1
|
Ponger P, Kurolap A, Lerer I, Dagan J, Chai Gadot C, Mory A, Wilnai Y, Oniashvili N, Giladi N, Gurevich T, Meiner V, Lossos A, Baris Feldman H. Unique Ataxia-Oculomotor Apraxia 2 (AOA2) in Israel with Novel Variants, Atypical Late Presentation, and Possible Identification of a Poison Exon. J Mol Neurosci 2022; 72:1715-1723. [PMID: 35676594 DOI: 10.1007/s12031-022-02035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
AOA2 is a rare progressive adolescent-onset disease characterised by cerebellar vermis atrophy, peripheral neuropathy and elevated serum alpha-fetoprotein (AFP) caused by pathogenic bi-allelic variants in SETX, encoding senataxin, involved in DNA repair and RNA maturation. Sanger sequencing of genomic DNA, co-segregation and oxidative stress functional studies were performed in Family 1. Trio whole-exome sequencing (WES), followed by SETX RNA and qRT-PCR analysis, were performed in Family 2. Sanger sequencing in Family 1 revealed two novel in-frame SETX deletion and duplication variants in trans (c.7009_7011del; p.Val2337del and c.7369_7371dup; p.His2457dup). Patients had increased induced chromosomal aberrations at baseline and following exposure to higher mitomycin-C concentration and increased sensitivity to oxidative stress at the lower mitomycin-C concentration in cell viability test. Trio WES in Family 2 revealed two novel SETX variants in trans, a nonsense variant (c.568C > T; p.Gln190*), and a deep intronic variant (c.5549-107A > G). Intronic variant analysis and SETX mRNA expression revealed activation of a cryptic exon introducing a premature stop codon (p.Met1850Lysfs*18) and resulting in aberrant splicing, as shown by qRT-PCR analysis, thus leading to higher levels of cryptic exon activation. Along with a second deleterious allele, this variant leads to low levels of SETX mRNA and disease manifestations. Our report expands the phenotypic spectrum of AOA2. Results provide initial support for the hypomorphic nature of the novel in-frame deletion and duplication variants in Family 1. Deep-intronic variant analysis of Family 2 variants potentially reveals a previously undescribed poison exon in the SETX gene, which may contribute to tailored therapy development.
Collapse
Affiliation(s)
- Penina Ponger
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel. .,The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Israela Lerer
- Department of Genetics, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Judith Dagan
- Department of Genetics, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Chofit Chai Gadot
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Adi Mory
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Wilnai
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nino Oniashvili
- Cytogenetic Laboratory, Oncology Department, Schneider Children's Medical Center in Israel, Petah Tikva, Israel
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vardiella Meiner
- Department of Genetics, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Alexander Lossos
- Department of Neurology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Marelli C, Guissart C, Hubsch C, Renaud M, Villemin JP, Larrieu L, Charles P, Ayrignac X, Sacconi S, Collignon P, Cuntz-Shadfar D, Perrin L, Benarrosh A, Degardin A, Lagha-Boukbiza O, Mutez E, Carlander B, Morales RJ, Gonzalez V, Carra-Dalliere C, Azakri S, Mignard C, Ollagnon E, Pageot N, Chretien D, Geny C, Azulay JP, Tranchant C, Claustres M, Labauge P, Anheim M, Goizet C, Calvas P, Koenig M. Mini-Exome Coupled to Read-Depth Based Copy Number Variation Analysis in Patients with Inherited Ataxias. Hum Mutat 2016; 37:1340-1353. [DOI: 10.1002/humu.23063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Cecilia Marelli
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Claire Guissart
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Cecile Hubsch
- Department of Neurology; Pitié-Salpêtrière University Hospital; Paris France
| | - Mathilde Renaud
- Department of Neurology; Strasbourg University Hospital; Strasbourg France
| | - Jean-Philippe Villemin
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Lise Larrieu
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Perrine Charles
- Department of Genetics; Pitié-Salpêtrière University Hospital; Paris France
