1
|
Londres HD, Armada JJ, Martínez AH, Abdo Cuza AA, Sánchez YH, Rodríguez AG, Figueroa SS, Llanez Gregorich EM, Torres Lahera ML, Peire FG, González TM, González YZ, Añé Kouri AL, Palomo AG, Concepción MT, Pérez LM, Luaces-Alvarez PL, Iglesias DE, Hernández DS, Suzarte MR, Ramos TC. Blocking EGFR with nimotuzumab: a novel strategy for COVID-19 treatment. Immunotherapy 2022; 14:521-530. [PMID: 35306855 PMCID: PMC8936166 DOI: 10.2217/imt-2022-0027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Lung injury and STAT1 deficit induce EGFR overexpression in SARS-CoV-2 infection. Patients & methods: A phase I/II trial was done to evaluate the safety and preliminary effect of nimotuzumab, an anti-EGFR antibody, in COVID-19 patients. Patients received from one to three infusions together with other drugs included in the national guideline. Results: 41 patients (31 severe and 10 moderate) received nimotuzumab. The median age was 62 years and the main comorbidities were hypertension, diabetes and cardiovascular disease. The antibody was very safe and the 14-day recovery rate was 82.9%. Inflammatory markers decreased over time. Patients did not show signs of fibrosis. Conclusion: Nimotuzumab is a safe antibody that might reduce inflammation and prevent fibrosis in severe and moderate COVID-19 patients. Clinical Trial Registration: RPCEC00000369 (rpcec.sld.cu). Background: After SARS-CoV-2 infection, many cells in the lung express a new receptor called EGFR. Overexpression of EGFR can worsen the pulmonary disease and provoke fibrosis. Patients & methods: The initial impact of using a drug that blocks EGFR, nimotuzumab, was evaluated in COVID-19 patients. Results: 41 patients received nimotuzumab by the intravenous route together with other medications. The median age was 62 years, and patients had many chronic conditions including hypertension, diabetes and cardiac problems. Treatment was well tolerated and 82.9% of the patients were discharged by day 14. Serial laboratory tests, x-rays and CT scan evaluations showed the improvement of the patients. Conclusion: Nimotuzumab is a safe drug that can be useful to treat COVID-19 patients.
Collapse
|
2
|
Fibrocyte accumulation in the lungs of cystic fibrosis patients. J Cyst Fibros 2020; 19:815-822. [PMID: 32593509 DOI: 10.1016/j.jcf.2020.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) patients develop severe lung disease including chronic airway infections, neutrophilic inflammation, and progressive fibrotic remodeling in airways. However, cellular and molecular processes that regulate excessive collagen deposition in airways in these patients remain unclear. Fibrocytes are bone marrow (BM)-derived mesenchymal cells that express the hematopoietic cell marker CD45, and mesenchymal cell markers and implicated in collagen deposition in several fibrotic diseases. It is unknown whether fibrocytes accumulate in the lungs of CF patients, so the current study evaluates the presence of fibrocytes in the fibrotic lesions of airways in explanted CF lungs compared to non-CF unused donor lungs (control). METHODS We used immunofluorescence staining to determine if fibrocytes accumulate in explanted CF lungs compared to healthy donor lungs. Simultaneously, we evaluated cells collected by bronchoalveolar lavage (BAL) in CF patients using multi-color flow cytometry. Finally, we analyzed transcripts differentially expressed in fibrocytes isolated from the explanted CF lungs compared to control to assess fibrocyte-specific pro-fibrotic gene networks. RESULTS Our findings demonstrate fibrocyte accumulation in CF lungs compared to non-CF lungs. Additionally, fibrocytes were detected in the BAL of all CF children. Transcriptomic analysis of fibrocytes identified dysregulated genes associated with fibrotic remodeling in CF lungs. CONCLUSIONS With significantly increased fibrocytes that show increased expression of pro-fibrotic gene transcripts compared to control, our findings suggest an intervention for fibrotic remodeling as a potential therapeutic target in CF.
Collapse
|
3
|
Kasam RK, Reddy GB, Jegga AG, Madala SK. Dysregulation of Mesenchymal Cell Survival Pathways in Severe Fibrotic Lung Disease: The Effect of Nintedanib Therapy. Front Pharmacol 2019; 10:532. [PMID: 31156440 PMCID: PMC6533541 DOI: 10.3389/fphar.2019.00532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired apoptotic clearance of myofibroblasts can result in the continuous expansion of scar tissue during the persistent injury in the lung. However, the molecular and cellular mechanisms underlying the apoptotic clearance of multiple mesenchymal cells including fibrocytes, fibroblasts and myofibroblasts in severe fibrotic lung diseases such as idiopathic pulmonary fibrosis (IPF) remain largely unknown. We analyzed the apoptotic pathways activated in mesenchymal cells of IPF and in a mouse model of TGFα-induced pulmonary fibrosis. We found that fibrocytes and myofibroblasts in fibrotic lung lesions have acquired resistance to Fas-induced apoptosis, and an FDA-approved anti-fibrotic agent, nintedanib, effectively induced apoptotic cell death in both. In support, comparative gene expression analyses suggest that apoptosis-linked gene networks similarly dysregulated in both IPF and a mouse model of TGFα-induced pulmonary fibrosis. TGFα mice treated with nintedanib show increased active caspase 3-positive cells in fibrotic lesions and reduced fibroproliferation and collagen production. Further, the long-term nintedanib therapy attenuated fibrocyte accumulation, collagen deposition, and lung function decline during TGFα-induced pulmonary fibrosis. These results highlight the importance of inhibiting survival pathways and other pro-fibrotic processes in the various types of mesenchymal cells and suggest that the TGFα mouse model is relevant for testing of anti-fibrotic drugs either alone or in combination with nintedanib.
Collapse
Affiliation(s)
- Rajesh K Kasam
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Satish K Madala
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res 2018; 68:59-74. [PMID: 30306206 DOI: 10.1007/s00011-018-1191-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation in the lung is the body's natural response to injury. It acts to remove harmful stimuli such as pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF). FINDINGS In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-β (TGF-β), which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator (CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exaggerated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases. CONCLUSION The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the influence of aging on airways' inflammation mechanism. The main goal of this review is to encourage research collaborations between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that control inflammation in different airway diseases.
