1
|
Khan SS, Jaimon E, Lin YE, Nikoloff J, Tonelli F, Alessi DR, Pfeffer SR. Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2402206121. [PMID: 39088390 PMCID: PMC11317616 DOI: 10.1073/pnas.2402206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/13/2024] [Indexed: 08/03/2024] Open
Abstract
Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.
Collapse
Affiliation(s)
- Shahzad S. Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jonas Nikoloff
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Dario R. Alessi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
2
|
Khan SS, Jaimon E, Lin YE, Nikoloff J, Tonelli F, Alessi DR, Pfeffer SR. Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575737. [PMID: 38293195 PMCID: PMC10827083 DOI: 10.1101/2024.01.15.575737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activating LRRK2 mutations cause Parkinson's disease. Previously, we showed that cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2 mutant mice. Single nucleus RNA sequencing shows that cilia loss in cholinergic interneurons correlates with higher LRRK2 expression and decreased glial derived neurotrophic factor transcription. Nevertheless, much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia in mice and humans. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. Human striatal tissue from LRRK2 pathway mutation carriers and idiopathic Parkinson's disease show similar cilia loss in cholinergic interneurons and astrocytes and overall loss of such neurons. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's disease.
Collapse
Affiliation(s)
- Shahzad S. Khan
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- Current address: Departments of Cell Biology & Physiology and Neurology, University of North Carolina, Chapel Hill, United States
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Jonas Nikoloff
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
| | - Dario R. Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| |
Collapse
|
3
|
Dauar MT, Picard C, Labonté A, Breitner J, Rosa-Neto P, Villeneuve S, Poirier J. Contactin 5 and Apolipoproteins Interplay in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1361-1375. [PMID: 38578887 DOI: 10.3233/jad-231003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p < 0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - John Breitner
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- McGill University, Montreal, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Verdun, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Poot M. Shifting the Focus of Molecular Syndromology from Individual Diagnoses to Outcome Analyses. Mol Syndromol 2023; 14:267-269. [PMID: 37484705 PMCID: PMC10360572 DOI: 10.1159/000531738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
|
5
|
Gerik-Celebi HB, Aydin H, Bolat H, Unsel-Bolat G. Clinical and Genetic Characteristics of Patients with Unexplained Intellectual Disability/Developmental Delay without Epilepsy. Mol Syndromol 2023; 14:208-218. [PMID: 37323201 PMCID: PMC10267527 DOI: 10.1159/000529018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Global developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD) are mainly evaluated under the neurodevelopmental disorder framework. In this study, we aimed to determine the genetic diagnosis yield using step-by-step genetic analysis in 38 patients with unexplained ID/DD and/or ASD. Methods In 38 cases (27 male, 11 female) with unexplained ID/DD and/or ASD, chromosomal microarray (CMA) analysis, clinical exome sequencing (CES), and whole-exome sequencing (WES) analysis were applied, respectively. Results We found a diagnostic rate of only CMA analysis as 21% (8/38) presenting 8 pathogenic and likely pathogenic CNVs. The rate of patients diagnosed with CES/WES methods was 32.2% (10/31). When all pathogenic and likely pathogenic variants were evaluated, the diagnosis rate was 44.7% (17/38). A dual diagnosis was obtained in a case with 16p11.2 microduplication and de novo SNV. We identified eight novel variants: TUBA1A (c.787C>G), TMEM63A (c.334-2A>G), YY1AP1 (c.2051_2052del), ABCA13 (c.12064C>T), ABCA13 (c.13187G>A), USP9X (c.1189T>C), ANKRD17 (c.328_330dup), and GRIA4 (c.17G>A). Conclusion We present diagnostic rates of a complementary approach to genetic analysis (CMA, CES, and WES). The combined use of genetic analysis methods in unexplained ID/DD and/or ASD cases has contributed significantly to diagnosis rates. Also, we present detailed clinical characteristics to improve genotype-phenotype correlation in the literature for rare and novel variants.