| | - Xavier Ayrignac
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS, Neuromuscular & ALS Specialized Center; Nice University Hospital, Pasteur 2; Nice France
| | - Patrick Collignon
- Department of Medical Genetics; Sainte Musse Hospital; Toulon France
| | - Danielle Cuntz-Shadfar
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
- Department of Paediatrics; University Hospital Gui de Chauliac; Montpellier France
| | - Laurine Perrin
- Department of Physical Medicine and Rehabilitation and Department of Paediatric Neurology; CHU de Saint Etienne France
| | | | - Adrian Degardin
- Department of Neurology; University Hospital Roger Salengro; Lille France
| | | | - Eugenie Mutez
- CHU Lille, UMR-S 1172 - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; University of Lille, Inserm; Lille France
| | - Bertrand Carlander
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Raul Juntas Morales
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Victoria Gonzalez
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | | | - Souhayla Azakri
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Claude Mignard
- Centre de Référence des Maladies Neuro-musculaires et Neurologiques Rares du CHU de la Réunion; France
| | - Elisabeth Ollagnon
- Department of Medical Genetics and Reference Centre for Neurological and Neuromuscular Diseases; Croix-Rousse Hospital; Lyon France
| | - Nicolas Pageot
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Dominique Chretien
- INSERM UMR 1141 Robert Debré Hospital and Denis Diderot University Paris 7; Paris France
| | - Christian Geny
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | | | | | - Mireille Claustres
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| | - Pierre Labauge
- Department of Neurology; University Hospital Gui de Chauliac; Montpellier France
| | - Mathieu Anheim
- Department of Neurology; Strasbourg University Hospital; Strasbourg France
| | - Cyril Goizet
- Department of Medical Genetics, Pellegrin University Hospital, and laboratoire Maladies Rares Génétique et Métabolisme (MRGM), INSERM U1211; Université Bordeaux; Bordeaux France
| | - Patrick Calvas
- Department of Clinical Genetics; Purpan University Hospital; Toulouse France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, University Hospital; Montpellier France
| |
Collapse
|
4
|
Abstract
Advances in next-generation sequencing technology have made it possible to comprehensively interrogate the entire spectrum of genomic variations including rare variants. They may help capture the remaining genetic heritability which has not been fully explained by previous genome-wide association studies. Here we performed a gene-based genome-wide scan to identify hypertension susceptibility loci in analysis of a whole genome sequencing cohort of 103 unrelated individuals. We found that collapsing singletons may boost signals for associating rare variants and identified SETX statistically significant by a genome-wide gene-based threshold (p value <5.0 × 10(-6)). The function of SETX in hypertension may be worthy of further investigation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Computer Science, New Jersey Institute of Technology, University Heights Newark, New Jersey 07102, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, University Heights Newark, New Jersey 07102, USA
| |
Collapse
|
5
|
Abstract
OBJECTIVE In this paper, we document two cases of a new SETX mutation (820:A>G) combined with an established recessive SETX mutation (5927:T>G) causing ataxia with oculomotor apraxia type 2 (AOA2). METHODS The patients had a detailed neurological history and examination performed. Radiological imaging was obtained and genetic analysis was obtained. RESULTS Both siblings demonstrated healthy and normal growth until adolescence. At that time, slowed speech, hypophonia, dysarthria, extraocular muscle dysfunction and some mild choreiform movements began to appear. Family history included some movement disorder difficulties in second degree relatives. The diagnosis of AOA2 was confirmed by genetic testing. CONCLUSIONS We describe a new SETX gene mutation, which when combined with a recognized SETX mutation results in AOA2. The clinical, radiographic and ancillary testing are described.