Collapse
Affiliation(s)
| | - Uduak George
- College of Engineering, University of Georgia, Athens, GA, USA.,Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
5
|
Li J, Li Y, He H, Liu C, Li W, Xie L, Zhang Y. Csk/Src/EGFR signaling regulates migration of myofibroblasts and alveolarization. Am J Physiol Lung Cell Mol Physiol 2016; 310:L562-71. [PMID: 26773066 DOI: 10.1152/ajplung.00162.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by premature alveolar developmental arrest. Antenatal exposure to inflammation inhibits lung morphogenesis, thus increasing the risk of developing BPD. Alveolar myofibroblasts are thought to migrate into the septal tips and elongate secondary septa during alveolarization. Here we found lipopolysaccharide (LPS) disrupted the directional migration of myofibroblasts and increased actin stress fiber expression and focal adhesion formation. In addition, COOH-terminal Src kinase (Csk) activity was downregulated in myofibroblasts treated with LPS, while activation of Src or epidermal growth factor receptor (EGFR) was upregulated by LPS treatment. Specifically, decreased Csk activity and increased activation of Src or EGFR was also observed in primary myofibroblasts isolated from newborn rat lungs with intra-amniotic LPS exposure, a model for BPD. Further investigation revealed that EGFR was involved in cell migration impairment induced by LPS, and Src inhibition blocked LPS-induced activation of EGFR or cell migration impairment. Csk silencing also resulted in EGFR activation and cell migration impairment. Besides, we found the effect of EGFR on myofibroblast migration was mediated through RhoA activation. EGFR inhibition alleviated the abnormal localization of myofibroblasts and improved alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that the Csk/Src/EGFR signaling pathway is critically involved in regulating directional migration of myofibroblasts and may contribute to arrested alveolar development in BPD.
Collapse
Affiliation(s)
- Jianhui Li
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Yahui Li
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Hua He
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Chengbo Liu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Wen Li
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Lijuan Xie
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Yongjun Zhang
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and MOE and Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| |
Collapse
|
6
|
Madala SK, Korfhagen TR, Schmidt S, Davidson C, Edukulla R, Ikegami M, Violette SM, Weinreb PH, Sheppard D, Hardie WD. Inhibition of the αvβ6 integrin leads to limited alteration of TGF-α-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2014; 306:L726-35. [PMID: 24508732 DOI: 10.1152/ajplung.00357.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-β (TGF-β) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-β induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-β pathway in the lung is unknown. The αvβ6 integrin is an important in vivo activator of TGF-β activation in the lung. Immunohistochemical analysis of αvβ6 protein expression and bronchoalveolar analysis of TGF-β pathway signaling indicates activation of the αvβ6/TGF-β pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvβ6/TGF-β pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvβ6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvβ6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the β6 integrin, TGF-α transgenic mice were mated with β6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of the β6 integrin attenuated histological and physiological changes in the lungs of TGF-α transgenic mice although a significant degree of fibrosis still developed. In summary, inhibition of the β6 integrin led to a modest, albeit significant, effect on pleural thickening and lung function decline observed with TGF-α-induced pulmonary fibrosis. These data support activation of the αvβ6/TGF-β pathway as a secondary effect contributing to TGF-α-induced pleural fibrosis and suggest a complex contribution of multiple mediators to the maintenance of progressive fibrosis in the lung.
Collapse
Affiliation(s)
- Satish K Madala
- Dept. of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Anagnostis A, Neofytou E, Soulitzis N, Kampas D, Drositis I, Dermitzaki D, Tzanakis N, Schiza S, Siafakas NM, Tzortzaki EG. Molecular profiling of EGFR family in chronic obstructive pulmonary disease: correlation with airway obstruction. Eur J Clin Invest 2013; 43:1299-306. [PMID: 24147598 DOI: 10.1111/eci.12178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Growth factors mediate various cellular responses to environmental stimuli. Specifically, exposure of lung epithelium to oxidative stress induced by cigarette smoke stimulates aberrant epidermal growth factor receptor (ERBB) family activation. This study's objective was to evaluate the expression of ERBB1-4 receptors in the lung tissue of smokers with or without chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS ERBBs expression was measured by microarray analysis in lung tissue samples from five patients with COPD and five non-COPD smokers, and by quantitative real-time PCR in additional 20 patients with COPD (GOLD stage II), 15 non-COPD smokers and 10 nonsmoker controls. RESULTS Microarray data analysis revealed that ERBB receptors expression was elevated in patients with COPD compared to non-COPD smokers, ranging from 1·62- to 2·45-fold, (P < 0·01). Real-time qPCR verified that patients with COPD had higher ERBB1-3 expression levels compared with non-COPD smokers (PERBB1 < 0·001; PERBB2 = 0·003; PERBB3 = 0·003) and nonsmokers (PERBB1 = 0·019; PERBB2 = 0·005; PERBB3 = 0·011). On the other hand, ERBB4 mRNA levels gradually increased from nonsmokers (0·74 ± 0·19) to non-COPD smokers (1·11 ± 0·05) to patients with COPD (1·57 ± 0·28) and were correlated with the degree of airflow obstruction (PFEV1 < 0·001). DISCUSSION These data suggest that ERBB1-3 overexpression is not related only to smoking exposure but probably to epithelial remodelling and mucociliary system distortion, characterizing COPD. Additionally, the inverse correlation of ERBB4 with FEV1 exhibits a possible link between ERBB4 and COPD severity.
Collapse
Affiliation(s)
- Aristotelis Anagnostis
- Department of Thoracic Medicine, University Hospital of Heraklion, Crete, Greece; Laboratory of Molecular and Cellular Pulmonology, Medical School, University of Crete, Heraklion, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells. PLoS One 2013; 8:e72981. [PMID: 23977375 PMCID: PMC3745379 DOI: 10.1371/journal.pone.0072981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/18/2013] [Indexed: 01/14/2023] Open
Abstract
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.
Collapse
|
9
|
Abstract
Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine-governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin-cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production.
Collapse
Affiliation(s)
- Erin P Sproul
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
10
|
Manzo ND, Foster WM, Stripp BR. Amphiregulin-dependent mucous cell metaplasia in a model of nonallergic lung injury. Am J Respir Cell Mol Biol 2012; 47:349-57. [PMID: 22493011 DOI: 10.1165/rcmb.2011-0257oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proliferation and differentiation of the pulmonary epithelium after injury is a critical process in the defense against the external environment. Defects in this response can result in airway remodeling, such as mucus cell metaplasia (MCM), commonly seen in patients with chronic lung disease. We have previously shown that amphiregulin (AREG), a ligand to the epidermal growth factor receptor (EGFR), is induced during the repair/differentiation process elicited by naphthalene-induced lung injury. Thus, we hypothesized that AREG signaling plays an important role in epithelial proliferation and differentiation of the repairing airway. Mice deficient in AREG and lung epithelial EGFR were used to define roles for AREG-dependent EGFR signaling in airway repair and remodeling. We show that AREG and epithelial EGFR expression is dispensable to pulmonary epithelial repair after naphthalene-induced lung injury, but regulates secretory cell differentiation to a mucus-producing phenotype. We show that the pulmonary epithelium is the source of AREG, suggesting that naphthalene-induced MCM is mediated through an autocrine signaling mechanism. However, induction of MCM resulting from allergen exposure was independent of AREG. Our data demonstrate that AREG-dependent EGFR signaling in airway epithelial cells contributes to MCM in naphthalene-induced lung injury. We conclude that AREG may represent a determinant of nonallergic chronic lung diseases complicated by MCM.