Collapse
Affiliation(s)
| | - Hilal Aydin
- Department of Pediatrics, Division of Child Neurology, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
6
|
Zhang W, Huang H, Gui A, Mu D, Zhao T, Li H, Watanabe K, Xiao Z, Ye H, Xu Y. Contactin-6-deficient male mice exhibit the abnormal function of the accessory olfactory system and impaired reproductive behavior. Brain Behav 2023; 13:e2893. [PMID: 36860170 PMCID: PMC10097056 DOI: 10.1002/brb3.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Contactin-6 (CNTN6), also known as NB-3, is a neural recognition molecule and a member of the contactin subgroup of the immunoglobulin superfamily. Gene encoding CNTN6 is expressed in many regions of the neural system, including the accessory olfactory bulb (AOB) in mice. We aim to determine the effect of CNTN6 deficiency on the function of the accessory olfactory system (AOS). METHODS We examined the effect of CNTN6 deficiency on the reproductive behavior of male mice through behavioral experiments such as urine sniffing and mate preference tests. Staining and electron microscopy were used to observe the gross structure and the circuitry activity of the AOS. RESULTS Cntn6 is highly expressed in the vomeronasal organ (VNO) and the AOB, and sparsely expressed in the medial amygdala (MeA) and the medial preoptic area (MPOA), which receive direct and/or indirect projections from the AOB. Behavioral tests to examine reproductive function in mice, which is mostly controlled by the AOS, revealed that Cntn6-/- adult male mice showed less interest and reduced mating attempts toward estrous female mice in comparison with their Cntn6+/+ littermates. Although Cntn6-/- adult male mice displayed no obvious changes in the gross structure of the VNO or AOB, we observed the increased activation of granule cells in the AOB and the lower activation of neurons in the MeA and the MPOA as compared with Cntn6+/+ adult male mice. Moreover, there were an increased number of synapses between mitral cells and granule cells in the AOB of Cntn6-/- adult male mice as compared with wild-type controls. CONCLUSION These results indicate that CNTN6 deficiency affects the reproductive behavior of male mice, suggesting that CNTN6 participated in normal function of the AOS and its ablation was involved in synapse formation between mitral and granule cells in the AOB, rather than affecting the gross structure of the AOS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Huiling Huang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Ailing Gui
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Di Mu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Hongtao Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Kazutada Watanabe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Zhicheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Yiliang Xu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Yang J, Shen Y, Tian Y, Peng J, Fu X, Li Y, Ou J. Investigating and comparing the psychometric properties of the Chinese Mandarin version of social responsiveness scale-2 and its shortened version in preschool-age children with autism spectrum disorder. Asian J Psychiatr 2023; 79:103395. [PMID: 36495828 DOI: 10.1016/j.ajp.2022.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Abstract
We aimed to investigate and compare the psychometric properties of the Chinese Mandarin Social Responsiveness Scale-2 (SRS-2) and its shortened version. The study assessed 670 children with autism spectrum disorder (ASD) aged 30-54 months and 138 typical developmental (TD) children of the same age in mainland China. Our item reliability test revealed that only 36 items of the 65 items in the Chinese Mandarin SRS-2 (Preschool) met the reliability criteria. Moreover, the shortened version of SRS-2 (Preschool) with four subscales and 30 items maintained strong correlations (r = 0.961) with the Chinese Mandarin SRS-2 (Preschool), and demonstrated improved psychometric performance on the 4-week test-retest reliability (intraclass correlations was 0.70), internal consistency (Cronbach's alpha 0.71-0.91), construct validity, and convergent validity with the Autism Diagnostic Observation Schedule, Autism Diagnostic Interview-Revised, and Child Behavior Checklist. Receiver operating characteristics (ROC) analyses showed excellent and comparable discriminant validity of the shortened version with an area under the curve of 0.992. Our data suggested a cutoff ≥ 22.5 for the shortened version, with good accuracy in screening autism symptoms (sensitivity=96.9 %, specificity=94.2 %). Our findings demonstrated that the shortened version of SRS-2 (Preschool) was a reliable and valid instrument for identifying preschoolers with ASD in mainland China.
Collapse
Affiliation(s)
- Jiaxin Yang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yidong Shen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry and Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yusheng Tian
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; National Clinical Research Center for Mental Disorders, Department of Psychiatry and Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Juan Peng
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xi Fu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Jianjun Ou
- National Clinical Research Center for Mental Disorders, Department of Psychiatry and Hunan Medical Center for Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
8
|
Dauar MT, Labonté A, Picard C, Miron J, Rosa-Neto P, Zetterberg H, Blennow K, Villeneuve S, Poirier J. Characterization of the contactin 5 protein and its risk-associated polymorphic variant throughout the Alzheimer's disease spectrum. Alzheimers Dement 2022. [PMID: 36583624 DOI: 10.1002/alz.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We investigate the CNTN5 rs1461684 G variant and the contactin 5 protein in sporadic Alzheimer's disease (sAD). METHODS Contactin 5, sAD biomarkers, and synaptic markers were measured in the cerebrospinal fluid (CSF). Amyloid and tau deposition were assessed using positron emission tomography. Contactin 5 protein and mRNA levels were measured in brain tissue. RESULTS CSF contactin 5 increases progressively in cognitively unimpaired individuals and is decreased in mild cognitive impairment and sAD. CSF contactin 5 correlates with sAD biomarkers and with synaptic markers. The rs1461684 G variant associates with faster disease progression in cognitively unimpaired subjects. Cortical full-length and isoform 3 CNTN5 mRNAs are decreased in the presence of the G allele and as a function of Consortium to Establish a Registry for Alzheimer's Disease stages. DISCUSSION The newly identified rs1461684 G variant associates with sAD risk, rate of disease progression, and gene expression. Contactin 5 protein and mRNA are affected particularly in the early stages of the disease.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada
| | - Justin Miron
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| |
Collapse
|
9
|
Kurt Colak F, Eyerci N, Lafci NG. De novo interstitial deletion of 11q14.3q22 in a boy with mild intellectual disability and short stature. Clin Dysmorphol 2022; 31:174-180. [PMID: 36005214 DOI: 10.1097/mcd.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Interstitial deletions of the 11q region are infrequent. Nonrecurrent chromosomal rearrangements are observed with high variability in size and precise breakpoints of the deleted area. Moreover heterogeneous clinical findings are observed in those harboring 11q interstitial deletions. Main clinical features associated with these deletions include mild dysmorphic findings intellectual disability and moderate developmental or speech delay . METHOD Conventional high-resolution karyotyping along with microarray studies were performed for the index patient who was found to be a carrier of a de novo interstitial deletion in the long arm of chromosome 11 which is located between the 11q14 and 11q22 band regions. We also investigated the homologous chromosome with next-generation sequencing technology to search for unmasked recessive variants in genes on the nondeleted contralateral allele. RESULTS Cytogenetic analysis revealed a de novo interstitial deletion on the long arm of chromosome 11 46 XY del(11) (q14q22). Microarray analysis confirmed the deletion of 11.2 Mb in length mapping from 11q14.3 to 11q22.2 [arr (GRCh37) 11q14.3q22.1(90549863_101833022)x1 dn]. Whole-exome sequencing did not detect any other genetic variant (single nucleotide variant ) on the nondeleted allele. CONCLUSION This study gave us the opportunity for an attempt to define the smallest region of overlap for frequently observed clinical findings by reviewing the literature.
