1
|
Khan AA, Kim JH. Recent advances in materials and manufacturing of implantable devices for continuous health monitoring. Biosens Bioelectron 2024; 261:116461. [PMID: 38850737 DOI: 10.1016/j.bios.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Implantable devices are vital in healthcare, enabling continuous monitoring, early disease detection, informed decision-making, enhanced outcomes, cost reduction, and chronic condition management. These devices provide real-time data, allowing proactive healthcare interventions, and contribute to overall improvements in patient care and quality of life. The success of implantable devices relies on the careful selection of materials and manufacturing methods. Recent materials research and manufacturing advancements have yielded implantable devices with enhanced biocompatibility, reliability, and functionality, benefiting human healthcare. This paper provides a comprehensive overview of the latest developments in implantable medical devices, emphasizing the importance of material selection and manufacturing methods, including biocompatibility, self-healing capabilities, corrosion resistance, mechanical properties, and conductivity. It explores various manufacturing techniques such as microfabrication, 3D printing, laser micromachining, electrospinning, screen printing, inkjet printing, and nanofabrication. The paper also discusses challenges and limitations in the field, including biocompatibility concerns, privacy and data security issues, and regulatory hurdles for implantable devices.
Collapse
Affiliation(s)
- Akib Abdullah Khan
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA; Department of Mechanical Engineering, University of Washington, WA, 98195, USA.
| |
Collapse
|
2
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Nica SL, Hulubei C, Popovici D, Dobromir M. Metallized polyimide films for biomedical applications: X‐ray photoelectron spectroscopy, surface tension, and blood compatibility studies. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Camelia Hulubei
- “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | | | - Marius Dobromir
- Interdisciplinary Research Institute, Sciences Department Alexandru Ioan Cuza University of Iasi Iasi Romania
| |
Collapse
|
4
|
Park SW, Lee S, Cha WC, Hur KY, Kim JH, Lee MK, Park SM, Jin SM. An Electronic Health Record-Integrated Computerized Intravenous Insulin Infusion Protocol: Clinical Outcomes and in Silico Adjustment. Diabetes Metab J 2020; 44:56-66. [PMID: 31701686 PMCID: PMC7043972 DOI: 10.4093/dmj.2018.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/30/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We aimed to describe the outcome of a computerized intravenous insulin infusion (CII) protocol integrated to the electronic health record (EHR) system and to improve the CII protocol in silico using the EHR-based predictors of the outcome. METHODS Clinical outcomes of the patients who underwent the CII protocol between July 2016 and February 2017 and their matched controls were evaluated. In the CII protocol group (n=91), multivariable binary logistic regression analysis models were used to determine the independent associates with a delayed response (taking ≥6.0 hours for entering a glucose range of 70 to 180 mg/dL). The CII protocol was adjusted in silico according to the EHR-based parameters obtained in the first 3 hours of CII. RESULTS Use of the CII protocol was associated with fewer subjects with hypoglycemia alert values (P=0.003), earlier (P=0.002), and more stable (P=0.017) achievement of a glucose range of 70 to 180 mg/dL. Initial glucose level (P=0.001), change in glucose during the first 2 hours (P=0.026), and change in insulin infusion rate during the first 3 hours (P=0.029) were independently associated with delayed responses. Increasing the insulin infusion rate temporarily according to these parameters in silico significantly reduced delayed responses (P<0.0001) without hypoglycemia, especially in refractory patients. CONCLUSION Our CII protocol enabled faster and more stable glycemic control than conventional care with minimized risk of hypoglycemia. An EHR-based adjustment was simulated to reduce delayed responses without increased incidence of hypoglycemia.