Collapse
Affiliation(s)
- Nicholas D Manzo
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
11
|
Yu H, Zhou X, Wen S, Xiao Q. Flagellin/TLR5 responses induce mucus hypersecretion by activating EGFR via an epithelial cell signaling cascades. Exp Cell Res 2012; 318:723-31. [DOI: 10.1016/j.yexcr.2011.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 11/26/2022]
|
12
|
Hardie WD, Hagood JS, Dave V, Perl AKT, Whitsett JA, Korfhagen TR, Glasser S. Signaling pathways in the epithelial origins of pulmonary fibrosis. Cell Cycle 2010; 9:2769-76. [PMID: 20676040 DOI: 10.4161/cc.9.14.12268] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pulmonary fibrosis complicates a number of disease processes and leads to substantial morbidity and mortality. Idiopathic pulmonary fibrosis (IPF) is perhaps the most pernicious and enigmatic form of the greater problem of lung fibrogenesis with a median survival of three years from diagnosis in affected patients. In this review, we will focus on the pathology of IPF as a model of pulmonary fibrotic processes, review possible cellular mechanisms, review current treatment approaches and review two transgenic mouse models of lung fibrosis to provide insight into processes that cause lung fibrosis. We will also summarize the potential utility of signaling pathway inhibitors as a future treatment in pulmonary fibrosis. Finally, we will present data demonstrating a minimal contribution of epithelial-mesenchymal transition in the development of fibrotic lesions in the transforming growth factor-alpha transgenic model of lung fibrosis.
Collapse
Affiliation(s)
- William D Hardie
- Department of Pediatrics, Pulmonary Medicine, University of California, San Diego, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bergin DA, Greene CM, Sterchi EE, Kenna C, Geraghty P, Belaaouaj A, Belaaouaj A, Taggart CC, O'Neill SJ, McElvaney NG. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway. J Biol Chem 2008; 283:31736-44. [PMID: 18772136 DOI: 10.1074/jbc.m803732200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Collapse
Affiliation(s)
- David A Bergin
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Trinh NTN, Privé A, Maillé E, Noël J, Brochiero E. EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair. Am J Physiol Lung Cell Mol Physiol 2008; 295:L866-80. [PMID: 18757521 DOI: 10.1152/ajplung.90224.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe lesions of airway epithelia are observed in cystic fibrosis (CF) patients. The regulatory mechanisms of cell migration and proliferation processes, involved in the repair of injured epithelia, then need to be better understood. A model of mechanical wounding of non-CF (NuLi) and CF (CuFi) bronchial monolayers was employed to study the repair mechanisms. We first observed that wound repair, under paracrine and autocrine EGF control, was slower (up to 33%) in CuFi than in NuLi. Furthermore, EGF receptor (EGFR) activation, following wounding, was lower in CuFi than in NuLi monolayers. Cell proliferation and migration assays indicated a similar rate of proliferation in both cell lines but with reduced (by 25%) CuFi cell migration. In addition, cell migration experiments performed in the presence of conditioned medium, collected from NuLi and CuFi wounded bronchial monolayers, suggested a defect in EGF/EGFR signaling in CF cells. We (49) recently demonstrated coupling between the EGF response and K(+) channel function, which is crucial for EGF-stimulated alveolar repair. In CuFi cells, lower EGF/EGFR signaling was accompanied by a 40-70% reduction in K(+) currents and KvLQT1, ATP-sensitive potassium (K(ATP)), and Ca(2+)-activated K(+) (KCa3.1) channel expression. In addition, EGF-stimulated bronchial wound healing, cell migration, and proliferation were severely decreased by K(+) channel inhibitors. Finally, acute CFTR inhibition failed to reduce wound healing, EGF secretion, and K(+) channel expression in NuLi. In summary, the delay in CuFi wound healing could be due to diminished EGFR signaling coupled with lower K(+) channel function, which play a crucial role in bronchial repair.
Collapse
|
15
|
Hardie WD, Davidson C, Ikegami M, Leikauf GD, Le Cras TD, Prestridge A, Whitsett JA, Korfhagen TR. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-α-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1217-25. [DOI: 10.1152/ajplung.00020.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-α (TGF-α) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-α-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-α expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-α caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-α prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.
Collapse
|
16
|
Takeyama K, Tamaoki J, Kondo M, Isono K, Nagai A. Role of epidermal growth factor receptor in maintaining airway goblet cell hyperplasia in rats sensitized to allergen. Clin Exp Allergy 2008; 38:857-65. [PMID: 18307528 DOI: 10.1111/j.1365-2222.2008.02951.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Stimulation of epidermal growth factor receptor (EGFR) induces airway goblet cell hyperplasia, but the role of this molecule in the maintenance of this pathologic change remains uncertain. OBJECTIVE To determine the mechanisms by which goblet cell hyperplasia is maintained in airway epithelium, we investigated EGFR-induced signalling pathways that lead to both mucin production and antiapoptosis in vitro. We also tested whether the inhibition of EGFR tyrosine kinase speeds reversal of established goblet cell hyperplasia to normal epithelial phenotype in vivo. METHODS MUC5AC production was measured by immunoassay, and antiapoptotic responses were determined by Bcl-2 expression and terminal deoxynucleotidyl transferase-mediated dUTP-biotin Nick End Labelling staining using NCI-H292 cells. The effect of an inhibitor of EGFR tyrosine kinase (AG1478) on goblet cell hyperplasia was also determined in rats sensitized with ovalbumin (OVA). RESULTS MUC5AC was constitutively expressed and few apoptotic cells were observed in NCI-H292 cells under non-stimulated condition. TGF-alpha increased MUC5AC and Bcl-2 expression, an effect that was prevented by inhibitors of EGFR tyrosine kinase (AG1478), MEK (PD98059), and NF-kappaB (CAPE). After the addition of TGF-alpha, AG1478 and an inhibitor of phosphatidylinositol 3 kinase/Akt (LY294002), but not PD98059, induced a marked apoptotic response, which was prevented by the caspase inhibitor Z-VAD fmk. Goblet cell hyperplasia and EGFR expression in airway epithelium were noted in the OVA-sensitized rats. Intratracheal instillation of AG1478 induced apoptosis of goblet cells, reverting the airway epithelium to normal epithelial phenotype. CONCLUSION These findings indicate that EGFR plays an important role in the maintenance of goblet cell hyperplasia. We speculate that inhibitors of the EGFR cascade might be an effective therapy of airway remodelling.
Collapse
Affiliation(s)
- K Takeyama
- First Department of Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Transforming growth factor-alpha (TGFalpha) is a member of the epidermal growth factor (EGF) family. Expression of TGFalpha is highly regulated in response to exogenous cellular signals including cytokines and other growth factors. The growth factor has been found to be indispensable for proper development of many tissues and organs. TGFalpha has also been implicated in numerous disease states including forms of breast cancer. This minireview summarizes the basic biology of TGFalpha and its actions during normal and pathogenic development of the mammary epithelium.
