1
|
Stevens MJ, Rempe SLB. Binding of carboxylate and water to monovalent cations. Phys Chem Chem Phys 2023; 25:29881-29893. [PMID: 37889481 DOI: 10.1039/d3cp04200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The interactions of carboxylate anions with water and cations are important for a wide variety of systems, both biological and synthetic. To gain insight on properties of the local complexes, we apply density functional theory, to treat the complex electrostatic interactions, and investigate mixtures with varied numbers of carboxylate anions (acetate) and waters binding to monovalent cations, Li+, Na+ and K+. The optimal structure with overall lowest free energy contains two acetates and two waters such that the cation is four-fold coordinated, similar to structures found earlier for pure water or pure carboxylate ligands. More generally, the complexes with two acetates have the lowest free energy. In transitioning from the overall optimal state, exchanging an acetate for water has a lower free energy barrier than exchanging water for an acetate. In most cases, the carboxylates are monodentate and in the first solvation shell. As water is added to the system, hydrogen bonding between waters and carboxylate O atoms further stabilizes monodentate structures. These structures, which have strong electrostatic interactions that involve hydrogen bonds of varying strength, are significantly polarized, with ChelpG partial charges that vary substantially as the bonding geometry varies. Overall, these results emphasize the increasing importance of water as a component of binding sites as the number of ligands increases, thus affecting the preferential solvation of specific metal ions and clarifying Hofmeister effects. Finally, structural analysis correlated with free energy analysis supports the idea that binding to more than the preferred number of carboxylates under architectural constraints are a key to ion transport.
Collapse
Affiliation(s)
- Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Susan L B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| |
Collapse
|
2
|
Mayer A, Mariani A, Dong X, Vansse G, Theato P, Iojoiu C, Passerini S, Bresser D. Bisphenol-Derived Single-Ion Conducting Multiblock Copolymers as Lithium Battery Electrolytes: Impact of the Bisphenol Building Block. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Alexander Mayer
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Alessandro Mariani
- Department of Science and Engineering of Materials, Environment, and Urban Planning (SIMAU), Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Xu Dong
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Grégoire Vansse
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, UMR5279, 38000 Grenoble, France
| | - Patrick Theato
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, Engesser Str. 18, 76131 Karlsruhe, Germany
| | - Cristina Iojoiu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, UMR5279, 38000 Grenoble, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459, 80039 Amiens, France
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Dominic Bresser
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
3
|
Wen K, Xin C, Guan S, Wu X, He S, Xue C, Liu S, Shen Y, Li L, Nan CW. Ion-Dipole Interaction Regulation Enables High-Performance Single-Ion Polymer Conductors for Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202143. [PMID: 35726177 DOI: 10.1002/adma.202202143] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Solid polymer electrolytes with large ionic conductivity, high ionic transference number, and good interfacial compatibility with electrodes are highly desired for solid-state batteries. However, unwanted polarizations and side reactions occurring in traditional dual-ion polymer conductors hinder their practical applications. Here, single-ion polymer conductors (SIPCs) with exceptional selectivity for Li-ion conduction (Li-ion transference number up to 0.93), high room-temperature ionic conductivity of about 10-4 S cm-1 , and a wide electrochemical stability window (>4.5 V, vs Li/Li+ ) are prepared by precisely regulating the ion-dipole interactions between Li+ and carbonyl/cyano groups. The resulting SIPCs show an excellent electrochemical stability with Li metal during long-term cycling at room temperature and 60 °C. LiFePO4 -based solid-state cells containing the SIPCs exhibit good rate and cycling performance in a wide temperature range from -20 to 90 °C. By the same way of ion-dipole interaction regulation, sodium- and potassium-based SIPCs with both high ionic conductivity and high cationic transference numbers are also prepared. The findings in this work provide guidance for the development of high-performance SIPCs and other metal-ion systems beyond Li+ .
Collapse
Affiliation(s)
- Kaihua Wen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chengzhou Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shundong Guan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinbin Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shan He
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chuanjiao Xue
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Sijie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Liangliang Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Mayer A, Nguyen HD, Mariani A, Diemant T, Lyonnard S, Iojoiu C, Passerini S, Bresser D. Influence of Polymer Backbone Fluorination on the Electrochemical Behavior of Single-Ion Conducting Multiblock Copolymer Electrolytes. ACS Macro Lett 2022; 11:982-990. [PMID: 35833851 DOI: 10.1021/acsmacrolett.2c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of fluorine, especially in the electrolyte, frequently has a beneficial effect on the performance of lithium batteries owing to, for instance, the stabilization of the interfaces and interphases with the positive and negative electrodes. However, the presence of fluorine is also associated with reduced recyclability and low biodegradability. Herein, we present a single-ion conducting multiblock copolymer electrolyte comprising a fluorine-free backbone and compare it with the fluorinated analogue reported earlier. Following a comprehensive physicochemical and electrochemical characterization of the copolymer with the fluorine-free backbone, the focus of the comparison with the fluorinated analogue was particularly on the electrochemical stability toward oxidation and reduction as well as the reactions occurring at the interface with the lithium-metal electrode. To deconvolute the impact of the fluorine in the ionic side chain and the copolymer backbone, suitable model compounds were identified and studied experimentally and theoretically. The results show that the absence of fluorine in the backbone has little impact on the basic electrochemical properties, such as the ionic conductivity, but severely affects the electrochemical stability and interfacial stability. The results highlight the need for a very careful design of the whole polymer for each desired application, essentially, just like for liquid electrolytes.