Collapse
Affiliation(s)
- Fatma Kurt Colak
- Department of Medical Genetics, Faculty of Medicine, Sutcu Imam University, Kahramanmaraş,
| | - Nilnur Eyerci
- Department of Medical Biology, Faculty of Medicine, Kafkas University Kars
| | - Naz Guleray Lafci
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara Turkey
| |
Collapse
|
10
|
Elnaiem W, Benmelouka AY, Elgendy AMN, Abdelgalil MS, Brimo Alsaman MZ, Mogheeth A, Ali MM, Yousof SM. Evaluation of memantine's efficacy and safety in the treatment of children with autism spectrum disorder: A systematic review and meta-analysis. Hum Psychopharmacol 2022; 37:e2841. [PMID: 35315131 DOI: 10.1002/hup.2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The United States Food and Drug Administration has approved drugs that address only autism-related symptoms rather than the underlying impairments. N-Methyl-D-Aspartate receptor antagonists have recently emerged as a promising treatment option for a variety of neurologic and developmental problems, including autism. AIMS To review (systematically), for the first time, the medical literature that explores the safety in and efficacy of memantine in autism. METHODS AND PROCEDURES A comprehensive electronic search for relevant randomized controlled trials was conducted in four databases. Using RevMan software, we extracted and pooled data as a risk ratio (RR) or normalized mean differences in an inverse variance strategy. RESULTS This systematic review and meta-analysis includes five trials. There was no difference in enhancing social responsiveness when compared to placebo, though memantine lowered the likelihood of anxiety (RR = 0.25; 95% Confidence interval: [0.07; 0.87], p = 0.03). However, memantine aggravated impulsive behaviors. Additionally, in another trial that compared memantine added to risperidone versus risperidone added to placebo, memantine was found to be effective and safe. CONCLUSION Memantine showed safety in reducing acute symptoms of anxiety and other symptoms encountered in pediatric patients with autism spectrum disorders. However, memantine does not improve the core symptoms of autism. Nevertheless, further long-term trials are needed to explore its potential efficacy.
Collapse
Affiliation(s)
- Walaa Elnaiem
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | | | | | | | - Aly Mogheeth
- Faculty of Medicine, Alazhar University, Assiut, Egypt.,Urosurgical Resident Doctor, Alazhar University Hospital, Assiut, Egypt
| | - Mahmoud M Ali
- Faculty of Pharmacy, Alazhar University, Assiut, Egypt
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.,Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Liu W, Li L, Xia X, Zhou X, Du Y, Yin Z, Wang J. Integration of Urine Proteomic and Metabolomic Profiling Reveals Novel Insights Into Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:780747. [PMID: 35615451 PMCID: PMC9124902 DOI: 10.3389/fpsyt.2022.780747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders whose etiology and pathogenesis are not fully understood. To gain insight into the molecular basis of ASD, we performed comparative integrated proteomic and metabolomic analyses of urine samples from children diagnosed with ASD and healthy children. All 160 samples underwent proteomics analysis and 60 were analyzed by liquid chromatography-mass spectrometry to obtain metabolite profiles. We identified 77 differentially expressed proteins (DEPs; 21 downregulated and 56 upregulated) and 277 differentially expressed metabolites; 31 of the DEPs including glutathione, leukocyte antigens, glycoproteins, neural adhesion factors, and immunoglobulins, have been implicated in neuroinflammation. The proteomic analysis also revealed 8 signaling pathways that were significantly dysregulated in ASD patients; 3 of these (transendothelial leukocyte migration, antigen processing and presentation, and graft vs. host disease) were associated with the neuroimmune response. The metabolism of tryptophan, which is also related to the neuroimmune response, has been found to play a potential role in ASD. Integrated proteome and metabolome analysis showed that 6 signaling pathways were significantly enriched in ASD patients, 3 of which were correlated with impaired neuroinflammation (glutathione metabolism, metabolism of xenobiotics by cytochrome P450 and transendothelial migration of leukocyte). We also found a correlation between prostaglandin (PG) E2 levels and the inflammatory response in ASD. These results underscore the prominent role of the neuroimmune response in ASD and provide potential biomarkers that can be used for diagnosis or as targets for early intervention.