Collapse
Affiliation(s)
- Neil Datta
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA.
| | | |
Collapse
|
6
|
Reynolds JJ, Stewart GS. A single strand that links multiple neuropathologies in human disease. ACTA ACUST UNITED AC 2013; 136:14-27. [PMID: 23365091 DOI: 10.1093/brain/aws310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The development of the human central nervous system is a complex process involving highly coordinated periods of neuronal proliferation, migration and differentiation. Disruptions in these neurodevelopmental processes can result in microcephaly, a neuropathological disorder characterized by a reduction in skull circumference and total brain volume, whereas a failure to maintain neuronal health in the adult brain can lead to progressive neurodegeneration. Defects in the cellular pathways that detect and repair DNA damage are a common cause of both these neuropathologies and are associated with a growing number of hereditary human disorders. In particular, defects in the repair of DNA single strand breaks, one of the most commonly occurring types of DNA lesion, have been associated with three neuropathological diseases: ataxia oculomotor apraxia 1, spinocerebellar ataxia with neuronal neuropathy 1 and microcephaly, early-onset, intractable seizures and developmental delay. A striking similarity between these three human diseases is that they are all caused by mutations in DNA end processing factors, suggesting that a particularly crucial stage of DNA single strand break repair is the repair of breaks with 'damaged' termini. Additionally all three disorders lack any extraneurological symptoms, such as immunodeficiency and cancer predisposition, which are typically found in other human diseases associated with defective DNA repair. However despite these similarities, two of these disorders present with progressive cerebellar degeneration, whereas the third presents with severe microcephaly. This review discusses the molecular defects behind these disorders and presents several hypotheses based on current literature on a number of important questions, in particular, how do mutations in different end processing factors within the same DNA repair pathway lead to such different neuropathologies?
Collapse
Affiliation(s)
- John J Reynolds
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
7
|
Le Ber I, Dürr A, Brice A. Autosomal recessive cerebellar ataxias with oculomotor apraxia. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:333-341. [PMID: 21827898 DOI: 10.1016/b978-0-444-51892-7.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Isabelle Le Ber
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UMR-S975, Paris, France.
| | | | | |
Collapse
|
8
|
Hirano M, Quinzii CM, Mitsumoto H, Hays AP, Roberts JK, Richard P, Rowland LP. Senataxin mutations and amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2010; 12:223-7. [PMID: 21190393 DOI: 10.3109/17482968.2010.545952] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We studied three patients with mutations in the senataxin gene (SETX). One had juvenile onset of ALS. The second case resembled hereditary motor neuropathy. The third patient had an overlap syndrome of ataxia-tremor and motor neuron disease, phenotypes previously associated with SETX mutations. Our patients were all apparently sporadic, with no other affected relative. Two relatives of patient no. 2 carried the SETX c.4660T > G transversion but did not manifest motor neuron disease, abnormal eye movements, ataxia, or tremor suggesting that genetic or environmental modifiers may influence expression of this SETX polymorphism. Relatives of patients 1 and 3 were not available for examination or SETX mutation screening. Mutations causing ALS4 may be more frequent and heterogeneous than expected. Screening for SETX mutations should be considered in patients with apparently sporadic juvenile-onset ALS, hereditary motor neuropathy, and overlap syndromes with ataxia and motor neuron disease.
Collapse
Affiliation(s)
- Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
RNA processing pathways in amyotrophic lateral sclerosis. Neurogenetics 2010; 11:275-90. [PMID: 20349096 DOI: 10.1007/s10048-010-0239-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/24/2010] [Indexed: 12/12/2022]
Abstract
RNA processing is a tightly regulated, highly complex pathway which includes RNA transcription, pre-mRNA splicing, editing, transportation, translation, and degradation of RNA. Over the past few years, several RNA processing genes have been shown to be mutated or genetically associated with amyotrophic lateral sclerosis (ALS), including the RNA-binding proteins TDP-43 and FUS/TLS. These findings suggest that RNA processing may represent a common pathogenic mechanism involved in development of ALS. In this review, we will discuss six ALS-related, RNA processing genes including their discovery, function, and commonalities.
Collapse
|
10
|
Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 2010; 8:41-61. [PMID: 20808545 PMCID: PMC2866461 DOI: 10.2174/157015910790909476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023] Open
Abstract
Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development.
