1
|
Dai M, Xu Y, Genjebay Y, Lu L, Wang C, Yang H, Huang C, Huang T. Urbanization significantly increases greenhouse gas emissions from a subtropical headwater stream in Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173508. [PMID: 38851353 DOI: 10.1016/j.scitotenv.2024.173508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Streams are disproportionately significant contributors to increases in greenhouse gas (GHG) effluxes in river networks. In the context of global urbanization, a growing number of streams are affected by urbanization, which has been suggested to stimulate the water-air GHG emissions from fluvial systems. This study investigated the seasonal and longitudinal profiles of GHG (N2O, CH4, and CO2) concentrations of Jiuxianghe Stream, a headwater stream undergoing urbanization, and estimated its GHG diffusive fluxes and global warming potentials (GWPs) using the boundary layer method. The results showed that N2O, CH4, and CO2 concentrations in Jiuxianghe Stream were 0.45-7.19 μg L-1, 0.31-586.85 μg L-1, and 0.16-11.60 mg L-1, respectively. N2O, CH4, and CO2 concentrations in the stream showed 4.55-, 23.70-, and 7.68-fold increases from headwaters to downstream, respectively, corresponding to the forest-urban transition within the watershed. Multiple linear regression indicated that NO3--N, NH4+-N, and DOC:NO3--N accurately predicted N2O and CO2 concentrations, indicating that N nutrients were the driving factors. The Jiuxianghe Stream was a source of atmospheric GHGs with a daily GWP of 7.31 g CO2-eq m-2 d-1 on average and was significantly positively correlated with the ratio of construction land and forest in the sub-watershed. This study highlights the critical role of urbanization in amplifying GHG emissions from streams, thereby augmenting our understanding of GHG emissions from river networks. With global urbanization on the rise, streams experiencing urbanization are expected to make an unprecedentedly significant contribution to riverine GHG budgets in the future.
Collapse
Affiliation(s)
- Mutan Dai
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Yuanhui Xu
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | | | - Lingfeng Lu
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Chuan Wang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China.
| |
Collapse
|
2
|
Mwanake RM, Imhof HK, Kiese R. Divergent drivers of the spatial variation in greenhouse gas concentrations and fluxes along the Rhine River and the Mittelland Canal in Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32183-32199. [PMID: 38649602 PMCID: PMC11512915 DOI: 10.1007/s11356-024-33394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Lotic ecosystems are sources of greenhouse gases (GHGs) to the atmosphere, but their emissions are uncertain due to longitudinal GHG heterogeneities associated with point source pollution from anthropogenic activities. In this study, we quantified summer concentrations and fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and dinitrogen (N2), as well as several water quality parameters along the Rhine River and the Mittelland Canal, two critical inland waterways in Germany. Our main objectives were to compare GHG concentrations and fluxes along the two ecosystems and to determine the main driving factors responsible for their longitudinal GHG heterogeneities. The results indicated that the two ecosystems were sources of GHG fluxes to the atmosphere, with the Mittelland Canal being a hotspot for CH4 and N2O fluxes. We also found significant longitudinal GHG flux discontinuities along the mainstems of both ecosystems, which were mainly driven by divergent drivers. Along the Mittelland Canal, peak CO2 and CH4 fluxes coincided with point pollution sources such as a joining river tributary or the presence of harbors, while harbors and in-situ biogeochemical processes such as methanogenesis and respiration mainly explained CH4 and CO2 hotspots along the Rhine River. In contrast to CO2 and CH4 fluxes, N2O longitudinal trends along the two lotic ecosystems were better predicted by in-situ parameters such as chlorophyll-a concentrations and N2 fluxes. Based on a positive relationship with N2 fluxes, we hypothesized that in-situ denitrification was driving N2O hotspots in the Canal, while a negative relationship with N2 in the Rhine River suggested that coupled biological N2 fixation and nitrification accounted for N2O hotspots. These findings stress the need to include N2 flux estimates in GHG studies, as it can potentially improve our understanding of whether nitrogen is fixed through N2 fixation or lost through denitrification.