Collapse
Affiliation(s)
- Brian W Booth
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Kramer EL, Deutsch GH, Sartor MA, Hardie WD, Ikegami M, Korfhagen TR, Le Cras TD. Perinatal increases in TGF-α disrupt the saccular phase of lung morphogenesis and cause remodeling: microarray analysis. Am J Physiol Lung Cell Mol Physiol 2007; 293:L314-27. [PMID: 17468132 DOI: 10.1152/ajplung.00354.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transforming growth factor-α (TGF-α) and its receptor, the epithelial growth factor receptor (EGFR), have been associated with lung remodeling in premature infants with bronchopulmonary dysplasia (BPD). The goal of this study was to target TGF-α overexpression to the saccular phase of lung morphogenesis and determine early alterations in gene expression. Conditional lung-specific TGF-α bitransgenic mice and single-transgene control mice were generated. TGF-α overexpression was induced by doxycycline (Dox) treatment from embryonic day 16.5 (E16.5) to E18.5. After birth, all bitransgenic pups died by postnatal day 7 (P7). Lung histology at E18.5 and P1 showed abnormal lung morphogenesis in bitransgenic mice, characterized by mesenchymal thickening, vascular remodeling, and poor apposition of capillaries to distal air spaces. Surfactant levels (saturated phosphatidylcholine) were not reduced in bitransgenic mice. Microarray analysis was performed after 1 or 2 days of Dox treatment during the saccular (E17.5, E18.5) and alveolar phases (P4, P5) to identify genes induced by EGFR signaling that were shared or unique to each phase. We found 196 genes to be altered (>1.5-fold change; P < 0.01 for at least 2 time points), with only 32% similarly altered in both saccular and alveolar phases. Western blot analysis and immunostaining showed that five genes selected from the microarrays (egr-1, SP-B, SP-D, S100A4, and pleiotrophin) were also increased at the protein level. Pathological changes in TGF-α-overexpressing mice bore similarities to premature infants born in the saccular phase who develop BPD, including remodeling of the distal lung septae and arteries.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Trinh NTN, Privé A, Kheir L, Bourret JC, Hijazi T, Amraei MG, Noël J, Brochiero E. Involvement of KATP and KvLQT1 K+ channels in EGF-stimulated alveolar epithelial cell repair processes. Am J Physiol Lung Cell Mol Physiol 2007; 293:L870-82. [PMID: 17631610 DOI: 10.1152/ajplung.00362.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several respiratory diseases are associated with extensive damage of lung epithelia, and the regulatory mechanisms involved in their regeneration are not clearly defined. Growth factors released by epithelial cells or fibroblasts from injured lungs are important regulators of alveolar repair by stimulating cell motility, proliferation, and differentiation. In addition, K(+) channels regulate cell proliferation/migration and are coupled with growth factor signaling in several tissues. We decided to explore the hypothesis, never investigated before, that K(+) could play a prominent role in alveolar repair. We employed a model of mechanical wounding of rat alveolar type II epithelia, in primary culture, to study their response to injury. Wound healing was suppressed by one-half upon epidermal growth factor (EGF) titration with EGF-antibody (Ab) or erbB1/erbB2 tyrosine-kinase inhibition with AG-1478/AG-825. The addition of exogenous EGF slightly stimulated the alveolar wound healing and enhanced, by up to five times, alveolar cell migration measured in a Boyden-type chamber. Conditioned medium collected from injured alveolar monolayers also stimulated cell migration; this effect was abolished in the presence of EGF-Ab. The impact of K(+) channel modulators was examined in basal and EGF-stimulated conditions. Wound healing was stimulated by pinacidil, an ATP-dependent K(+) channel (K(ATP)) activator, which also increased cell migration, by twofold, in basal conditions and potentiated the stimulatory effect of EGF. K(ATP) or KvLQT1 inhibitors (glibenclamide, clofilium) reduced EGF-stimulated wound healing, cell migration, and proliferation. Finally, EGF stimulated K(ATP) and KvLQT1 currents and channel expression. In summary, stimulation of K(+) channels through autocrine activation of EGF receptors could play a crucial role in lung epithelia repair processes.
Collapse
Affiliation(s)
- Nguyen Thu Ngan Trinh
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal-Hôtel-DieuMontréal, Québec, Canada H2W 1T7
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Burgel PR, Montani D, Danel C, Dusser DJ, Nadel JA. A morphometric study of mucins and small airway plugging in cystic fibrosis. Thorax 2006; 62:153-61. [PMID: 16928707 PMCID: PMC2111259 DOI: 10.1136/thx.2006.062190] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
RATIONALE Little knowledge exists on structural changes and plugging in small airways in cystic fibrosis. OBJECTIVE To characterise the extent of plugging and contribution of secreted mucins to the plugs. METHODS Small airways in patients with cystic fibrosis at transplantation (n = 18) were compared with control non-smokers (n = 10). Tissue sections were stained with Alcian blue (AB)/periodic acid-Schiff (PAS), for mucins MUC5B and MUC5AC, and for neutrophils and its chemoattractant interleukin (IL) 8. Epidermal growth factor receptor (EGFR) and its ligand pro-transforming growth factor alpha were also identified using immunohistochemical staining. Epithelial and luminal contents were assessed morphometrically. RESULTS Plugs occupying >50% of total luminal volume were found in 147 of 231 (63.6%) airways in patients with cystic fibrosis, but only in 1 of 39 (2.6%) airways in controls. In the epithelium of patients with cystic fibrosis, AB/PAS, MUC5B, and MUC5AC-stained volume densities were increased 10-fold (p < 0.01), indicating increased mucin production. In airway lumens, staining for mucins was also increased in cystic fibrosis, indicating increased mucin secretion. In the epithelium of patients with cystic fibrosis, neutrophil numbers were markedly increased and were inversely correlated with volume densities of mucous glycoconjugates (r = -0.66, p < 0.005). IL8 staining was increased in the epithelium of patients with cystic fibrosis and colocalised with mucins. Staining for EGFR and for pro-transforming growth factor alpha were increased in the epithelium of patients with cystic fibrosis; positive correlations were found between EGFR-stained volume density and both AB/PAS and IL8-stained volume densities. CONCLUSIONS Most of the small airways are plugged in cystic fibrosis at the time of transplantation. Mucins contribute to airway plugging. Recruited neutrophils may be involved in mucin secretion in the plugs. Increased expression of EGFR and its ligand suggests roles in mucin synthesis and neutrophil recruitment.
Collapse
Affiliation(s)
- Pierre-Régis Burgel
- Service de Pneumologie, Hôpital Cochin, Université René Descartes, 27 rue du Faubourg St Jacques, 75 679 Paris Cedex 14, France.
| | | | | | | | | |
Collapse
|
21
|
Mainwaring G, Lim FL, Antrobus K, Swain C, Clapp M, Kimber I, Orphanides G, Moggs JG. Identification of early molecular pathways affected by paraquat in rat lung. Toxicology 2006; 225:157-72. [PMID: 16854511 DOI: 10.1016/j.tox.2006.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
We have used global gene expression profiling, combined with pathway analysis tools, to identify in rats the molecular events associated with paraquat toxicity in the lung. Early (2, 8 and 18h) gene expression changes induced following intraperitoneal (i.p.) exposure to paraquat were measured in the caudal lobe of lungs using Affymetrix rat genome GeneChips (31,042 probe sets). A single high dose of paraquat dichloride (20mg/kg) was used that has been shown previously to cause in rats extensive lung fibrosis after 10 days. Hierarchical clustering of 543 paraquat-responsive genes (false discovery rate<0.05) revealed that under these conditions of exposure paraquat induces a staged transcriptional response in the rat lung that precedes the appearance of lung damage. We report here that many of the transcriptional responses to paraquat were rapid (being maximal at 2h post-dose), and that the predominant molecular functions and biological processes associated with these genes include membrane transport, oxidative stress, lung development, epithelial cell differentiation and transforming growth factor beta (TGF-beta) signalling. These data provide novel insights into the molecular pathways that lead to toxicity after exposure of the rat lung to paraquat.