Collapse
Affiliation(s)
- Alexander Mayer
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Huu-Dat Nguyen
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, UMR5279, 38000 Grenoble, France
| | - Alessandro Mariani
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Thomas Diemant
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Sandrine Lyonnard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Cristina Iojoiu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, UMR5279, 38000 Grenoble, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039 Amiens Cedex, France
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Dominic Bresser
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
5
|
Recent development in the field of ceramics solid-state electrolytes: I—oxide ceramic solid-state electrolytes. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Chen YH, Hsieh YC, Liu KL, Wichmann L, Thienenkamp JH, Choudhary A, Bedrov D, Winter M, Brunklaus G. Green Polymer Electrolytes Based on Polycaprolactones for Solid-State High-Voltage Lithium Metal Batteries. Macromol Rapid Commun 2022; 43:e2200335. [PMID: 35726135 DOI: 10.1002/marc.202200335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Indexed: 11/05/2022]
Abstract
Solid polymer electrolytes (SPEs) have attracted considerable attention for high energy solid-state lithium metal batteries (LMBs). In this work, potentially ecofriendly, solid-state poly(ε-caprolactone) (PCL)-based star polymer electrolytes with cross-linked structures (xBt-PCL) are introduced that robustly cycle against LiNi0.6 Mn0.2 Co0.2 O2 (NMC622) composite cathodes, affording long-term stability even at higher current densities. Their superior features allow for sufficient suppression of dendritic lithium deposits, as monitored by 7 Li solid-state NMR. Advantageous electrolyte|electrode interfacial properties derived from cathode impregnation with 1.5 wt% PCL enable decent cell performance until up to 500 cycles at rates of 1C (60 °C), illustrating the high potential of PCL-based SPEs for application in high-voltage LMBs.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- Helmholtz Institute Münster
- IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149, Münster, Germany
| | - Yi-Chen Hsieh
- Helmholtz Institute Münster
- IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149, Münster, Germany
| | - Kun Ling Liu
- Helmholtz Institute Münster
- IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149, Münster, Germany
| | - Lennart Wichmann
- Helmholtz Institute Münster
- IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149, Münster, Germany
| | | | - Aditya Choudhary
- Department of Materials Science and Engineering, University of Utah, 122 S. Central Campus Dr., Salt Lake City, UT, 84112, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 S. Central Campus Dr., Salt Lake City, UT, 84112, USA
| | - Martin Winter
- Helmholtz Institute Münster
- IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149, Münster, Germany.,MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, 48149, Münster, Germany
| | - Gunther Brunklaus
- Helmholtz Institute Münster
- IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149, Münster, Germany
| |
Collapse
|
7
|
Xiong Q, Huang G, Yu Y, Li CL, Li JC, Yan JM, Zhang XB. Soluble and Perfluorinated Polyelectrolyte for Safe and High-Performance Li-O 2 Batteries. Angew Chem Int Ed Engl 2022; 61:e202116635. [PMID: 35274415 DOI: 10.1002/anie.202116635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/07/2022]
Abstract
The severe performance degradation of high-capacity Li-O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm-1 ), but also the perfluorinated anion of LN produces a LiF-rich SEI for protecting the Li anode from dendrite growth. Thus, the Li-O2 battery with a LN-based electrolyte achieves an all-round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g-1 ), and excellent cycling performance (225 cycles). Besides, the fabricated pouch-type Li-air cells exhibit promising applications to power electronic equipment with satisfactory safety.
Collapse
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chao-Le Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jian-Chen Li
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jun-Min Yan
- Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
|
9
|
Xiong Q, Huang G, Yu Y, Li C, Li J, Yan J, Zhang X. Soluble and Perfluorinated Polyelectrolyte for Safe and High‐Performance Li−O
2
Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Xiong
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chao‐Le Li
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jian‐Chen Li
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Jun‐Min Yan
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Xin‐Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
10
|
Shielding the electrostatic attraction by design of zwitterionic single ion conducting polymer electrolyte with high dielectric constant. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Sotoudeh M, Groß A. Descriptor and Scaling Relations for Ion Mobility in Crystalline Solids. JACS AU 2022; 2:463-471. [PMID: 35252995 PMCID: PMC8889558 DOI: 10.1021/jacsau.1c00505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 05/27/2023]
Abstract
Ion mobility is a critical performance parameter not only in electrochemical energy storage and conversion but also in other electrochemical devices. On the basis of first-principles electronic structure calculations, we have derived a descriptor for the ion mobility in battery electrodes and solid electrolytes. This descriptor is entirely composed of observables that are easily accessible: ionic radii, oxidation states, and the Pauling electronegativities of the involved species. Within a particular class of materials, the migration barriers are connected to this descriptor through linear scaling relations upon the variation of either the cation chemistry of the charge carriers or the anion chemistry of the host lattice. The validity of these scaling relations indicates that a purely ionic view falls short of capturing all factors influencing ion mobility in solids. The identification of these scaling relations has the potential to significantly accelerate the discovery of materials with desired mobility properties.