Collapse
Affiliation(s)
- D Marmolino
- Laboratoire de Neurologie Expèrimentale ULB-Erasme, Brussels, Belgium.
| | | |
Collapse
|
11
|
Fogel BL, Lee JY, Perlman S. Aberrant splicing of the senataxin gene in a patient with ataxia with oculomotor apraxia type 2. THE CEREBELLUM 2010; 8:448-53. [PMID: 19727998 PMCID: PMC2788137 DOI: 10.1007/s12311-009-0130-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is caused by a diversity of mutations within the coding region of the senataxin gene. Recently, rare noncoding senataxin mutations affecting RNA processing have been identified in AOA2. Here, we report the case of an 18-year-old woman, with classic clinical features of AOA2, who was found to harbor a mutation within senataxin intron 16. This mutation disrupts the local 5' splice site architecture via a novel intronic frameshift mechanism, causing skipping of exon 16 with predicted disruption of the conserved DNA/RNA helicase domain. RNA processing mutations expand the growing complexity of pathogenic senataxin mutations.
Collapse
Affiliation(s)
- Brent L Fogel
- Department of Neurology, UCLA Program in Neurogenetics, David Geffen School of Medicine, University of California at Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
12
|
Gazulla J, Benavente I, López-Fraile IP, Modrego P, Koenig M. Sensorimotor neuronopathy in ataxia with oculomotor apraxia type 2. Muscle Nerve 2009; 40:481-5. [PMID: 19618424 DOI: 10.1002/mus.21328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Two siblings with ataxia with oculomotor apraxia type 2 (AOA2) exhibited electrophysiological findings suggestive of a sensorimotor neuronopathy, and primary ovarian failure was detected in one of them. Genetic analysis disclosed a novel, homozygous frameshift mutation in the senataxin gene, 2755_2756delGT, responsible for a premature stop codon at position 2760. It is suggested that a neuronopathy might cause the neuromuscular disturbance in AOA2, and that ovarian failure should be looked for in female patients with the disease.
Collapse
Affiliation(s)
- José Gazulla
- Service of Neurology, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
13
|
Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, Delaunoy JP, Fritsch M, Arning L, Synofzik M, Schöls L, Sequeiros J, Goizet C, Marelli C, Le Ber I, Koht J, Gazulla J, De Bleecker J, Mukhtar M, Drouot N, Ali-Pacha L, Benhassine T, Chbicheb M, M'Zahem A, Hamri A, Chabrol B, Pouget J, Murphy R, Watanabe M, Coutinho P, Tazir M, Durr A, Brice A, Tranchant C, Koenig M. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. ACTA ACUST UNITED AC 2009; 132:2688-98. [PMID: 19696032 DOI: 10.1093/brain/awp211] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 microg/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 microg/l, P = 0.0004; itself higher than the normal level (3.4 microg/l, range from 0.5 to 17.2 microg/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level > or =7 microg/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia ataxic patient to be affected with AOA2 with AFP levels > or =7 microg/l is 46%. Therefore, selection of patients with an AFP level above 7 microg/l for senataxin gene sequencing is a good strategy for AOA2 diagnosis. Pyramidal signs and dystonia were more frequent and disease was less severe with missense mutations in the helicase domain of senataxin gene than with missense mutations out of helicase domain and deletion and nonsense mutations (P = 0.001, P = 0.008 and P = 0.01, respectively). The lack of pyramidal signs in most patients may be explained by masking due to severe motor neuropathy.