Collapse
Affiliation(s)
- Wenlong Liu
- Department of Child Development and Behavior, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Liming Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xiaochun Xia
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xulan Zhou
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Yukai Du
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqing Yin
- Division of Neonatology, The People's Hospital of Dehong Autonomous Prefecture, Mangshi, China
| | - Juan Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| |
Collapse
|
12
|
Nomura J, Mardo M, Takumi T. Molecular signatures from multi-omics of autism spectrum disorders and schizophrenia. J Neurochem 2021; 159:647-659. [PMID: 34537986 DOI: 10.1111/jnc.15514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorder (ASD) impedes the unification of multiple biological hypotheses in an attempt to explain the complex features of ASD, such as impaired social communication, social interaction deficits, and restricted and repetitive patterns of behavior. However, recent psychiatric genetic studies have identified numerous risk genes and chromosome loci (copy number variation: CNV) which enable us to analyze at the single gene level and utilize system-level approaches. In this review, we focus on ASD as a major neurodevelopmental disorder and review recent findings mainly from the bioinformatics of omics studies. Additionally, by comparing these data with other major psychiatric disorders, including schizophrenia (SCZ), we identify unique characteristics of both diseases from multiple enrichment, pathway, and protein-protein interaction networks (PPIs) analyses using susceptible genes found in recent large-scale genetic studies. These unified, systematic approaches highlight unique characteristics of both disorders from multiple aspects and demonstrate how convergent pathways can contribute to an understanding of the complex etiology of such neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jun Nomura
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Matthew Mardo
- Neuroscience concentration, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Lopatkina ME, Ivanova SA, Lebedev IN. Estimation of the Prevalence and Parental Origin of Chromosomal Microdeletions and Microduplications Affecting the CNTN6 Gene in Patients with Neurodevelopmental Disorders and Healthy Individuals. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Dunbar EK, Saloman JL, Phillips AE, Whitcomb DC. Severe Pain in Chronic Pancreatitis Patients: Considering Mental Health and Associated Genetic Factors. J Pain Res 2021; 14:773-784. [PMID: 33762844 PMCID: PMC7982558 DOI: 10.2147/jpr.s274276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Pain is the most distressing and disruptive feature of recurrent acute pancreatitis (RAP) and chronic pancreatitis (CP) resulting in low quality of life (QOL) and disabilities. There is no single, characteristic pain pattern in patients with RAP and CP. Abdominal imaging features of CP accurately reflect morphologic features but they do not correlate with pain. Pain is the major driver of poor quality of life (QOL) and it is the constant pain, rather than intermittent pain that drives poor QOL. Furthermore, the most severe constant pain experience in CP is also a complex condition. The ability to target the etiopathogenesis of severe pain requires new methods to detect the exact pain mechanisms in an individual at cellular, tissue, system and psychiatric levels. In patients with complex and severe disease, it is likely that multiple overlapping mechanisms are simultaneously driving pain, anxiety and depression. Quantitative sensory testing (QST) shows promise in detecting alterations in central processing of pain signals and to classify patients for mechanistic and therapeutic studies. New genetic research suggests that genetic loci for severe pain in CP overlap with genetic loci for depression and other psychiatric disorders, providing additional insights and therapeutic targets for individual patients with severe CP pain. Well-designed clinical trials that integrate clinical features, QST, genetics and psychological assessments with targeted treatment and assessment of responses are required for a quantum leap forward. A better understanding of the context and mechanisms contributing to severe pain experiences in individual patients is predicted to lead to better therapies and quality of life.
Collapse
Affiliation(s)
- Ellyn K Dunbar
- Departments of Human Genetics and Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jami L Saloman
- Departments of Neurobiology and Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Evans Phillips
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Whitcomb
- Departments of Human Genetics, Cell Biology and Molecular Physiology, and Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 2021; 184:723-740.e21. [PMID: 33508230 DOI: 10.1016/j.cell.2021.01.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Elucidating the regulatory mechanisms of human brain evolution is essential to understanding human cognition and mental disorders. We generated multi-omics profiles and constructed a high-resolution map of 3D genome architecture of rhesus macaque during corticogenesis. By comparing the 3D genomes of human, macaque, and mouse brains, we identified many human-specific chromatin structure changes, including 499 topologically associating domains (TADs) and 1,266 chromatin loops. The human-specific loops are significantly enriched in enhancer-enhancer interactions, and the regulated genes show human-specific expression changes in the subplate, a transient zone of the developing brain critical for neural circuit formation and plasticity. Notably, many human-specific sequence changes are located in the human-specific TAD boundaries and loop anchors, which may generate new transcription factor binding sites and chromatin structures in human. Collectively, the presented data highlight the value of comparative 3D genome analyses in dissecting the regulatory mechanisms of brain development and evolution.
Collapse
|
16
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Agarwala S, Veerappa AM, Ramachandra NB. Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism is a neurodevelopmental condition with genetic heterogeneity. It is characterized by difficulties in reciprocal social interactions with strong repetitive behaviors and stereotyped interests. Copy number variations (CNVs) are genomic structural variations altering the genomic structure either by duplication or deletion. De novo or inherited CNVs are found in 5–10% of autistic subjects with a size range of few kilobases to several megabases. CNVs predispose humans to various diseases by altering gene regulation, generation of chimeric genes, and disruption of the coding region or through position effect. Although, CNVs are not the initiating event in pathogenesis; additional preceding mutations might be essential for disease manifestation. The present study is aimed to identify the primary CNVs responsible for autism susceptibility in healthy cohorts to sensitize secondary-hits. In the current investigation, primary-hit autism gene CNVs are characterized in 1715 healthy cohorts of varying ethnicities across 12 populations using Affymetrix high-resolution array study. Thirty-eight individuals from twelve families residing in Karnataka, India, with the age group of 13–73 years are included for the comparative CNV analysis. The findings are validated against global 179 autism whole-exome sequence datasets derived from Simons Simplex Collection. These datasets are deposited at the Simons Foundation Autism Research Initiative (SFARI) database.