Collapse
Affiliation(s)
- Mohsen Sotoudeh
- Institute
of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Axel Groß
- Institute
of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz
Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89069 Ulm, Germany
| |
Collapse
|
12
|
Nguyen N, Blatt MP, Kim K, Hallinan DT, Kennemur JG. Investigating miscibility and lithium ion transport in blends of poly(ethylene oxide) with a polyanion containing precisely-spaced delocalized charges. Polym Chem 2022. [DOI: 10.1039/d2py00605g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synthesis of a precision single ion conductor with a phenylsulfonyl (TFSI) lithium salt pendant at every 5th carbon is reported and miscibility, conductivity, and transference studies are performed upon blending with PEO at varying compositions.
Collapse
Affiliation(s)
- Nam Nguyen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| | - Michael Patrick Blatt
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Kyoungmin Kim
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Guzmán‐González G, Vauthier S, Alvarez‐Tirado M, Cotte S, Castro L, Guéguen A, Casado N, Mecerreyes D. Single‐Ion Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gregorio Guzmán‐González
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Soline Vauthier
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 20018 Donostia-San Sebastián Spain
- Advanced Material Research Battery & Fuel Cell Toyota Motor Europe Research & Development 1 1930 Zaventem Belgium
| | - Marta Alvarez‐Tirado
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 20018 Donostia-San Sebastián Spain
- Advanced Material Research Battery & Fuel Cell Toyota Motor Europe Research & Development 1 1930 Zaventem Belgium
| | - Stéphane Cotte
- Advanced Material Research Battery & Fuel Cell Toyota Motor Europe Research & Development 1 1930 Zaventem Belgium
| | - Laurent Castro
- Advanced Material Research Battery & Fuel Cell Toyota Motor Europe Research & Development 1 1930 Zaventem Belgium
| | - Aurélie Guéguen
- Advanced Material Research Battery & Fuel Cell Toyota Motor Europe Research & Development 1 1930 Zaventem Belgium
| | - Nerea Casado
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 20018 Donostia-San Sebastián Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
14
|
Guzmán-González G, Vauthier S, Alvarez-Tirado M, Cotte S, Castro L, Guéguen A, Casado N, Mecerreyes D. Single-Ion Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups. Angew Chem Int Ed Engl 2021; 61:e202114024. [PMID: 34913231 PMCID: PMC9306921 DOI: 10.1002/anie.202114024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 11/29/2022]
Abstract
A family of single‐ion lithium conducting polymer electrolytes based on highly delocalized borate groups is reported. The effect of the nature of the substituents on the boron atom on the ionic conductivity of the resultant methacrylic polymers was analyzed. To the best of our knowledge the lithium borate polymers endowed with flexible and electron‐withdrawing substituents presents the highest ionic conductivity reported for a lithium single‐ion conducting homopolymer (1.65×10−4 S cm−1 at 60 °C). This together with its high lithium transference number tLi+
=0.93 and electrochemical stability window of 4.2 V vs Li0/Li+ show promise for application in lithium batteries. To illustrate this, a lithium borate monomer was integrated into a single‐ion gel polymer electrolyte which showed good performance on lithium symmetrical cells (<0.85 V at ±0.2 mA cm−2 for 175 h).