Collapse
Affiliation(s)
- Ricky Mwangada Mwanake
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany.
| | - Hannes Klaus Imhof
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Ralf Kiese
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
3
|
Li J, Liang E, Deng C, Li B, Cai H, Ma R, Xu Q, Liu J, Wang T. Labile dissolved organic matter (DOM) and nitrogen inputs modified greenhouse gas dynamics: A source-to-estuary study of the Yangtze River. WATER RESEARCH 2024; 253:121318. [PMID: 38387270 DOI: 10.1016/j.watres.2024.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Although rivers are increasingly recognized as essential sources of greenhouse gases (GHG) to the atmosphere, few systematic efforts have been made to reveal the drivers of spatiotemporal variations of dissolved GHG (dGHG) in large rivers under increasing anthropogenic stress and intensified hydrological cycling. Here, through a source-to-estuary survey of the Yangtze River in March (spring) and October (autumn) of 2018, we revealed that labile dissolved organic matter (DOM) and nitrogen inputs remarkably modified the spatiotemporal distribution of dGHG. The average partial pressure of CO2 (pCO2), CH4 and N2O concentrations of all sampling sites in the Yangtze River were 1015 ± 225 μatm, and 87.5± 36.5 nmol L-1, and 20.3 ± 6.6 nmol L-1, respectively, significantly lower than the global average. In terms of longitudinal and seasonal variations, higher GHG concentrations were observed in the middle-lower reach in spring. The dominant drivers of spatiotemporal variations in dGHG were labile, protein-like DOM components and nitrogen level. Compared with the historical data of dGHG from published literature, we found a significant increase in N2O concentrations in the Yangtze River during 2004-2018, and the increasing trend was consistent with the rising riverine nitrogen concentrations. Our study emphasized the critical roles of labile DOM and nitrogen inputs in driving the spatial hotspots, seasonal variations and annual trends of dGHG. These findings can contribute to constraining the global GHG budget estimations and controls of GHG emission in large rivers in response to global change.
Collapse
Affiliation(s)
- Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Chunfang Deng
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Bin Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China; General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100120, PR China
| | - Qiang Xu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 15030, PR China
| | - Jiaju Liu
- Research Center for Integrated Control of Watershed Water Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ting Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
4
|
Bieroza M, Hallberg L, Livsey J, Prischl LA, Wynants M. Recognizing Agricultural Headwaters as Critical Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4852-4858. [PMID: 38438992 PMCID: PMC10956425 DOI: 10.1021/acs.est.3c10165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Agricultural headwaters are positioned at the interface between terrestrial and aquatic ecosystems and, therefore, at the margins of scientific disciplines. They are deemed devoid of biodiversity and too polluted by ecologists, overlooked by hydrologists, and are perceived as a nuisance by landowners and water authorities. While agricultural streams are widespread and represent a major habitat in terms of stream length, they remain understudied and thereby undervalued. Agricultural headwater streams are significantly modified and polluted but at the same time are the critical linkages among land, air, and water ecosystems. They exhibit the largest variation in streamflow, water quality, and greenhouse gas emission with cascading effects on the entire stream networks, yet they are underrepresented in monitoring, remediation, and restoration. Therefore, we call for more intense efforts to characterize and understand the inherent variability and sensitivity of these ecosystems to global change drivers through scientific and regulatory monitoring and to improve their ecosystem conditions and functions through purposeful and evidence-based remediation.
Collapse
Affiliation(s)
- Magdalena Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Lukas Hallberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - John Livsey
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Laura-Ainhoa Prischl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Maarten Wynants
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| |
Collapse
|
5
|
Li X, He Y, Wang X, Chen H, Liu T, Que Y, Yuan X, Wu S, Zhou T. Watershed urbanization dominated the spatiotemporal pattern of riverine methane emissions: Evidence from montanic streams that drain different landscapes in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162343. [PMID: 36813197 DOI: 10.1016/j.scitotenv.2023.162343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Methane (CH4) emissions from streams are an important component of the global carbon budget of freshwater ecosystems, but these emissions are highly variable and uncertain at the temporal and spatial scales associated with watershed urbanization. In this study, we conducted investigations of dissolved CH4 concentrations and fluxes and related environmental parameters at high spatiotemporal resolution in three montanic streams that drain different landscapes in Southwest China. We found that the average CH4 concentrations and fluxes in the highly urbanized stream (2049 ± 2164 nmol L-1 and 11.95 ± 11.75 mmol·m-2·d-1) were much higher than those in the suburban stream (1021 ± 1183 nmol L-1 and 3.29 ± 3.66 mmol·m-2·d-1) and were approximately 12.3 and 27.8 times those in the rural stream, respectively. It provides powerful evidence that watershed urbanization strongly enhances riverine CH4 emission potential. Temporal patterns of CH4 concentrations and fluxes and their controls were not consistent among the three streams. Seasonal CH4 concentrations in the urbanized streams had negative exponential relationships with monthly precipitation and demonstrated greater sensitivity to rainfall dilution than to the temperature priming effect. Additionally, the CH4 concentrations in the urban and semiurban streams showed strong, but opposite, longitudinal patterns, which were closely related to urban distribution patterns and the HAILS (human activity intensity of the land surface) within the watersheds. High carbon and nitrogen loads from sewage discharge in urban areas and the spatial arrangement of the sewage drainage contributed to the different spatial patterns of the CH4 emissions in different urbanized streams. Moreover, CH4 concentrations in the rural stream were mainly controlled by pH and inorganic nitrogen (NH4+ and NO3-), while urban and semiurban streams were dominated by total organic carbon and nitrogen. We highlighted that rapid urban expansion in montanic small catchments will substantially enhance riverine CH4 concentrations and fluxes and dominate their spatiotemporal pattern and regulatory mechanisms. Future work should consider the spatiotemporal patterns of such urban-disturbed riverine CH4 emissions and focus on the relationship between urban activities with aquatic carbon emissions.