Collapse
Affiliation(s)
- M Anheim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, Université de Strasbourg, INSERM, Illkirch, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Airoldi G, Guidarelli A, Cantoni O, Panzeri C, Vantaggiato C, Bonato S, Grazia D’Angelo M, Falcone S, De Palma C, Tonelli A, Crimella C, Bondioni S, Bresolin N, Clementi E, Bassi MT. Characterization of two novel SETX mutations in AOA2 patients reveals aspects of the pathophysiological role of senataxin. Neurogenetics 2009; 11:91-100. [DOI: 10.1007/s10048-009-0206-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
|
15
|
The cerebellum, cerebellar disorders, and cerebellar research--two centuries of discoveries. THE CEREBELLUM 2009; 7:505-16. [PMID: 18855093 DOI: 10.1007/s12311-008-0063-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research on the cerebellum is evolving rapidly. The exquisiteness of the cerebellar circuitry with a unique geometric arrangement has fascinated researchers from numerous disciplines. The painstaking works of pioneers of these last two centuries, such as Rolando, Flourens, Luciani, Babinski, Holmes, Cajal, Larsell, or Eccles, still exert a strong influence in the way we approach cerebellar functions. Advances in genetic studies, detailed molecular and cellular analyses, profusion of brain imaging techniques, emergence of behavioral assessments, and reshaping of models of cerebellar function are generating an immense amount of knowledge. Simultaneously, a better definition of cerebellar disorders encountered in the clinic is emerging. The essentials of a trans-disciplinary blending are expanding. The analysis of the literature published these last two decades indicates that the gaps between domains of research are vanishing. The launch of the society for research on the cerebellum (SRC) illustrates how cerebellar research is burgeoning. This special issue gathers the contributions of the inaugural conference of the SRC dedicated to the mechanisms of cerebellar function. Contributions were brought together around five themes: (1) cerebellar development, death, and regeneration; (2) cerebellar circuitry: processing and function; (3) mechanisms of cerebellar plasticity and learning; (4) cerebellar function: timing, prediction, and/or coordination?; (5) anatomical and disease perspectives on cerebellar function.
Collapse
|
16
|
Abstract
The ability to respond to genotoxic stress is a prerequisite for the successful development of the nervous system. Mutations in various DNA repair factors can lead to human diseases that are characterized by pronounced neuropathology. In many of these syndromes the neurological component is among the most deleterious aspects of the disease. The nervous system poses a particular challenge in terms of clinical intervention, as the neuropathology associated with these diseases often arises during nervous system development and can be fully penetrant by childhood. Understanding how DNA repair deficiency affects the nervous system will provide a rational basis for therapies targeted at ameliorating the neurological problems in these syndromes.
Collapse
|
17
|
Faridy EE, Yang WZ. Role of hyperventilation in hypoxia on lung growth in rats. BMC MEDICAL GENETICS 1989; 10:87. [PMID: 19744353 PMCID: PMC2749023 DOI: 10.1186/1471-2350-10-87] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/11/2009] [Indexed: 01/22/2023]
Abstract
Background The autosomal recessively inherited ataxia with oculomotor apraxia 2 (AOA2) is a neurodegenerative disorder characterized by juvenile or adolescent age of onset, gait ataxia, cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia, and elevated serum AFP levels. AOA2 is caused by mutations within the senataxin gene (SETX). The majority of known mutations are nonsense, missense, and splice site mutations, as well as small deletions and insertions. Methods To detect mutations in patients showing a clinical phenotype consistent with AOA2, the coding region including splice sites of the SETX gene was sequenced and dosage analyses for all exons were performed on genomic DNA. The sequence of cDNA fragments of alternative transcripts isolated after RT-PCR was determined. Results Sequence analyses of the SETX gene in four patients revealed a heterozygous nonsense mutation or a 4 bp deletion in three cases. In another patient, PCR amplification of exon 11 to 15 dropped out. Dosage analyses and breakpoint localisation yielded a 1.3 kb LINE1 insertion in exon 12 (patient P1) and a 6.1 kb deletion between intron 11 and intron 14 (patient P2) in addition to the heterozygous nonsense mutation R1606X. Patient P3 was compound heterozygous for a 4 bp deletion in exon 10 and a 20.7 kb deletion between intron 10 and 15. This deletion was present in a homozygous state in patient P4. Conclusion Our findings indicate that gross mutations seem to be a frequent cause of AOA2 and reveal the importance of additional copy number analysis for routine diagnostics.
Collapse
Affiliation(s)
- E E Faridy
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|