Collapse
Affiliation(s)
- Gregorio Guzmán-González
- POLYMAT University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Soline Vauthier
- POLYMAT University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia-San Sebastián, Spain.,Advanced Material Research, Battery & Fuel Cell, Toyota Motor Europe Research & Development 1, 1930, Zaventem, Belgium
| | - Marta Alvarez-Tirado
- POLYMAT University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia-San Sebastián, Spain.,Advanced Material Research, Battery & Fuel Cell, Toyota Motor Europe Research & Development 1, 1930, Zaventem, Belgium
| | - Stéphane Cotte
- Advanced Material Research, Battery & Fuel Cell, Toyota Motor Europe Research & Development 1, 1930, Zaventem, Belgium
| | - Laurent Castro
- Advanced Material Research, Battery & Fuel Cell, Toyota Motor Europe Research & Development 1, 1930, Zaventem, Belgium
| | - Aurélie Guéguen
- Advanced Material Research, Battery & Fuel Cell, Toyota Motor Europe Research & Development 1, 1930, Zaventem, Belgium
| | - Nerea Casado
- POLYMAT University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
15
|
Affiliation(s)
- Michael Patrick Blatt
- Florida A&M University-Florida State University (FAMU-FSU) College of Engineering, Tallahassee, Florida 32310, United States
| | - Daniel T. Hallinan
- Florida A&M University-Florida State University (FAMU-FSU) College of Engineering, Tallahassee, Florida 32310, United States
| |
Collapse
|
16
|
Ben‐Barak I, Ragones H, Golodnitsky D. 3D printable solid and quasi‐solid electrolytes for advanced batteries. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ido Ben‐Barak
- School of Chemistry Tel Aviv University Tel Aviv Israel
| | - Heftsi Ragones
- School of Chemistry Tel Aviv University Tel Aviv Israel
- Faculty of Engineering Holon Institute of Technology Holon Israel
| | | |
Collapse
|
17
|
Mayer A, Steinle D, Passerini S, Bresser D. Block copolymers as (single-ion conducting) lithium battery electrolytes. NANOTECHNOLOGY 2021; 33:062002. [PMID: 34624873 DOI: 10.1088/1361-6528/ac2e21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Solid-state batteries are considered the next big step towards the realization of intrinsically safer high-energy lithium batteries for the steadily increasing implementation of this technology in electronic devices and particularly, electric vehicles. However, so far only electrolytes based on poly(ethylene oxide) have been successfully commercialized despite their limited stability towards oxidation and low ionic conductivity at room temperature. Block copolymer (BCP) electrolytes are believed to provide significant advantages thanks to their tailorable properties. Thus, research activities in this field have been continuously expanding in recent years with great progress to enhance their performance and deepen the understanding towards the interplay between their chemistry, structure, electrochemical properties, and charge transport mechanism. Herein, we review this progress with a specific focus on the block-copolymer nanostructure and ionic conductivity, the latest works, as well as the early studies that are fr"equently overlooked by researchers newly entering this field. Moreover, we discuss the impact of adding a lithium salt in comparison to single-ion conducting BCP electrolytes along with the encouraging features of these materials and the remaining challenges that are yet to be solved.
Collapse
Affiliation(s)
- Alexander Mayer
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), PO Box 3640, D-76021 Karlsruhe, Germany
| | - Dominik Steinle
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), PO Box 3640, D-76021 Karlsruhe, Germany
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), PO Box 3640, D-76021 Karlsruhe, Germany
| | - Dominic Bresser
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), PO Box 3640, D-76021 Karlsruhe, Germany
| |
Collapse
|
18
|
In-situ UV cured acrylonitrile grafted epoxidized natural rubber (ACN-g-ENR) – LiTFSI solid polymer electrolytes for lithium-ion rechargeable batteries. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Siekierski M, Bukat M, Ciosek M, Piszcz M, Mroczkowska-Szerszeń M. Transference Number Determination in Poor-Dissociated Low Dielectric Constant Lithium and Protonic Electrolytes. Polymers (Basel) 2021; 13:895. [PMID: 33799483 PMCID: PMC8061776 DOI: 10.3390/polym13060895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Whereas the major potential of the development of lithium-based cells is commonly attributed to the use of solid polymer electrolytes (SPE) to replace liquid ones, the possibilities of the improvement of the applicability of the fuel cell is often attributed to the novel electrolytic materials belonging to various structural families. In both cases, the transport properties of the electrolytes significantly affect the operational parameters of the galvanic and fuel cells incorporating them. Amongst them, the transference number (TN) of the electrochemically active species (usually cations) is, on the one hand, one of the most significant descriptors of the resulting cell operational efficiency while on the other, despite many years of investigation, it remains the worst definable and determinable material parameter. The paper delivers not only an extensive review of the development of the TN determination methodology but as well tries to show the physicochemical nature of the discrepancies observed between the values determined using various approaches for the same systems of interest. The provided critical review is supported by some original experimental data gathered for composite polymeric systems incorporating both inorganic and organic dispersed phases. It as well explains the physical sense of the negative transference number values resulting from some more elaborated approaches for highly associated systems.
Collapse
Affiliation(s)
- Maciej Siekierski
- Faculty of Chemistry, Inorganic Chemistry and Solid State Technology Division, Warsaw University of Technology, Noakowskiego 3 Str., 00-664 Warsaw, Poland; (M.B.); (M.C.); (M.P.)
| | - Marcin Bukat
- Faculty of Chemistry, Inorganic Chemistry and Solid State Technology Division, Warsaw University of Technology, Noakowskiego 3 Str., 00-664 Warsaw, Poland; (M.B.); (M.C.); (M.P.)
| | - Marcin Ciosek
- Faculty of Chemistry, Inorganic Chemistry and Solid State Technology Division, Warsaw University of Technology, Noakowskiego 3 Str., 00-664 Warsaw, Poland; (M.B.); (M.C.); (M.P.)