Collapse
Affiliation(s)
- Xianxiang Li
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing 401331, China; Chongqing Observation and Research Station of Earth Surface Ecological Processes in Three Gorges Reservoir Area, Chongqing 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Yixin He
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Xiaofeng Wang
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing 401331, China; Chongqing Observation and Research Station of Earth Surface Ecological Processes in Three Gorges Reservoir Area, Chongqing 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China.
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Tingting Liu
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing 401331, China; East China Normal University, Shanghai 200241, China
| | - Yizi Que
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing 401331, China; Chongqing Observation and Research Station of Earth Surface Ecological Processes in Three Gorges Reservoir Area, Chongqing 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xingzhong Yuan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
| | - Shengnan Wu
- Chongqing Observation and Research Station of Earth Surface Ecological Processes in Three Gorges Reservoir Area, Chongqing 405400, China; East China Normal University, Shanghai 200241, China
| | - Ting Zhou
- Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, Chongqing 401331, China; Chongqing Observation and Research Station of Earth Surface Ecological Processes in Three Gorges Reservoir Area, Chongqing 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
6
|
Shi Y, Khan IUH, Radford D, Guo G, Sunohara M, Craiovan E, Lapen DR, Pham P, Chen W. Core and conditionally rare taxa as indicators of agricultural drainage ditch and stream health and function. BMC Microbiol 2023; 23:62. [PMID: 36882680 PMCID: PMC9990217 DOI: 10.1186/s12866-023-02755-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The freshwater microbiome regulates aquatic ecological functionality, nutrient cycling, pathogenicity, and has the capacity to dissipate and regulate pollutants. Agricultural drainage ditches are ubiquitous in regions where field drainage is necessary for crop productivity, and as such, are first-line receptors of agricultural drainage and runoff. How bacterial communities in these systems respond to environmental and anthropogenic stressors are not well understood. In this study, we carried out a three year study in an agriculturally dominated river basin in eastern Ontario, Canada to explore the spatial and temporal dynamics of the core and conditionally rare taxa (CRT) of the instream bacterial communities using a 16S rRNA gene amplicon sequencing approach. Water samples were collected from nine stream and drainage ditch sites that represented the influence of a range of upstream land uses. RESULTS The cross-site core and CRT accounted for 5.6% of the total number of amplicon sequence variants (ASVs), yet represented, on average, over 60% of the heterogeneity of the overall bacterial community; hence, well reflected the spatial and temporal microbial dynamics in the water courses. The contribution of core microbiome to the overall community heterogeneity represented the community stability across all sampling sites. CRT was primarily composed of functional taxa involved in nitrogen (N) cycling and was linked to nutrient loading, water levels, and flow, particularly in the smaller agricultural drainage ditches. Both the core and the CRT were sensitive responders to changes in hydrological conditions. CONCLUSIONS We demonstrate that core and CRT can be considered as holistic tools to explore the temporal and spatial variations of the aquatic microbial community and can be used as sensitive indicators of the health and function of agriculturally dominated water courses. This approach also reduces computational complexity in relation to analyzing the entire microbial community for such purposes.