Results
The study revealed that 34.8% of the subjects carried 2% primary-hit CNV burden with 73 singleton-autism genes in different clusters. Of these, three conserved CNV breakpoints were identified with ARHGAP11B, DUSP22, and CHRNA7 as the target genes across 12 populations. Enrichment analysis of the population-specific autism genes revealed two signaling pathways—calcium and mitogen-activated protein kinases (MAPK) in the CNV identified regions. These impaired pathways affected the downstream cascades of neuronal function and physiology, leading to autism behavior. The pathway analysis of enriched genes unravelled complex protein interaction networks, which sensitized secondary sites for autism. Further, the identification of miRNA targets associated with autism gene CNVs added severity to the condition.
Conclusion
These findings contribute to an atlas of primary-hit genes to detect autism susceptibility in healthy cohorts, indicating their impact on secondary sites for manifestation.
Collapse
|
18
|
Poot M. How Many Genes Does It Take? Mol Syndromol 2020; 11:59-61. [PMID: 32655336 DOI: 10.1159/000507769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
|
19
|
Maccarini S, Cipani A, Bertini V, Skripac J, Salvi A, Borsani G, Marchina E. Inherited duplication of the pseudoautosomal region Xq28 in a subject with Gilles de la Tourette syndrome and intellectual disability: a case report. Mol Cytogenet 2020; 13:23. [PMID: 32582378 PMCID: PMC7310047 DOI: 10.1186/s13039-020-00493-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Background Tourette syndrome (TS) is a complex neurodevelopmental disorder (NDD) characterized by multiple chronic involuntary motor and vocal tics with onset during childhood or adolescence. Most TS patients present with additional comorbidities, typically attention deficit hyperactivity disorder (ADHD), obsessive- compulsive disorder (OCD), autism spectrum disorder (ASD) and intellectual disability (ID). Both TS and ID are genetically complex disorders that likely occur as a result of the effects of multiple genes interacting with other environmental factors. In addition to single gene mutations and chromosomal disorders, copy number variations (CNVs) are implicated across many NDDs and ID and contribute to their shared genetic etiology. Screening of CNVs using microarray-based Comparative Genomic Hybridization (aCGH) is now routinely performed in all subjects with NDD and ID. Case presentation We report a case of a 12-year-old girl diagnosed with Gilles de la Tourette Syndrome associated to behavior disorders and intellectual disability in particular with regard to language. Array-CGH analysis showed a CNV of a subtelomeric region Xq28 (gain of 260 kb) inherited from the healthy father. The duplication contains two genes, VAMP7 and SPRY3 of the PAR2 pseudoautosomal region. FISH analysis revealed that the duplicated segment is located on the short arm of a chromosome 13, resulting in a trisomy of the region. In the proband the expression levels of the genes evaluated in the peripheral blood sample are comparable both those of the mother and to those of female control subjects. Conclusions Although the trisomy of the 260 kb region from Xq28 identified in proband is also shared by the healthy father, it is tantalizing to speculate that, together with genetic risk factors inherited from the mother, it may play a role in the development of a form of Tourette syndrome with intellectual disability. This hypothesis is also supported by the fact that both genes present in the duplicated region (VAMP7 and SPRY3) are expressed in the CNS and are implicated in neurotransmission and neurite growth and branching. In addition, similar CNVs have been identified in individuals whose phenotype is associated with autism spectrum disorders or intellectual disability.
Collapse
Affiliation(s)
- Stefania Maccarini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annamaria Cipani
- Unit of Child and Adolescent Neuropsychiatry, ASST of Garda, Brescia, Italy
| | - Valeria Bertini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jelena Skripac
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Marchina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Getz M, Rangamani P, Ghosh P. Regulating cellular cyclic adenosine monophosphate: "Sources," "sinks," and now, "tunable valves". WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1490. [PMID: 32323924 DOI: 10.1002/wsbm.1490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
A number of hormones and growth factors stimulate target cells via the second messenger pathways, which in turn regulate cellular phenotypes. Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that facilitates numerous signal transduction pathways; its production in cells is tightly balanced by ligand-stimulated receptors that activate adenylate cyclases (ACs), that is, "source" and by phosphodiesterases (PDEs) that hydrolyze it, that is, "sinks." Because it regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression, the cAMP signaling pathway has been exploited for the treatment of numerous human diseases. Reduction in cAMP is achieved by blocking "sources"; however, elevation in cAMP is achieved by either stimulating "source" or blocking "sinks." Here we discuss an alternative paradigm for the regulation of cellular cAMP via GIV/Girdin, the prototypical member of a family of modulators of trimeric GTPases, Guanine nucleotide Exchange Modulators (GEMs). Cells upregulate or downregulate cellular levels of GIV-GEM, which modulates cellular cAMP via spatiotemporal mechanisms distinct from the two most often targeted classes of cAMP modulators, "sources" and "sinks." A network-based compartmental model for the paradigm of GEM-facilitated cAMP signaling has recently revealed that GEMs such as GIV serve much like a "tunable valve" that cells may employ to finetune cellular levels of cAMP. Because dysregulated signaling via GIV and other GEMs has been implicated in multiple disease states, GEMs constitute a hitherto untapped class of targets that could be exploited for modulating aberrant cAMP signaling in disease states. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling.
