal compounds were screened and validated through in-silico methods. Among screened leads, withanolide-B showed stable association in the active site of the nociceptin receptor as an antistress agent with no side effects. Furthermore, the selected lead was also evaluated for stability by molecular dynamic stimulation as well as for pharmacokinetics and toxicity profile. It has been concluded stable conformation of withanolide-B without presence of any major toxic effects. As a result, the in silico molecular docking technique is a highly successful method for selecting a prospective herbal lead molecule with respect to a specific target, and future research can pave the way for further exploration in the drug development field.
Collapse
Affiliation(s)
- Vishal Sharma
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, 133207, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Diksha Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Rina Das
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, 133207, India
| | - Dinesh Kumar Mehta
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, 133207, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
13
|
Er-Rajy M, El Fadili M, Mujwar S, Zarougui S, Elhallaoui M. Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:11657-11670. [PMID: 36695085 DOI: 10.1080/07391102.2023.2170471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Tropomyosin receptor kinase (TRK) enzymes are responsible for different types of tumors caused by neurotrophic tyrosine receptor kinase gene fusion and have been identified as an effective target for anticancer therapy. The study of the mechanism between polo-like kinase (PLKs) and pyrazol inhibitors was performed using 3D-QSAR modeling, molecular docking, and MD simulations in order to design high-activity inhibitors. The HQSAR (Q2 = 0.793, R2 = 0.917, R2ext = 0.961), CoMFA (Q2 = 0.582, R2 = 0.722, R2ext = 0.951), CoMSIA/SE (Q2 = 0.603, R2 = 0.801, R2ext = 0.849), and Topomer CoMFA (Q2 = 0.726, R2 = 0.992, R2ext = 0.717) showed good reliability and predictability. All models have been successfully tested by external validation, so all five established models are reliable. The analysis of the different contour maps of different models gives structural information to improve the inhibitory function. Molecular docking results show that the amino acids Met 592, GLU 590, LEU 657, VAL 524, and PHE 589 are the active sites of the tropomyosin receptor TRKs. The results obtained by MD showed that compound 19i could form a more stable complex protein (PDB id: 5KVT). Based on these results, we developed new compounds and their expected inhibitory activities. The results of physicochemical and ADME-Tox properties showed that the four proposed molecules are orally bioavailable, and they are not toxic in the Ames test. Thus, these results would provide modeling information that could help experimental researchers find TRK type I inhibitors more efficiently.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
14
|
Synthesis and anticancer activity of 1,2,4-Benzothiadiazine-1,1-dioxides. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
15
|
Kciuk M, Mujwar S, Rani I, Munjal K, Gielecińska A, Kontek R, Shah K. Computational Bioprospecting Guggulsterone against ADP Ribose Phosphatase of SARS-CoV-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238287. [PMID: 36500379 PMCID: PMC9739500 DOI: 10.3390/molecules27238287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Coronavirus Disease-2019 (COVID-19) is a highly contagious disease caused by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). The World Health Organization (WHO) classified the disease a as global public health hazard on 11 March 2020. Currently, there are no adequate measures to combat viral infections, including COVID-19, and the medication guidelines for the management of COVID-19 are dependent on previous findings from SARS-CoV and MERS-CoV research. Natural products have achieved widespread acceptance around the world as a means of enhancing healthcare and disease prevention. Plants are a potential source of antiviral factors such as flavonoids, phenolic acids, terpenoids, and others. Some of these agents exhibit a broad spectrum of antiviral activity. This study aimed to screen herbal leads for possible inhibitors of the SARS-CoV-2 ADP Ribose Phosphatase enzyme (ARP). Guggulsterone was found to be highly stabilized within the active site of the viral ARP enzyme by molecular dynamic simulation with very little fluctuation throughout the simulation timeframe of 100 ns. Thus, guggulsterone can be further used to develop a safe and competent medication for evolving therapy against SARS-CoV-2 in post-preclinical and clinical trials.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Correspondence:
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India
| | - Isha Rani
- Spurthy College of Pharmacy, Marasur Gate, Bengaluru 562106, Karnataka, India
| | - Kavita Munjal
- Department of Pharmacognosy, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University) Mullana, Ambala 133207, Haryana, India
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
16
|
Shinu P, Sharma M, Gupta GL, Mujwar S, Kandeel M, Kumar M, Nair AB, Goyal M, Singh P, Attimarad M, Venugopala KN, Nagaraja S, Telsang M, Aldhubiab BE, Morsy MA. Computational Design, Synthesis, and Pharmacological Evaluation of Naproxen-Guaiacol Chimera for Gastro-Sparing Anti-Inflammatory Response by Selective COX2 Inhibition. Molecules 2022; 27:molecules27206905. [PMID: 36296501 PMCID: PMC9609004 DOI: 10.3390/molecules27206905] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
The 4-allyl guaiacol is a natural phenolic molecule that has been widely studied for its antioxidant capacity against reactive-oxygen-species-mediated cellular damage. Therefore, we hypothesized that concomitant use of an antioxidant and NSAID may decrease the risk of gastrointestinal toxicity and make the therapy safer. To address the gastrointestinal toxicity of conventional NSAIDs, a new S-naproxen-4-allyl guaiacol chimera (MAS-1696) was computationally developed, chemically synthesized, and tested for anti-inflammatory effectiveness and gastrointestinal safety. The inhibitory potency of MAS-1696 tested against cyclooxygenase-2 (COX2), 15-lipoxygenase-2 (15-LOX2), and lipoxygenase-5 (5-LOX) in vitro revealed a stronger inhibition of COX2. Furthermore, the MAS-1696 chimera increased the COX selectivity index by 23% as compared to the parent compound naproxen, implying higher efficacy and gastric safety. In vivo data showed that MAS-1696 was less likely to cause gastrointestinal harm than naproxen while also exerting anti-inflammatory and analgesic effects equivalent to or superior to naproxen. In conclusion, MAS-1696 is orally active, bio-labile, and crystalline, making it a medication that may be administered orally.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (P.S.); (M.S.); Tel.: +966-551732794 (P.S.)
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
- Correspondence: (P.S.); (M.S.); Tel.: +966-551732794 (P.S.)
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala 133201, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Purna Singh
- Department of Physiology, College of Medicine, Saint James School of Medicine, The Valley 3872, Anguilla
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Chemistry, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Mallikarjun Telsang
- Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
17
|
Kovalev IS, Zyryanov GV, Santra S, Majee A, Varaksin MV, Charushin VN. Folic Acid Antimetabolites (Antifolates): A Brief Review on Synthetic Strategies and Application Opportunities. Molecules 2022; 27:molecules27196229. [PMID: 36234766 PMCID: PMC9573478 DOI: 10.3390/molecules27196229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Antimetabolites of folic acid represent a large group of drugs and drug candidates, including those for cancer chemotherapy. In this current review, the most common methods and approaches are presented for the synthesis of therapeutically significant antimetabolites of folic acid, which are Methotrexate (MTX), Raltitrexed (Tomudex, ZD1694), Pralatrexate, Pemetrexed, TNP-351, and Lometrexol. In addition, the applications or uses of these folic acid antimetabolites are also discussed.
Collapse
Affiliation(s)
- Igor S. Kovalev
- Department of Organic & Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 620219 Yekaterinburg, Russia
- Correspondence: or (G.V.Z.); (A.M.)
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
- Correspondence: or (G.V.Z.); (A.M.)
| | - Mikhail V. Varaksin
- Department of Organic & Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 620219 Yekaterinburg, Russia
| | - Valery N. Charushin
- Department of Organic & Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 620219 Yekaterinburg, Russia
| |
Collapse
|