| | - Michał Piszcz
- Faculty of Chemistry, Inorganic Chemistry and Solid State Technology Division, Warsaw University of Technology, Noakowskiego 3 Str., 00-664 Warsaw, Poland; (M.B.); (M.C.); (M.P.)
| | | |
Collapse
|
20
|
Chen Y, Li C, Ye D, Zhang Y, Bao H, Cheng H. Lithiated polyanion supported Li1.5Al0.5Ge1.5(PO4)3 composite membrane as single-ion conducting electrolyte for security and stability advancement in lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Dey A, Ramlal VR, Sankar SS, Mahapatra TS, Suresh E, Kundu S, Mandal AK, Das A. Crystalline Free-Standing Two-Dimensional Zwitterionic Organic Nanosheets for Efficient Conduction of Lithium Ions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58122-58131. [PMID: 33331153 DOI: 10.1021/acsami.0c17683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crystalline two-dimensional organic nanosheets (2D-ONs) having atomic or near-atomic thickness with infinite lateral dimensions are of crucial significance for their possible application as a material for energy storage. The presence of nanofluidic channels with a designed array of molecular interlayers in such 2D-ONs, for a favorable lithium-ion transport, has special significance for improving the efficacy of lithium-ion batteries. However, the rational design of crystalline 2D-ONs remains a challenge because of the lack of appropriate monomers and convenient preparation methods. Herein, we report a unique lithium-ion conducting behavior of zwitterionic 2D-ONs, formed through self-assembly of a small organic molecule AM-1. Different microscopic studies confirm the near-atomic thickness (∼3.5 nm) of these 2D-ONs. Results of the single-crystal X-ray diffraction studies confirm the presence of a one-dimensional (1D) channel in crystalline 2D-ONs, which was generated during the self-assembly process of the zwitterionic monomer scaffold. The presence of immobilized ionic centers with well-defined directional channels in the 2D-ONs favors the transportation of lithium ions with a room-temperature lithium-ion conductivity of 5.14 × 10-5 S cm-1, which is rather unique for self-assembled 2D-ONs.
Collapse
Affiliation(s)
- Ananta Dey
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Vishwakarma Ravikumar Ramlal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Selvasundarasekar Sam Sankar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Tufan Singha Mahapatra
- ICFAI Science School (Chemistry), ICFAI University Tripura, Agartala 799210 Tripura (W), India
| | - Eringathodi Suresh
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Amitava Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246 West Bengal, India
| |
Collapse
|
22
|
Fong KD, Self J, McCloskey BD, Persson KA. Onsager Transport Coefficients and Transference Numbers in Polyelectrolyte Solutions and Polymerized Ionic Liquids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kara D. Fong
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720-1900, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julian Self
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720-1900, United States
| | - Bryan D. McCloskey
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720-1900, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kristin A. Persson
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720-1900, United States
| |
Collapse
|
23
|
Voropaeva DY, Novikova SA, Yaroslavtsev AB. Polymer electrolytes for metal-ion batteries. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4956] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of studies on polymer electrolytes for metal-ion batteries are analyzed and generalized. Progress in this field of research is driven by the need for solid-state batteries characterized by safety and stable operation. At present, a number of polymer electrolytes with a conductivity of at least 10−4 S cm−1 at 25 °C were synthesized. Main types of polymer electrolytes are described, viz., polymer/salt electrolytes, composite polymer electrolytes containing inorganic particles and anion acceptors, and polymer electrolytes based on cation-exchange membranes. Ion transport mechanisms and various methods for increasing the ionic conductivity in these systems are discussed. Prospects of application of polymer electrolytes in lithium- and sodium-ion batteries are outlined.
The bibliography includes 349 references.
Collapse
|
24
|
Bollinger JA, Stevens MJ, Frischknecht AL. Quantifying Single-Ion Transport in Percolated Ionic Aggregates of Polymer Melts. ACS Macro Lett 2020; 9:583-587. [PMID: 35648490 DOI: 10.1021/acsmacrolett.0c00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Single-ion conducting polymers such as ionomers are promising battery electrolyte materials, but it is critical to understand how rates and mechanisms of free cation transport depend on the nanoscale aggregation of cations and polymer-bound anions. We perform coarse-grained molecular dynamics simulations of ionomer melts to understand cation mobility as a function of polymer architecture, background relative permittivity, and corresponding ionic aggregate morphology. In systems exhibiting percolated ionic aggregates, cations diffuse via stepping motions along the ionic aggregates. These diffusivities can be quantitatively predicted by calculating the lifetimes of continuous association between oppositely charged ions, which equal the time scales of the stepping (diffusive) motions. In contrast, predicting cation diffusivity for systems with isolated ionic aggregates requires another time scale. Our results suggest that to improve conductivity the Coulombic interaction strength should be strong enough to favor percolated aggregates but weak enough to facilitate ion dissociation.