Collapse
Affiliation(s)
- Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Devon Radford
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Galen Guo
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Mark Sunohara
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Phillip Pham
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada.,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada. .,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada.
| |
Collapse
|
7
|
Tang W, Xu YJ, Ni M, Li S. Land use and hydrological factors control concentrations and diffusive fluxes of riverine dissolved carbon dioxide and methane in low-order streams. WATER RESEARCH 2023; 231:119615. [PMID: 36682236 DOI: 10.1016/j.watres.2023.119615] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
We analyzed the impacts of land use/land cover types on carbon dioxide (CO2) and methane (CH4) concentration and diffusion in 1st to 4th Strahler order tributaries of the Longchuan River to the upper Yangtze River in China by using headspace equilibration method and CO2SYS program. Field sampling and measurements were conducted during the dry and wet seasons from 2017 to 2019. The average of calculated CO2 partial pressure (pCO2, mean ± SD: 2389 ± 3220 μatm) by CO2SYS program was 1.9-fold higher than the value (mean ± SD: 1230 ± 1440 μatm) 10 years ago in the Longchuan River basin, where the urban land area increased by a factor of 7 times. Further analysis showed that corrected pCO2 by headspace method and dissolved CH4 (dCH4) decrease as the stream order and flow velocity increase. The pCO2 and dCH4 in the wet season was lower than that in the dry season. The explanatory ability of land use types on the variation of corrected pCO2 and dCH4 was stronger at the reach scale than at the riparian and catchment scales in two seasons. Urban land at reach scale further showed much higher explanation on corrected pCO2 and dCH4 than cropland, grassland and forest land in the wet season. The Longchuan River emits approximately 112.5 kt CO2-C and 1.0 kt CH4-C per year, being 1.7-fold of the total lateral export of dissolved inorganic and dissolved organic carbon (68.3 kt C y-1). The findings highlight the scale effects of land use on the observed seasonality in dissolved carbon gases in low-order streams.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Maofei Ni
- College of Eco-Environmental Engineering, The karst environmental geological hazard prevention laboratory of Guizhou Minzu University, Guizhou Minzu University, Guiyang 550025, China
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
8
|
Patel L, Singh R, Thottathil SD. Land use drivers of riverine methane dynamics in a tropical river basin, India. WATER RESEARCH 2023; 228:119380. [PMID: 36427461 DOI: 10.1016/j.watres.2022.119380] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Rivers are globally significant natural sources of atmospheric methane (CH4). However, the effect of land use changes on riverine CH4 dynamics, particularly in tropical zones, remain ambiguous, yet important to predict and anticipate the present and future contribution of rivers to the global CH4 budget. The present study examines the magnitude and drivers of riverine CH4 concentration and emission in the tropical Krishna River (KR) basin, India. The large spatial variability of CH4 concentration (0.03 to 185.34 μmol L -1) and emissions (0.04 mmol m-2 d-1 to 1666.24 mmol m-2 d-1) in the KR basin was linked to the site-specific features of the catchments through which rivers are draining. Several fold higher CH4 concentration and emission was observed for the urban river sites (64.63 ± 53.17 µmol L-1 and 294.15 ± 371.52 mmol m2 d-1, respectively) than the agricultural (1.05 ± 2.22 µmol L-1 and 3.45 ± 9.72 mmol m2 d-1, respectively) and forested (0.49 ± 0.23 µmol L-1 and 1.26 ± 0.73 mmol m2 d-1, respectively) sites. The concentrations of dissolved oxygen, total phosphorus, and Chlorophyll-a were significant hydrochemical variables strongly coupled with the dissolved CH4 concentrations. On the other hand, percentage of built-up area emerged as the most important landscape-level driver indicating that urbanization has an overriding effect on riverine CH4 concentration in the agriculture dominated KR basin. Our study supports the growing notion that tropical urban rivers are hotspot of CH4 emission. Furthermore, we show that the pattern of increasing in riverine CH4 concentration with built-up area (%) is a general feature of Asian river basins. As the urban land cover and population following an exponential increase, Asian rivers might contribute substantially to the regional and global CH4 budget.
Collapse
Affiliation(s)
- Latika Patel
- Department of Environmental Science, SRM University AP, Mangalagiri, Amaravati, Andhra Pradesh 522502, India
| | - Rashmi Singh
- Department of Environmental Science, SRM University AP, Mangalagiri, Amaravati, Andhra Pradesh 522502, India
| | - Shoji D Thottathil
- Department of Environmental Science, SRM University AP, Mangalagiri, Amaravati, Andhra Pradesh 522502, India.
| |
Collapse
|
9
|
Galantini L, Lapierre JF, Maranger R. How Are Greenhouse Gases Coupled Across Seasons in a Large Temperate River with Differential Land Use? Ecosystems 2021. [DOI: 10.1007/s10021-021-00629-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|