Collapse
Affiliation(s)
- Michael Getz
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Kirk B, Kharbanda M, Bateman MS, Hunt D, Taylor EJ, Collins AL, Bunyan DJ, Collinson MN, Russell LM, Bowell S, Barber JCK. Directly Transmitted 12.3-Mb Deletion with a Consistent Phenotype in the Variable 11q21q22.3 Region. Cytogenet Genome Res 2020; 160:185-192. [PMID: 32316019 DOI: 10.1159/000507409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
A phenotype is emerging for the proximal pair of G-dark bands in 11q (11q14.1 and q14.3) but not yet for the distal pair (11q22.1 and q22.3). A mother and daughter with the same directly transmitted 12.3-Mb interstitial deletion of 11q21q22.3 (GRCh37: 93,551,765-105,817,723) both had initial feeding difficulties and failure to thrive, speech delay, learning difficulties, and mild dysmorphism. Among 17 patients with overlapping deletions, developmental or speech delay, dysmorphism, hypotonia, intellectual disability or learning difficulties, short stature, and coloboma were each found in 2 or more. These results may provide the basis for a consistent phenotype for this region. Among the 53 deleted and additional breakpoint genes, CNTN5, YAP1, and GRI4 were the most likely candidates. Non-penetrance of haploinsufficient genes and dosage compensation among related genes may account for the normal cognition in the mother and variable phenotypes that can extend into the normal range.
Collapse
|
22
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Kawamura Y, Nakaoka H, Nakayama A, Okada Y, Yamamoto K, Higashino T, Sakiyama M, Shimizu T, Ooyama H, Ooyama K, Nagase M, Hidaka Y, Shirahama Y, Hosomichi K, Nishida Y, Shimoshikiryo I, Hishida A, Katsuura-Kamano S, Shimizu S, Kawaguchi M, Uemura H, Ibusuki R, Hara M, Naito M, Takao M, Nakajima M, Iwasawa S, Nakashima H, Ohnaka K, Nakamura T, Stiburkova B, Merriman TR, Nakatochi M, Ichihara S, Yokota M, Takada T, Saitoh T, Kamatani Y, Takahashi A, Arisawa K, Takezaki T, Tanaka K, Wakai K, Kubo M, Hosoya T, Ichida K, Inoue I, Shinomiya N, Matsuo H. Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Ann Rheum Dis 2019; 78:1430-1437. [PMID: 31289104 PMCID: PMC6788923 DOI: 10.1136/annrheumdis-2019-215521] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
Abstract
Objective The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. Methods We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). Results This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10–8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three ‘gout vs AHUA GWAS’-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. Conclusions This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.
Collapse
Affiliation(s)
- Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan.,Department of General Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan.,Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, Fukuoka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan.,Department of Defense Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toru Shimizu
- Midorigaoka Hospital, Takatsuki, Osaka, Japan.,Kyoto Industrial Health Association, Kyoto, Japan
| | | | | | | | | | - Yuko Shirahama
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ippei Shimoshikiryo
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan.,Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan.,Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Mayuko Nakajima
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Satoko Iwasawa
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keizo Ohnaka
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Blanka Stiburkova
- Institute of Rheumatology, Prague, Czech Republic.,Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tony R Merriman
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Masahiro Nakatochi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Tappei Takada
- Department of Pharmacy, the University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kimiyoshi Ichida
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
24
|
Repnikova EA, Lyalin DA, McDonald K, Astbury C, Hansen-Kiss E, Cooley LD, Pfau R, Herman GE, Pyatt RE, Hickey SE. CNTN6 copy number variations: Uncertain clinical significance in individuals with neurodevelopmental disorders. Eur J Med Genet 2019; 63:103636. [PMID: 30836150 DOI: 10.1016/j.ejmg.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022]
Abstract
Copy number variations (CNVs) of the CNTN6 gene - a member of the contactin gene superfamily - have been previously proposed to have an association with neurodevelopmental and autism spectrum disorders. However, no functional evidence has been provided to date and phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. In view of conflicting reports on the pathogenicity of CNVs involving CNTN6 and association with different phenotypes, we, independently, evaluated clinical features of nineteen patients with detected CNV of CNTN6 as part of their clinical microarray analysis at Children's Mercy and Nationwide Children's Hospitals for the period of 2008-2015. The clinical presentations of these patients were variable making it difficult to establish genotype-phenotype correlations. CNVs were inherited in six patients. For thirteen patients, inheritance pattern was not established due to unavailability of parental samples for testing. In three cases CNV was inherited from a healthy parent and in three cases from a parent with neurodevelopmental symptoms. Of the nineteen patients, four had a separate genetic abberation in addition to CNV of the CNTN6 that could independently explain their respective phenotypes. Separately, CNTN6 sequencing was performed on an autism spectrum disorder (ASD) research cohort of 94 children from 80 unrelated families. We found no difference in frequency of rare coding variants between the cohort of patients and controls. We conclude that CNVs involving CNTN6 alone seem to be most likely a neutral variant or a possible modifier rather than a disease-causing variant. Patients with CNVs encompassing CNTN6 could benefit from additional genetic testing since a clinical diagnosis due to a CNV of CNTN6 alone is still questionable.