Collapse
Affiliation(s)
- Jonathan A. Bollinger
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark J. Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Amalie L. Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
25
|
Wang X, Peng L, Hua H, Liu Y, Zhang P, Zhao J. Magnesium Borate Fiber Coating Separators with High Lithium‐Ion Transference Number for Lithium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.201901916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Wang
- State Key Lab of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials Engineering Research Center of Electrochemical Technology Ministry of Education, State-Province Joint Engineering Laboratory of Power SourceTechnology for New Energy Vehicle College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R.China
| | - Longqing Peng
- State Key Lab of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials Engineering Research Center of Electrochemical Technology Ministry of Education, State-Province Joint Engineering Laboratory of Power SourceTechnology for New Energy Vehicle College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R.China
| | - Haiming Hua
- State Key Lab of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials Engineering Research Center of Electrochemical Technology Ministry of Education, State-Province Joint Engineering Laboratory of Power SourceTechnology for New Energy Vehicle College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R.China
| | - Yizheng Liu
- College of EnergyXiamen University Xiamen 361005 P.R. China
| | - Peng Zhang
- College of EnergyXiamen University Xiamen 361005 P.R. China
| | - Jinbao Zhao
- State Key Lab of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials Engineering Research Center of Electrochemical Technology Ministry of Education, State-Province Joint Engineering Laboratory of Power SourceTechnology for New Energy Vehicle College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R.China
- College of EnergyXiamen University Xiamen 361005 P.R. China
| |
Collapse
|
26
|
Mauger A, Julien CM, Paolella A, Armand M, Zaghib K. Building Better Batteries in the Solid State: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3892. [PMID: 31775348 PMCID: PMC6926585 DOI: 10.3390/ma12233892] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O2, and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Collapse
Affiliation(s)
- Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France;
| | - Andrea Paolella
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada;
| | - Michel Armand
- CIC Energigune, Parque Tecnol Alava, 01510 Minano, Spain;
| | - Karim Zaghib
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada;
| |
Collapse
|
27
|
Roode-Gutzmer QI, Holderied LN, Glasneck F, Kersting B, Fröhlich P, Bertau M. Scaling up the Synthesis of a Hydroxyquinoline-Functionalized p-tert-Butylcalix[4]arene. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quirina I. Roode-Gutzmer
- Institute of Chemical Technology, Freiberg University of Mining and Technology, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Lara N. Holderied
- Institute of Chemical Technology, Freiberg University of Mining and Technology, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Florian Glasneck
- Institute for Inorganic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Berthold Kersting
- Institute for Inorganic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Peter Fröhlich
- Institute of Chemical Technology, Freiberg University of Mining and Technology, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Martin Bertau
- Institute of Chemical Technology, Freiberg University of Mining and Technology, Leipziger Straße 29, 09599 Freiberg, Germany
| |
Collapse
|
28
|
Cao C, Li Y, Chen S, Peng C, Li Z, Tang L, Feng Y, Feng W. Electrolyte-Solvent-Modified Alternating Copolymer as a Single-Ion Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35683-35692. [PMID: 31498586 DOI: 10.1021/acsami.9b10595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant progress has been made to replace graphite anode materials with Li metal in next-generation Li ion batteries, called Li metal batteries (LMBs). However, the development of practical LMBs requires the suppression of Li dendrites. Owing to their ability to relax polarization, single-ion solid polymer electrolytes (SSPEs) are widely considered as an effective strategy for preventing dendrite generation. The novel SSPE membrane prepared in this work, which consists of a polymeric lithium salt modified with an electrolyte solvent, shows single-ion conducting behavior that results in the effective restriction of Li dendritic growth. The SSPE membrane delivers an ionic conductivity as high as 1.42 × 10-4 S cm-1 at room temperature. A LiFePO4 (LFP) coin cell assembled with the SSPE membrane shows excellent rate performance and outstanding cycling stability. In addition, the LFP flexible battery using the SSPE membrane exhibits good practicability and environmental adaptability.