Collapse
Affiliation(s)
- Guy Mainwaring
- Syngenta CTL, Alderley Park, Cheshire SK10 4TJ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tyner JW, Kim EY, Ide K, Pelletier MR, Roswit WT, Morton JD, Battaile JT, Patel AC, Patterson GA, Castro M, Spoor MS, You Y, Brody SL, Holtzman MJ. Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J Clin Invest 2006; 116:309-21. [PMID: 16453019 PMCID: PMC1359039 DOI: 10.1172/jci25167] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 10/25/2005] [Indexed: 12/26/2022] Open
Abstract
Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Ralpha2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia.
Collapse
Affiliation(s)
- Jeffrey W Tyner
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Holtzman MJ, Battaile JT, Patel AC. Immunogenetic programs for viral induction of mucous cell metaplasia. Am J Respir Cell Mol Biol 2006; 35:29-39. [PMID: 16543602 PMCID: PMC2658695 DOI: 10.1165/rcmb.2006-0092sf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
24
|
Abstract
This review focuses on the role and regulation of mucin glycoproteins (mucins) in airway health and disease. Mucins are highly glycosylated macromolecules (> or =50% carbohydrate, wt/wt). MUC protein backbones are characterized by numerous tandem repeats that contain proline and are high in serine and/or threonine residues, the sites of O-glycosylation. Secretory and membrane-tethered mucins contribute to mucociliary defense, an innate immune defense system that protects the airways against pathogens and environmental toxins. Inflammatory/immune response mediators and the overproduction of mucus characterize chronic airway diseases: asthma, chronic obstructive pulmonary diseases (COPD), or cystic fibrosis (CF). Specific inflammatory/immune response mediators can activate mucin gene regulation and airway remodeling, including goblet cell hyperplasia (GCH). These processes sustain airway mucin overproduction and contribute to airway obstruction by mucus and therefore to the high morbidity and mortality associated with these diseases. Importantly, mucin overproduction and GCH, although linked, are not synonymous and may follow from different signaling and gene regulatory pathways. In section i, structure, expression, and localization of the 18 human MUC genes and MUC gene products having tandem repeat domains and the specificity and application of MUC-specific antibodies that identify mucin gene products in airway tissues, cells, and secretions are overviewed. Mucin overproduction in chronic airway diseases and secretory cell metaplasia in animal model systems are reviewed in section ii and addressed in disease-specific subsections on asthma, COPD, and CF. Information on regulation of mucin genes by inflammatory/immune response mediators is summarized in section iii. In section iv, deficiencies in understanding the functional roles of mucins at the molecular level are identified as areas for further investigations that will impact on airway health and disease. The underlying premise is that understanding the pathways and processes that lead to mucus overproduction in specific airway diseases will allow circumvention or amelioration of these processes.
Collapse
Affiliation(s)
- Mary Callaghan Rose
- Research Center for Genetic Medicine, Room 5700, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | |
Collapse
|
25
|
Voynow JA, Fischer BM, Roberts BC, Proia AD. Basal-like Cells Constitute the Proliferating Cell Population in Cystic Fibrosis Airways. Am J Respir Crit Care Med 2005; 172:1013-8. [PMID: 16020799 DOI: 10.1164/rccm.200410-1398oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Cystic fibrosis airways are recurrently exposed to noxious stimuli, leading to epithelial injury. Previous reports suggest that cystic fibrosis airway epithelia may respond to injury by increasing proliferation. OBJECTIVES We sought to determine the characteristics of the proliferating cell population in cystic fibrosis airways. METHODS Six cystic fibrosis and six normal lung sections from lung transplant recipients or lung surgery were obtained from the Duke Hospital pathology archives. Sections containing bronchi were evaluated for epithelial cell proliferation using immunohistochemistry for a nuclear proliferation antigen, Ki-67, and image analysis; immunohistochemistry for basal cells using a cytokeratin 5/14 antibody; and immunohistochemistry for the epidermal growth factor receptor and ErbB2, two receptor tyrosine kinases implicated in epithelial proliferation and differentiation. RESULTS Overall, cystic fibrosis sections had a greater proliferation index than control sections with 25.1 +/- 2.1% positively staining nuclei/total nuclei compared with control sections, 4.6 +/- 0.9% (p = 0.002). In cystic fibrosis sections only, there were areas of hyperplastic cuboidal cells adjacent to normal pseudostratified columnar epithelial sections; in these areas of epithelial hyperplasia, there was uniform Ki-67 staining, indicating a zone of proliferating cells. The proliferating cell population also expressed the basal cell cytokeratins 5/14 and epidermal growth factor receptor. Expression of ErbB2 was diminished in the proliferating cells. CONCLUSIONS Our results suggest that basal-like cells, expressing the epidermal growth factor receptor, constitute the proliferating cell population in cystic fibrosis airways.
Collapse
Affiliation(s)
- Judith A Voynow
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | | | | | | |
Collapse
|
26
|
O'Donnell RA, Richter A, Ward J, Angco G, Mehta A, Rousseau K, Swallow DM, Holgate ST, Djukanovic R, Davies DE, Wilson SJ. Expression of ErbB receptors and mucins in the airways of long term current smokers. Thorax 2004; 59:1032-40. [PMID: 15563701 PMCID: PMC1746902 DOI: 10.1136/thx.2004.028043] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Airway epithelial goblet cell hyperplasia is known to occur in chronic smokers. Although the epidermal growth factor receptor has been implicated in this process, neither ErbB receptor expression nor the mucosecretory phenotype of the epithelium have been characterised in current smokers. METHODS Bronchial biopsies obtained from non-smokers (n = 10) and current smokers, with or without chronic obstructive pulmonary disease (n = 51), were examined immunohistochemically to measure the expression of epidermal growth factor receptor, ErbB2, ErbB3, ErbB4 and mucin subtypes (MUC2, MUC5AC and MUC5B) in the bronchial epithelium. The results were correlated with neutrophil counts measured in the airway wall and induced sputum. RESULTS Epidermal growth factor receptor, ErbB3 and MUC5AC expression, in addition to PAS staining, were significantly increased in all smokers compared with non-smokers, irrespective of the presence of chronic obstructive pulmonary disease. MUC5AC expression was significantly associated with both PAS staining and ErbB3 expression; no correlation was observed between either mucin or ErbB receptor expression and neutrophil counts. CONCLUSIONS The results suggest that long term current smoking induces enhanced epidermal growth factor receptor, ErbB3, and MUC5AC expression in vivo; these increases are not associated with the presence of neutrophilic inflammation. ErbB receptors may contribute to epithelial responses to cigarette smoke.