Collapse
Affiliation(s)
- Elena A Repnikova
- The Division of Clinical Genetics and Genomics Laboratories, Children's Mercy Hospital Kansas City, Kansas City, MO, 64108 USA; University Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA.
| | - Dmitry A Lyalin
- The Division of Clinical Genetics and Genomics Laboratories, Children's Mercy Hospital Kansas City, Kansas City, MO, 64108 USA
| | - Kimberly McDonald
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Caroline Astbury
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Emily Hansen-Kiss
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA; Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Linda D Cooley
- The Division of Clinical Genetics and Genomics Laboratories, Children's Mercy Hospital Kansas City, Kansas City, MO, 64108 USA; University Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA
| | - Ruthann Pfau
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Gail E Herman
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA; Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Robert E Pyatt
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Scott E Hickey
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
García-Ortiz JE, Zarazúa-Niño AI, Hernández-Orozco AA, Reyes-Oliva EA, Pérez-Ávila CE, Becerra-Solano LE, Galán-Huerta KA, Rivas-Estilla AM, Córdova-Fletes C. Case Report: Whole Exome Sequencing Unveils an Inherited Truncating Variant in CNTN6 (p.Ser189Ter) in a Mexican Child with Autism Spectrum Disorder. J Autism Dev Disord 2019; 50:2247-2251. [PMID: 30826922 DOI: 10.1007/s10803-019-03951-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- José E García-Ortiz
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Ana I Zarazúa-Niño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero s/n, Mitras Centro, Monterrey, Nuevo León, Mexico
| | - Angélica A Hernández-Orozco
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Edwin A Reyes-Oliva
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero s/n, Mitras Centro, Monterrey, Nuevo León, Mexico
| | - Carlos E Pérez-Ávila
- Unidad Médica de Alta Especialidad Hospital de Gineco-obstetricia, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Luis E Becerra-Solano
- Unidad de Investigación Médica, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Kame A Galán-Huerta
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero s/n, Mitras Centro, Monterrey, Nuevo León, Mexico
| | - Ana M Rivas-Estilla
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero s/n, Mitras Centro, Monterrey, Nuevo León, Mexico
| | - Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero s/n, Mitras Centro, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
26
|
Deneault E, Faheem M, White SH, Rodrigues DC, Sun S, Wei W, Piekna A, Thompson T, Howe JL, Chalil L, Kwan V, Walker S, Pasceri P, Roth FP, Yuen RK, Singh KK, Ellis J, Scherer SW. CNTN5-/+or EHMT2-/+human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. eLife 2019; 8:40092. [PMID: 30747104 PMCID: PMC6372285 DOI: 10.7554/elife.40092] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived neurons are increasingly used to model Autism Spectrum Disorder (ASD), which is clinically and genetically heterogeneous. To study the complex relationship of penetrant and weaker polygenic risk variants to ASD, 'isogenic' iPSC-derived neurons are critical. We developed a set of procedures to control for heterogeneity in reprogramming and differentiation, and generated 53 different iPSC-derived glutamatergic neuronal lines from 25 participants from 12 unrelated families with ASD. Heterozygous de novo and rare-inherited presumed-damaging variants were characterized in ASD risk genes/loci. Combinations of putative etiologic variants (GLI3/KIF21A or EHMT2/UBE2I) in separate families were modeled. We used a multi-electrode array, with patch-clamp recordings, to determine a reproducible synaptic phenotype in 25% of the individuals with ASD (other relevant data on the remaining lines was collected). Our most compelling new results revealed a consistent spontaneous network hyperactivity in neurons deficient for CNTN5 or EHMT2. The biobank of iPSC-derived neurons and accompanying genomic data are available to accelerate ASD research. Editorial note This article has been through an editorial process in which authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Eric Deneault
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Muhammad Faheem
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Sean H White
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Song Sun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,The Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Alina Piekna
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Tadeo Thompson
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Jennifer L Howe
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Leon Chalil
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Vickie Kwan
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Susan Walker
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Peter Pasceri
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,The Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Computer Science, University of Toronto, Toronto, Canada.,Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Ryan Kc Yuen
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - James Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Stephen W Scherer
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,McLaughlin Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Chatterjee M, Schild D, Teunissen CE. Contactins in the central nervous system: role in health and disease. Neural Regen Res 2019; 14:206-216. [PMID: 30530999 PMCID: PMC6301169 DOI: 10.4103/1673-5374.244776] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
Contactins are a group of cell adhesion molecules that are mainly expressed in the brain and play pivotal roles in the organization of axonal domains, axonal guidance, neuritogenesis, neuronal development, synapse formation and plasticity, axo-glia interactions and neural regeneration. Contactins comprise a family of six members. Their absence leads to malformed axons and impaired nerve conduction. Contactin mediated protein complex formation is critical for the organization of the axon in early central nervous system development. Mutations and differential expression of contactins have been identified in neuro-developmental or neurological disorders. Taken together, contactins are extensively studied in the context of nervous system development. This review summarizes the physiological roles of all six members of the Contactin family in neurodevelopment as well as their involvement in neurological/neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- DFG Excellence Cluster 171, University of Göttingen, Göttingen, Germany