Collapse
Affiliation(s)
- Chen Cao
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
| | - Yu Li
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
- Key Laboratory of Advanced Ceramics and Machining Technology , Ministry of Education , Tianjin 300354 , China
- Tianjin Key Laboratory of Composite and Functional Materials , Tianjin 300354 , China
| | - Shaoshan Chen
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
| | - Cong Peng
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
| | - Zeyu Li
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
| | - Lin Tang
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
| | - Yiyu Feng
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
- Key Laboratory of Advanced Ceramics and Machining Technology , Ministry of Education , Tianjin 300354 , China
- Tianjin Key Laboratory of Composite and Functional Materials , Tianjin 300354 , China
| | - Wei Feng
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , China
- Key Laboratory of Advanced Ceramics and Machining Technology , Ministry of Education , Tianjin 300354 , China
- Tianjin Key Laboratory of Composite and Functional Materials , Tianjin 300354 , China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300354 , China
| |
Collapse
|
29
|
Gunday ST, Kamal AZ, Almessiere MA, Çelik SÜ, Bozkurt A. An investigation of lithium ion conductivity of copolymers based on P(AMPS‐co‐PEGMA). J Appl Polym Sci 2019. [DOI: 10.1002/app.47798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Seyda T. Gunday
- Department of Physics, Institute for Research & Medical ConsultationsImam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | | | - Munirah A. Almessiere
- Department of Physics, Institute for Research & Medical ConsultationsImam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
- Department of PhysicsCollege of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Sevim Ü Çelik
- Freiburg Institute for Advanced StudiesUniversity of Freiburg, Albert Street 19, 79104 Freiburg Germany
| | - Ayhan Bozkurt
- Department of Physics, Institute for Research & Medical ConsultationsImam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| |
Collapse
|
30
|
Nederstedt H, Jannasch P. Single-ion conducting polymer electrolytes with alternating ionic mesogen-like moieties interconnected by poly(ethylene oxide) segments. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Fei Y, Liu S, Long Y, Lu L, He Y, Ma X, Deng Y. Single Lithium‐ion Solid Conductors Based on Tetrazolate Anion and −Si−O− Species with Polyethylene Glycol Chains. ChemElectroChem 2019. [DOI: 10.1002/celc.201900274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuqing Fei
- Centre for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 PR China
- University of Chinese Academy of Sciences Beijing 100039 PR China
| | - Shimin Liu
- Centre for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 PR China
| | - Yan Long
- Centre for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 PR China
- University of Chinese Academy of Sciences Beijing 100039 PR China
| | - Liujin Lu
- Centre for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 PR China
| | - Yude He
- Centre for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 PR China
| | - Xiangyuan Ma
- Centre for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 PR China
| | - Youquan Deng
- Centre for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory for Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 PR China
| |
Collapse
|
32
|
Meabe L, Huynh TV, Mantione D, Porcarelli L, Li C, O'Dell LA, Sardon H, Armand M, Forsyth M, Mecerreyes D. UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Schneider H, Sedlmaier SJ, Du H, Kelley T, Leitner K, ter Maat J, Scordilis‐Kelley C, Mudalige A, Kulisch J, Schneider L. Stabilization of Highly Conductive Lithium Argyrodites by Means of Lithium Substitution: The Case of Li
6
Fe
0.5
PS
6. ChemistrySelect 2019. [DOI: 10.1002/slct.201803388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Stefan J. Sedlmaier
- BELLABatteries and Electrochemistry LaboratoryKarlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Hui Du
- Sion Power Corporation, Tucson, AZ 85756 USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen Y, Xu G, Liu X, Pan Q, Zhang Y, Zeng D, Sun Y, Ke H, Cheng H. A gel single ion conducting polymer electrolyte enables durable and safe lithium ion batteries via graft polymerization. RSC Adv 2018; 8:39967-39975. [PMID: 35558216 PMCID: PMC9091187 DOI: 10.1039/c8ra07557c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Concentration polarization issues and lithium dendrite formation, which associate inherently with the commercial dual-ion electrolytes, restrict the performance of lithium ion batteries. Single ion conducting polymer electrolytes (SIPEs) with high lithium ion transference numbers (t + ≈ 1) are being intensively studied to circumvent these issues. Herein, poly(ethylene-co-vinyl alcohol) (EVOH) is chosen as the backbone and then grafted with lithium 3-chloropropanesulfonyl(trifluoromethanesulfonyl)imide (LiCPSI) via Williamson's reaction, resulting in a side-chain-grafted single ion polymer conductor (EVOH-graft-LiCPSI). The ionomer is further blended with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) by solution casting for practical use. The SIPE membrane with ethylene carbonate and dimethyl carbonate (EC/DMC = 1 : 1, v/v) as plasticizer (i.e., gel SIPE) exhibits an ionic conductivity of 5.7 × 10-5 S cm-1, a lithium ion transference number of 0.88, a wide electrochemical window of 4.8 V (vs. Li/Li+) and adequate mechanical strength. Finally, the gel SIPE is applied in a lithium ion battery as the electrolyte as well as the separator, delivering an initial discharge capacity of 100 mA h g-1 at 1C which remains at 95 mA h g-1 after 500 cycles.