Collapse
Affiliation(s)
- Sung Woon Park
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seunghyun Lee
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Won Chul Cha
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moon Kyu Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Min Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| | - Sang Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
5
|
Pandey PC, Shukla S, Skoog SA, Boehm RD, Narayan RJ. Current Advancements in Transdermal Biosensing and Targeted Drug Delivery. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1028. [PMID: 30823435 PMCID: PMC6427209 DOI: 10.3390/s19051028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A variety of strategies have been adopted for the enhancement of transdermal permeation for drug delivery and biosensing of various substances. Physical techniques such as iontophoresis, reverse iontophoresis, electroporation, and microneedles offer (a) electrical amplification for transdermal sensing of biomolecules and (b) transport of amphiphilic drug molecules to the targeted site in a minimally invasive manner. Iontophoretic delivery involves the application of low currents to the skin as well as the migration of polarized and neutral molecules across it. Transdermal biosensing via microneedles has emerged as a novel approach to replace hypodermic needles. In addition, microneedles have facilitated minimally invasive detection of analytes in body fluids. This review considers recent innovations in the structure and performance of transdermal systems.
Collapse
Affiliation(s)
- Prem C Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shubhangi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Shelby A Skoog
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Ryan D Boehm
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Ricotti L, Assaf T, Dario P, Menciassi A. Wearable and implantable pancreas substitutes. J Artif Organs 2012; 16:9-22. [PMID: 22990986 DOI: 10.1007/s10047-012-0660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/27/2012] [Indexed: 01/08/2023]
Abstract
A lifelong-implanted and completely automated artificial or bioartificial pancreas (BAP) is the holy grail for type 1 diabetes treatment, and could be a definitive solution even for other severe pathologies, such as pancreatitis and pancreas cancer. Technology has made several important steps forward in the last years, providing new hope for the realization of such devices, whose feasibility is strictly connected to advances in glucose sensor technology, subcutaneous and intraperitoneal insulin pump development, the design of closed-loop control algorithms for mechatronic pancreases, as well as cell and tissue engineering and cell encapsulation for biohybrid pancreases. Furthermore, smart integration of the mentioned components and biocompatibility issues must be addressed, bearing in mind that, for mechatronic pancreases, it is most important to consider how to recharge implanted batteries and refill implanted insulin reservoirs without requiring periodic surgical interventions. This review describes recent advancements in technologies and concepts related to artificial and bioartificial pancreases, and assesses how far we are from a lifelong-implanted and self-working pancreas substitute that can fully restore the quality of life of a diabetic (or other type of) patient.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy.
| | | | | | | |
Collapse
|
7
|
|
8
|
Guo M, Fang H, Wang R, Yang Z, Xu X. Electrodeposition of chitosan-glucose oxidase biocomposite onto Pt-Pb nanoparticles modified stainless steel needle electrode for amperometric glucose biosensor. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1985-1992. [PMID: 21671000 DOI: 10.1007/s10856-011-4363-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/28/2011] [Indexed: 05/30/2023]
Abstract
A glucose biosensor was fabricated by electrodepositing chitosan (CS)-glucose oxidase(GOD) biocomposite onto the stainless steel needle electrode (SSN electrode) modified by Pt-Pb nanoparticles (Pt-Pb/SSN electrode). Firstly, Pt-Pb nanoparticles were deposited onto the SSN electrode and then CS-GOD biocomposite was co-electrodeposited onto the Pt-Pb/SSN electrode in a mixed solution containing p-benzoquinone (p-BQ), CS and GOD. The electrochemical results showed that the Pt-Pb nanoparticles can accelerate the electron transfer and improve the effective surface area of the SSN electrode. As a result, the detection range of the proposed biosensor was from 0.03 to 9 mM with a current sensitivity of 0.4485 μA/mM and a response time of 15 s. The Michaelis constant value was calculated to be 4.9837 mM. The cell test results indicated that the electrodes have a low cytotoxicity. This work provided a suitable technology for the fabrication of the needle-type glucose biosensor.