Collapse
Affiliation(s)
- R A O'Donnell
- Respiratory Cell and Molecular Biology, Division of Infection, Inflammation and Repair, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Courtney JM, Ennis M, Elborn JS. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros 2004; 3:223-31. [PMID: 15698939 DOI: 10.1016/j.jcf.2004.06.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 06/09/2004] [Indexed: 10/25/2022]
Abstract
Airway disease in cystic fibrosis (CF) is characterised by a continuous cycle of chronic infection and inflammation dominated by a neutrophilic infiltrate. This inflammation is characterised by an increased production of pro-inflammatory cytokines in the lung. The relationship between the abnormal CFTR gene product and the development of inflammation and progression of lung disease in CF is not fully understood. This review article studied the mechanisms of pulmonary inflammation in CF, the profiles of cytokines and inflammatory mediators in the lung in CF, the mechanisms that predispose to chronic Pseudomonas aeruginosa infection, cytokine involvement in diseases other than CF and reviewed current therapeutic strategies for CF. Imbalances of cytokine secretion are now better understood due to recent advances in understanding CF at a molecular level and it is increasingly thought that the normal inflammatory process is deranged in CF early in the course of the disease and may occur in the absence of detectable infection. However, the relationship between this unbalanced cytokine production, the mutations in CFTR and its actual consequence for pathogenesis need further investigation.
Collapse
Affiliation(s)
- J M Courtney
- Adult Cystic Fibrosis Centre, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | | | | |
Collapse
|
28
|
Le Cras TD, Hardie WD, Deutsch GH, Albertine KH, Ikegami M, Whitsett JA, Korfhagen TR. Transient induction of TGF-α disrupts lung morphogenesis, causing pulmonary disease in adulthood. Am J Physiol Lung Cell Mol Physiol 2004; 287:L718-29. [PMID: 15090366 DOI: 10.1152/ajplung.00084.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical studies have associated increased transforming growth factor (TGF)-α and EGF receptor with lung remodeling in diseases including bronchopulmonary dysplasia (BPD). BPD is characterized by disrupted alveolar and vascular morphogenesis, inflammation, and remodeling. To determine whether transient increases in TGF-α are sufficient to disrupt postnatal lung morphogenesis, we utilized neonatal transgenic mice conditionally expressing TGF-α. Expression of TGF-α from postnatal days 3 to 5 disrupted postnatal alveologenesis, causing permanent enlargement of distal air spaces in neonatal and adult mice. Lung volume-to-body weight ratios and lung compliance were increased in adult TGF-α transgenic mice, whereas tissue and airway elastance were reduced. Elastin fibers in the alveolar septae were fragmented and disorganized. Pulmonary vascular morphogenesis was abnormal in TGF-α mice, with attenuated and occasionally tortuous arterial branching. The ratios of right ventricle weight to left ventricle plus septal weight were increased in TGF-α mice, indicating pulmonary hypertension. Electron microscopy showed gaps in the capillary endothelium and extravasation of erythrocytes into the alveolar space of TGF-α mice. Hemorrhage and inflammatory cells were seen in distal air spaces at 1 mo of age. In adult TGF-α mice, alveolar remodeling, nodules, proteinaceous deposits, and inflammatory cells were seen. Immunostaining for pro-surfactant protein C showed that type II cells were abundant in the nodules, as well as neutrophils and macrophages. Trichrome staining showed that pulmonary fibrosis was minimal, apart from areas of nodular remodeling in adult TGF-α mice. Transient induction of TGF-α during early alveologenesis permanently disrupted lung structure and function and caused chronic lung disease.
Collapse
Affiliation(s)
- T D Le Cras
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Hardie WD, Le Cras TD, Jiang K, Tichelaar JW, Azhar M, Korfhagen TR. Conditional expression of transforming growth factor-alpha in adult mouse lung causes pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2003; 286:L741-9. [PMID: 14660483 DOI: 10.1152/ajplung.00208.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether overexpression of transforming growth factor (TGF)-alpha in the adult lung causes remodeling independently of developmental influences, we generated conditional transgenic mice expressing TGF-alpha in the epithelium under control of the doxycycline (Dox)-regulatable Clara cell secretory protein promoter. Two transgenic lines were generated, and following 4 days of Dox-induction TGF-alpha levels in whole lung homogenate were increased 13- to 18-fold above nontransgenic levels. After TGF-alpha induction, transgenic mice developed progressive pulmonary fibrosis and body weight loss, with mice losing 15% of their weight after 6 wk of TGF-alpha induction. Fibrosis was detected within 4 days of TGF-alpha induction and developed initially in the perivascular, peribronchial, and pleural regions but later extended into the interstitium. Fibrotic regions were composed of increased collagen and cellular proliferation and were adjacent to airway and alveolar epithelial sites of TGF-alpha expression. Fibrosis progressed in the absence of inflammatory cell infiltrates as determined by histology, without changes in bronchiolar alveolar lavage total or differential cell counts and without changes in proinflammatory cytokines TNF-alpha or IL-6. Active TGF-beta in whole lung homogenate was not altered 1 and 4 days after TGF-alpha induction, and immunostaining was not increased in the peribronchial/perivascular areas at all time points. Chronic epithelial expression of TGF-alpha in adult mice caused progressive pulmonary fibrosis associated with increased collagen and extracellular matrix deposition and increased cellular proliferation. Induction of pulmonary fibrosis by TGF-alpha was independent of inflammation or early activation of TGF-beta.
Collapse
Affiliation(s)
- William D Hardie
- Div. of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Le Cras TD, Hardie WD, Fagan K, Whitsett JA, Korfhagen TR. Disrupted pulmonary vascular development and pulmonary hypertension in transgenic mice overexpressing transforming growth factor-alpha. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1046-54. [PMID: 12896876 DOI: 10.1152/ajplung.00045.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular disease plays a major role in morbidity and mortality in infant and adult lung diseases in which increased levels of transforming growth factor (TGF)-alpha and its receptor EGFR have been associated. The aim of this study was to determine whether overexpression of TGF-alpha disrupts pulmonary vascular development and causes pulmonary hypertension. Lung-specific expression of TGF-alpha in transgenic mice was driven with the human surfactant protein (SP)-C promoter. Pulmonary arteriograms and arterial counts show that pulmonary vascular development was severely disrupted in TGF-alpha mice. TGF-alpha mice developed severe pulmonary hypertension and vascular remodeling characterized by abnormally extensive muscularization of small pulmonary arteries. Pulmonary vascular development was significantly improved and pulmonary hypertension and vascular remodeling were prevented in bi-transgenic mice expressing both TGF-alpha and a dominant-negative mutant EGF receptor under the control of the SP-C promoter. Vascular endothelial growth factor (VEGF-A), an important angiogenic factor produced by the distal epithelium, was decreased in the lungs of TGF-alpha adults and in the lungs of infant TGF-alpha mice before detectable abnormalities in pulmonary vascular development. Hence, overexpression of TGF-alpha caused severe pulmonary vascular disease, which was mediated through EGFR signaling in distal epithelial cells. Reductions in VEGF may contribute to the pathogenesis of pulmonary vascular disease in TGF-alpha mice.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | | | |
Collapse
|
32
|
Sablina AA, Chumakov PM, Kopnin BP. Tumor suppressor p53 and its homologue p73alpha affect cell migration. J Biol Chem 2003; 278:27362-71. [PMID: 12750388 DOI: 10.1074/jbc.m300547200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The p53 tumor suppressor plays a central role in the negative control of growth and survival of abnormal cells. Previously we demonstrated that in addition to these functions, p53 expression affects cell morphology and lamellar activity of the cell edge (Alexandrova, A., Ivanov, A., Chumakov, P. M., Kopnin, P. B., and Vasiliev, J. M. (2000) Oncogene 19, 5826-5830). In the present work we studied the effects of p53 and its homologue p73alpha on cell migration. We found that loss of p53 function correlated with decreased cell migration that was analyzed by in vitro wound closure test and Boyden chamber assay. The decreased motility of p53-deficient cells was observed in different cell contexts: human foreskin fibroblasts (BJ), human colon and lung carcinoma cell lines (HCT116 and H1299, respectively), as well as mouse normal fibroblasts from lung and spleen, peritoneal macrophages, and keratinocytes. On the other hand, overexpression of the p53 family member p73alpha stimulated cell migration. Changes in cell migration correlated directly with transcription activation induced by p53 or p73alpha. Noteworthy, p53 modulated cell motility in the absence of stress. The effect of p53 and p73alpha on cell migration was mediated through the activity of the phosphatidylinositol 3-kinase/Rac1 pathway. This p53/p73 function was mainly associated with some modulation of intracellular signaling rather than with stimulation of production of secreted motogenic factors. The identified novel activity of the p53 family members might be involved in regulation of embryogenesis, wound healing, or inflammatory response.