Collapse
Affiliation(s)
- Yazhou Chen
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| | - Guodong Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University No. 2, Xiwang Avenue Yancheng 224007 Jiangsu Province China
| | - Xupo Liu
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| | - Qiyun Pan
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| | - Yunfeng Zhang
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| | - Danli Zeng
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| | - Yubao Sun
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| | - Hanzhong Ke
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| | - Hansong Cheng
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan) 388 Lumo RD Wuhan 430074 China +86 13377851282
| |
Collapse
|
35
|
Walke P, Freitag KM, Kirchhain H, Kaiser M, van Wüllen L, Nilges T. Electrospun Li(TFSI)@Polyethylene Oxide Membranes as Solid Electrolytes. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Patrick Walke
- Synthesis and Characterization of Innovative Materials Group; Department of Chemistry; Technical University of Munich; Lichtenbergstrasse 4 85748 Garching b. München Germany
| | - Katharina M. Freitag
- Synthesis and Characterization of Innovative Materials Group; Department of Chemistry; Technical University of Munich; Lichtenbergstrasse 4 85748 Garching b. München Germany
| | - Holger Kirchhain
- Institute of Physics; Augsburg University; Universitätsstrasse 1 86159 Augsburg Germany
| | - Matthias Kaiser
- Institute of Physics; Augsburg University; Universitätsstrasse 1 86159 Augsburg Germany
| | - Leo van Wüllen
- Institute of Physics; Augsburg University; Universitätsstrasse 1 86159 Augsburg Germany
| | - Tom Nilges
- Synthesis and Characterization of Innovative Materials Group; Department of Chemistry; Technical University of Munich; Lichtenbergstrasse 4 85748 Garching b. München Germany
| |
Collapse
|
36
|
Guzmán-González G, Ávila-Paredes HJ, Rivera E, González I. Electrochemical Characterization of Single Lithium-Ion Conducting Polymer Electrolytes Based on sp 3 Boron and Poly(ethylene glycol) Bridges. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30247-30256. [PMID: 30113816 DOI: 10.1021/acsami.8b02519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel series of single lithium-ion conducting polymer electrolytes (SLICPE) based on sp3 boron and poly(ethylene glycol) (PEG) bridges is presented, in the context of the development of a new generation of batteries, with the aim to overcome the problems related to concentration overpotential and low ion transport numbers in conventional solid polymer electrolytes (SPE). The phase separation generated by the physical mixture of SPE with plasticizers such as poly(ethylene oxide) is still a serious problem. In this work, the use of PEG with different chain lengths, for the polycondensation reaction with LiB(OCH3)4, to synthesize SLICPE allows preventing phase separation while tuning the predominant conduction mechanism, and thus the electrical properties, especially the lithium-ion transference number. The ionic transport is promoted by chain mobility as the chain length is increased. SLICPE with the best ionic conductivity values (4.95 ± 0.05) × 10-6 S cm-1 was the one synthesized from poly(ethylene glycol) with an average MN of 400 (BEG8), having an O/Li+ ratio of 20. The lithium transference number ( tLi+) and electrochemical stability window of SLICPE membranes at 25 °C decreased as the PEG bridge length between sp3 boron atoms increased from 0.97 to 0.88 and 5.4 to 4.2 V vs Li0/Li+, respectively, for SLICPE synthesized from PEG with an average MN of 50-400 (BEG1 to BEG8).
Collapse
Affiliation(s)
- Gregorio Guzmán-González
- Instituto de Investigaciones en Materiales , Universidad Nacional Autónoma de México , Coyoacán, 04510 Mexico City , Mexico
| | | | - Ernesto Rivera
- Instituto de Investigaciones en Materiales , Universidad Nacional Autónoma de México , Coyoacán, 04510 Mexico City , Mexico
| | | |
Collapse
|
37
|
Phan TNT, Issa S, Gigmes D. Poly(ethylene oxide)-based block copolymer electrolytes for lithium metal batteries. POLYM INT 2018. [DOI: 10.1002/pi.5677] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Trang NT Phan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273; Marseille France
| | - Sébastien Issa
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273; Marseille France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273; Marseille France
| |
Collapse
|
38
|
Cohen E, Menkin S, Lifshits M, Kamir Y, Gladkich A, Kosa G, Golodnitsky D. Novel rechargeable 3D-Microbatteries on 3D-printed-polymer substrates: Feasibility study. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.197] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Meabe L, Huynh TV, Lago N, Sardon H, Li C, O'Dell LA, Armand M, Forsyth M, Mecerreyes D. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Chen H, Tu H, Hu C, Liu Y, Dong D, Sun Y, Dai Y, Wang S, Qian H, Lin Z, Chen L. Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction. J Am Chem Soc 2018; 140:896-899. [DOI: 10.1021/jacs.7b12292] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hongwei Chen
- College
of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Hangyu Tu
- College
of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Chenji Hu
- i-Lab, CAS Center for Excellence in
Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People’s Republic of China
| | - Yi Liu
- Jiangsu Key Laboratory of Optoelectronic Technology, School of Physics Science & Technology, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Derui Dong
- College
of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Yufei Sun
- College
of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Yafei Dai
- Jiangsu Key Laboratory of Optoelectronic Technology, School of Physics Science & Technology, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Senlin Wang
- College
of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Hao Qian
- College
of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Zhiyong Lin
- College
of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Liwei Chen
- i-Lab, CAS Center for Excellence in
Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People’s Republic of China
| |
Collapse
|