Collapse
Affiliation(s)
- Meiqing Guo
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | | | | | | |
Collapse
|
9
|
Morrow L, Hompesch M, Tideman AM, Matson J, Dunne N, Pardo S, Parkes JL, Schachner HC, Simmons DA. Evaluation of a novel continuous glucose measurement device in patients with diabetes mellitus across the glycemic range. J Diabetes Sci Technol 2011; 5:853-9. [PMID: 21880226 PMCID: PMC3192590 DOI: 10.1177/193229681100500406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND This glucose clamp study assessed the performance of an electrochemical continuous glucose monitoring (CGM) system for monitoring levels of interstitial glucose. This novel system does not require use of a trocar or needle for sensor insertion. METHOD Continuous glucose monitoring sensors were inserted subcutaneously into the abdominal tissue of 14 adults with type 1 or type 2 diabetes. Subjects underwent an automated glucose clamp procedure with four consecutive post-steady-state glucose plateau periods (40 min each): (a) hypoglycemic (50 mg/dl), (b) hyperglycemic (250 mg/dl), (c) second hypoglycemic (50 mg/dl), and (d) euglycemic (90 mg/dl). Plasma glucose results obtained with YSI glucose analyzers were used for sensor calibration. Accuracy was assessed retrospectively for plateau periods and transition states, when glucose levels were changing rapidly (approximately 2 mg/dl/min). RESULTS Mean absolute percent difference (APD) was lowest during hypoglycemic plateaus (11.68%, 14.15%) and the euglycemic-to-hypoglycemic transition (14.21%). Mean APD during the hyperglycemic plateau was 17.11%; mean APDs were 18.12% and 19.25% during the hypoglycemic-to-hyperglycemic and hyperglycemic-to-hypoglycemic transitions, respectively. Parkes (consensus) error grid analysis (EGA) and rate EGA of the plateaus and transition periods, respectively, yielded 86.8% and 68.6% accurate results (zone A) and 12.1% and 20.0% benign errors (zone B). Continuous EGA yielded 88.5%, 75.4%, and 79.3% accurate results and 8.3%, 14.3%, and 2.4% benign errors for the euglycemic, hyperglycemic, and hypoglycemic transition periods, respectively. Adverse events were mild and unlikely to be device related. CONCLUSION This novel CGM system was safe and accurate across the clinically relevant glucose range.
Collapse
Affiliation(s)
- Linda Morrow
- Profil Institute for Clinical Research, Inc., Chula Vista, California 91911, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hoshino M, Haraguchi Y, Mizushima I, Sakai M. Recent progress in mechanical artificial pancreas. J Artif Organs 2009; 12:141-9. [PMID: 19894087 DOI: 10.1007/s10047-009-0463-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Indexed: 12/14/2022]
Affiliation(s)
- Masami Hoshino
- Department of Surgery, Shisei Hospital, Sayama-shi, Saitama, Japan.
| | | | | | | |
Collapse
|
11
|
Nishida K, Shimoda S, Ichinose K, Araki E, Shichiri M. What is artificial endocrine pancreas? Mechanism and history. World J Gastroenterol 2009; 15:4105-10. [PMID: 19725141 PMCID: PMC2738803 DOI: 10.3748/wjg.15.4105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The artificial endocrine pancreas is a feedback control instrument that regulates insulin delivery on a minute-by-minute basis according to measured blood glucose levels. Only one type of bedside-type artificial endocrine pancreas is now available in Japan: STG-22 (Nikkiso Co. Ltd., Japan). In the insulin infusion algorithm, insulin is infused on the basis of its proportional and derivative actions, to blood glucose concentrations with a constant time delay. The bedside-type artificial endocrine pancreas has been proven to be useful not only as a therapeutic tool for diabetes mellitus, but also as an elegant research tool for investigating the pathophysiology of the disease, by using the euglycemic hyperinsulinemic glucose clamp technique. The wearable type of closed-loop system has been developed recently. The breakthrough is the establishment of a needle-type glucose sensor. The development of closed-loop glycemic control systems that enable long-term physiological regulation has focused on implantable devices. Much effort has been expended to realize these devices.
Collapse
|
12
|
Biosensor system for continuous glucose monitoring in fish. Anal Chim Acta 2009; 633:90-6. [DOI: 10.1016/j.aca.2008.11.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/22/2022]
|
13
|
Sawa Y, Horiuchi T, Kishida A, Masuzawa T, Nishimura M, Tatsumi E, Tomizawa Y, Watanabe H. Journal of Artificial Organs 2006: the year in review. J Artif Organs 2007; 10:53-9. [PMID: 17574506 DOI: 10.1007/s10047-007-0386-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Indexed: 10/23/2022]
|