Collapse
Affiliation(s)
- Anna A Sablina
- Lerner Research Institute, the Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
33
|
Kohri K, Ueki IF, Nadel JA. Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation. Am J Physiol Lung Cell Mol Physiol 2002; 283:L531-40. [PMID: 12169572 DOI: 10.1152/ajplung.00455.2001] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil products are implicated in hypersecretory airway diseases. To determine the mechanisms linking a proteolytic effect of human neutrophil elastase (HNE) and mucin overproduction, we examined the effects of HNE on MUC5AC mucin production in human airway epithelial (NCI-H292) cells. Stimulation with HNE for 5-30 min induced MUC5AC production 24 h later, which was prevented by HNE serine active site inhibitors, implicating a proteolytic effect of HNE. MUC5AC induction was preceded by epidermal growth factor receptor (EGFR) tyrosine phosphorylation and was prevented by selective EGFR tyrosine kinase inhibitors, implicating EGFR activation. HNE-induced MUC5AC production was inhibited by a neutralizing transforming growth factor-alpha (TGF-alpha, an EGFR ligand) antibody and by a neutralizing EGFR antibody but not by oxygen free radical scavengers, further implicating TGF-alpha and ligand-dependent EGFR activation in the response. HNE decreased pro-TGF-alpha in NCI-H292 cells and increased TGF-alpha in cell culture supernatant. From these results, we conclude that HNE-induced MUC5AC mucin production occurs via its proteolytic activation of an EGFR signaling cascade involving TGF-alpha.
Collapse
Affiliation(s)
- Kazuhiro Kohri
- Cardiovascular Research Institute, University of California San Francisco, 94143-0130, USA
| | | | | |
Collapse
|
34
|
Dinkel C, Moody M, Traynor-Kaplan A, Schultz C. Membrane-Permeant 3-OH-Phosphorylated Phosphoinositide Derivatives. Angew Chem Int Ed Engl 2002; 40:3004-8. [PMID: 12203630 DOI: 10.1002/1521-3773(20010817)40:16<3004::aid-anie3004>3.0.co;2-o] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2001] [Revised: 05/21/2001] [Indexed: 11/09/2022]
Abstract
A crucial role in the regulation of epithelial chloride secretion is played by the phosphoinositide PtdIns(3,4,5)P3 . Membrane-permeant derivatives of this and other naturally occurring phosphoinositides have been synthesized. These derivatives, which can be bioactivated, were used in investigations on nasal epithelia of patients suffering from cystic fibrosis.
Collapse
Affiliation(s)
- C Dinkel
- Institut für Organische Chemie, Universität Bremen, UFT Leobener Strasse, 28359 Bremen, Germany
| | | | | | | |
Collapse
|
35
|
Hardie WD, Prows DR, Piljan-Gentle A, Dunlavy MR, Wesselkamper SC, Leikauf GD, Korfhagen TR. Dose-related protection from nickel-induced lung injury in transgenic mice expressing human transforming growth factor-alpha. Am J Respir Cell Mol Biol 2002; 26:430-7. [PMID: 11919079 DOI: 10.1165/ajrcmb.26.4.4594] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To determine the role of transforming growth factor-alpha (TGF-alpha) in protecting the lung from aerosolized nickel injury, transgenic mouse lines expressing human TGF-alpha in the pulmonary epithelium, under control of the human surfactant protein-C gene promoter, were tested. Higher expressing TGF-alpha transgenic mouse lines, expressing distinct levels of TGF-alpha, survived longer than nontransgenic control mice. Increased survival correlated with levels of TGF-alpha expression in the lung. After 72 h of nickel exposure (70 microg Ni/m3), transgenic lines with intermediate levels of the TGF-alpha expression demonstrated attenuation of lung injury. The highest expressing line (line 28) demonstrated reduced lung inflammation and edema, reduced lung wet-to-dry weight ratios, decreased bronchoalveolar lavage (BAL) protein and neutrophils, reduced interleukin (IL)-1beta, interleukin-6, and macrophage inflammatory protein-2, and maintained surfactant protein-B (SP-B) levels compared with nontransgenic controls. In the TGF-alpha transgenic mouse model, TGF-alpha protects against nickel-induced acute lung injury, at least in part, by attenuating the inflammatory response, reducing pulmonary edema, and preserving levels of SP-B.
Collapse
Affiliation(s)
- William D Hardie
- Division of Pulmonary Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lemjabbar H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 2002; 8:41-6. [PMID: 11786905 DOI: 10.1038/nm0102-41] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the lungs of cystic fibrosis patients, overproduction of mucus leads to morbidity and mortality by obstructing airflow and shielding bacteria from antibiotics. Here we demonstrate that overproduction of mucus is a direct result of the activation of mucin gene expression by Gram-positive bacteria. Bacterial lipoteichoic acid activates the platelet-activating factor receptor, which is G protein-coupled. This results in activation of a disintegrin and metalloproteinase (ADAM10), kuzbanian, cleavage of pro heparin-binding epidermal growth factor and activation of the epidermal growth factor receptor. Unlike responses in macrophages, the epithelial-cell response to lipoteichoic acid does not require Toll-like receptor 2 or 4.
Collapse
Affiliation(s)
- Hassan Lemjabbar
- Biomedical Sciences Program, Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, California, USA
| | | |
Collapse
|
37
|
Polosa R, Puddicombe SM, Krishna MT, Tuck AB, Howarth PH, Holgate ST, Davies DE. Expression of c-erbB receptors and ligands in the bronchial epithelium of asthmatic subjects. J Allergy Clin Immunol 2002; 109:75-81. [PMID: 11799369 DOI: 10.1067/mai.2002.120274] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The c-erbB family of receptor tyrosine kinases act in a combinatorial fashion to regulate cell behavior. Disturbances in this system have been associated with neoplastic and inflammatory diseases. OBJECTIVES Although expression of the epidermal growth factor receptor (EGFR; c-erbB1) is increased in the bronchial epithelium in asthma, there is no information on expression of other members of the c-erbB receptor and ligand family that can modulate EGFR function. METHODS Immunohistochemistry was used to compare expression of EGFR, c-erbB2, c-erbB3, epidermal growth factor, heparin-binding epidermal growth factor-like growth factor, and transforming growth factor alpha in bronchial biopsy specimens from normal and asthmatic subjects. Scrape-wounded monolayers of 16HBE 14o(-) cells were used as an in vitro model of damage and repair. Changes in EGFR, c-erbB2, and c-erbB3 distribution were measured by means of immunocytochemistry, whereas tyrosine phosphorylation was measured by means of immunoprecipitation and Western blotting. RESULTS Although epithelial staining for the EGFR was significantly increased in asthmatic epithelium (P <.001), there was no difference in staining for the other receptors and ligands studied. In scrape-wounded epithelial monolayers, tyrosine phosphorylation of EGFR, c-erbB2, and c-erbB3 occurred immediately after damage; however, only EGFR showed a change in expression in response to damage. CONCLUSIONS Even though EGFR levels are increased in asthma, this is not linked to changes in expression of its activating ligands or other c-erbB receptors. Because bronchial epithelial cells respond to physical damage through activation of several c-erbB family members, the shift in favor of increased EGFR levels in asthma may lead to altered epithelial function by influencing the number and type of heterodimeric signaling complexes, assuming sufficient ligand availability.
Collapse
Affiliation(s)
- Riccardo Polosa
- School of Medicine, Division of Respiratory Cell and Molecular Biology, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Hardie WD, Piljan-Gentle A, Dunlavy MR, Ikegami M, Korfhagen TR. Dose-dependent lung remodeling in transgenic mice expressing transforming growth factor-alpha. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1088-94. [PMID: 11597899 DOI: 10.1152/ajplung.2001.281.5.l1088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic mice overexpressing human transforming growth factor-alpha (TGF-alpha) develop emphysema and fibrosis during postnatal alveologenesis. To assess dose-related pulmonary alterations, four distinct transgenic lines expressing different amounts of TGF-alpha in the distal lung under control of the surfactant protein C (SP-C) promoter were characterized. Mean lung homogenate TGF-alpha levels ranged from 388 +/- 40 pg/ml in the lowest expressing line to 1,247 +/- 33 pg/ml in the highest expressing line. Histological assessment demonstrated progressive alveolar airspace size changes that were more severe in the higher expressing TGF-alpha lines. Pleural and parenchymal fibrosis were only detected in the highest expressing line (line 28), and increasing terminal airspace area was associated with increasing TGF-alpha expression. Hysteresis on pressure-volume curves was significantly reduced in line 28 mice compared with other lines of mice. There were no differences in bronchoalveolar lavage fluid cell count or differential that would indicate any evidence of lung inflammation among all transgenic lines. Proliferating cells were increased in line 28 without alterations of numbers of type II cells. We conclude that TGF-alpha lung remodeling in transgenic mice is dose dependent and is independent of pulmonary inflammation.
Collapse
Affiliation(s)
- W D Hardie
- Division of Pulmonary Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Takeyama K, Fahy JV, Nadel JA. Relationship of epidermal growth factor receptors to goblet cell production in human bronchi. Am J Respir Crit Care Med 2001; 163:511-6. [PMID: 11179132 DOI: 10.1164/ajrccm.163.2.2001038] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To determine the relationship of epidermal growth factor receptor (EGFR) expression to mucin synthesis in human airways, we examined EGFR and MUC5AC expression at both gene and protein levels using in situ hybridization and immunohistochemical analysis in human bronchi. Bronchial mucosal biopsy specimens were obtained from 12 asthmatic subjects and 11 healthy subjects. In asthmatic airways, EGFR mRNA was expressed in the airway epithelium. EGFR immunoreactivity staining patterns varied among the asthmatic airways: staining was positive mainly in goblet cells, in basal cells, or in both. In contrast, healthy airways showed little expression of EGFR mRNA; EGFR immunoreactivity was observed mainly in goblet cells. In parallel to EGFR expression, MUC5AC mRNA expression was greater in asthmatic airways; mucous glycoconjugates that stained positively with Alcian blue/PAS were also increased in asthmatic airways. Ciliated cells were negative for EGFR and MUC5AC both in asthmatic and in healthy subjects at both mRNA and protein levels. There was a significant positive correlation between EGFR immunoreactivity and the area of MUC5AC-positive staining in both asthmatics and healthy subjects. These findings suggest a sequence of events by which EGFR activation is involved in mucin expression in asthmatic airway epithelium.
Collapse
Affiliation(s)
- K Takeyama
- Cardiovascular Research Institute and Department of Medicine, University of California San Francisco, San Francisco, California 94143-0130, USA
| | | | | |
Collapse
|
41
|
Hardie WD, Prows DR, Leikauf GD, Korfhagen TR. Attenuation of acute lung injury in transgenic mice expressing human transforming growth factor-alpha. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L1045-50. [PMID: 10564191 DOI: 10.1152/ajplung.1999.277.5.l1045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-alpha (TGF-alpha) is produced in the lung in experimental and human lung diseases; however, its physiological actions after lung injury are not understood. To determine the influence of TGF-alpha on acute lung injury, transgenic mouse lines expressing differing levels of human TGF-alpha in distal pulmonary epithelial cells under control of the surfactant protein C gene promoter were generated. TGF-alpha transgenic and nontransgenic control mice were exposed to polytetrafluoroethylene (PTFE; Teflon) fumes to induce acute lung injury. Length of survival of four separate TGF-alpha transgenic mouse lines was significantly longer than that of nontransgenic control mice, and survival correlated with the levels of TGF-alpha expression in the lung. The transgenic line expressing the highest level of TGF-alpha (line 28) and nontransgenic control mice were then compared at time intervals of 2, 4, and 6 h of PTFE exposure for differences in pulmonary function, lung histology, bronchoalveolar lavage fluid protein and cell differential, and lung homogenate proinflammatory cytokines. Line 28 TGF-alpha transgenic mice demonstrated reduced histological changes, decreased bronchoalveolar lavage fluid total protein and neutrophils, and delayed alterations in pulmonary function measures of airway obstruction compared with those in nontransgenic control mice. Both line 28 and nontransgenic control mice had similar increases in interleukin-1beta protein levels in lung homogenates. In contrast, interleukin-6 and macrophage inflammatory protein-2 levels were significantly reduced in line 28 transgenic mice compared with those in nontransgenic control mice. In the transgenic mouse model, TGF-alpha protects against PTFE-induced acute lung injury, at least in part, by attenuating the inflammatory response.
Collapse
Affiliation(s)
- W D Hardie
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | |
Collapse
|