| | - Charlotte E. Teunissen
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Poot M. Syndromes Hidden within the 16p11.2 Deletion Region. Mol Syndromol 2018; 9:171-174. [PMID: 30140194 DOI: 10.1159/000490845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
|
29
|
Abstract
Craniosynostosis refers to a condition during early development in which one or more of the fibrous sutures of the skull prematurely fuse by turning into bone, which produces recognizable patterns of cranial shape malformations depending on which suture(s) are affected. In addition to cases with isolated cranial dysmorphologies, craniosynostosis appears in syndromes that include skeletal features of the eyes, nose, palate, hands, and feet as well as impairment of vision, hearing, and intellectual development. Approximately 85% of the cases are nonsyndromic sporadic and emerge after de novo structural genome rearrangements or single nucleotide variation, while the remainders consist of syndromic cases following mendelian inheritance. By karyotyping, genome wide linkage, and CNV analyses as well as by whole exome and whole genome sequencing, numerous candidate genes for craniosynostosis belonging to the FGF, Wnt, BMP, Ras/ERK, ephrin, hedgehog, STAT, and retinoic acid signaling pathways have been identified. Many of the craniosynostosis-related candidate genes form a functional network based upon protein-protein or protein-DNA interactions. Depending on which node of this craniosynostosis-related network is affected by a gene mutation or a change in gene expression pattern, a distinct craniosynostosis syndrome or set of phenotypes ensues. Structural variations may alter the dosage of one or several genes or disrupt the genomic architecture of genes and their regulatory elements within topologically associated chromatin domains. These may exert dominant effects by either haploinsufficiency, dominant negative partial loss of function, gain of function, epistatic interaction, or alteration of levels and patterns of gene expression during development. Molecular mechanisms of dominant modes of action of these mutations may include loss of one or several binding sites for cognate protein partners or transcription factor binding sequences. Such losses affect interactions within functional networks governing development and consequently result in phenotypes such as craniosynostosis. Many of the novel variants identified by genome wide CNV analyses, whole exome and whole genome sequencing are incorporated in recently developed diagnostic algorithms for craniosynostosis.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Mu D, Xu Y, Zhao T, Watanabe K, Xiao Z, Ye H. Cntn6 deficiency impairs allocentric navigation in mice. Brain Behav 2018; 8:e00969. [PMID: 30106251 PMCID: PMC5991572 DOI: 10.1002/brb3.969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION CNTN6 is an immunoglobulin domain-containing cell adhesion molecule that belongs to the contactin family. It is involved in the development of the nervous system. We aim to determine the effect of Cntn6 deficiency on the allocentric navigation in mice. METHODS We recorded the travel distance and escape time of wild-type and Cntn6 mutant male and female mice in the Morris water maze task according to the protocol. RESULTS There was hardly any Cntn6 expression in the hippocampus of postnatal day 0 (P0) mice, while obvious Cntn6 expression was present in the hippocampal CA1 region of the P7 mice. During the acquisition period of Morris water maze task (Day 1 to 4), Cntn6-/- male mice failed to shorten the escape time to reach platform on the third day, while the travel distance to platform was not significantly different. There was no significant difference in both escape time and travel distance to the platform among all female subjects. In the probe trial test (Day 5), spatial memory of the female mutant mice was mildly affected, while Cntn6-/- male mice were normal. In the spatial relearning test (Day 7 to 10), Cntn6-/- male mice showed no difference in escape time to the platform compared to the wild-type male mice, while Cntn6 deficient female mice required shorter escape time to travel to the platform on day 7, day 8, and day 10. CONCLUSIONS Cntn6 is expressed in the developing hippocampus in mice. Cntn6 deficiency affects spatial learning and memory, indicating that Cntn6 plays a role in the development of hippocampus and affects allocentric navigation of the animals.
Collapse
Affiliation(s)
- Di Mu
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| | - Yiliang Xu
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| | - Tian Zhao
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| | - Kazutada Watanabe
- Department of BioengineeringNagaoka University of TechnologyNagaokaNiigataJapan
| | - Zhi‐Cheng Xiao
- The Key Laboratory of Stem Cell and Regenerative MedicineInstitute of Molecular and Clinical MedicineKunming Medical UniversityKunmingChina
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonMELAustralia
| | - Haihong Ye
- Department of Medical Genetics and Developmental BiologySchool of Basic Medical SciencesBeijing Institute for Brain DisordersCenter of SchizophreniaCapital Medical UniversityBeijingChina
| |
Collapse
|
31
|
Thygesen JH, Wolfe K, McQuillin A, Viñas-Jornet M, Baena N, Brison N, D'Haenens G, Esteba-Castillo S, Gabau E, Ribas-Vidal N, Ruiz A, Vermeesch J, Weyts E, Novell R, Buggenhout GV, Strydom A, Bass N, Guitart M, Vogels A. Neurodevelopmental risk copy number variants in adults with intellectual disabilities and comorbid psychiatric disorders. Br J Psychiatry 2018; 212:287-294. [PMID: 29693535 PMCID: PMC7083594 DOI: 10.1192/bjp.2017.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Copy number variants (CNVs) are established risk factors for neurodevelopmental disorders. To date the study of CNVs in psychiatric illness has focused on single disorder populations. The role of CNVs in individuals with intellectual disabilities and psychiatric comorbidities are less well characterised.AimsTo determine the type and frequency of CNVs in adults with intellectual disabilities and comorbid psychiatric disorders. METHOD A chromosomal microarray analysis of 599 adults recruited from intellectual disabilities psychiatry services at three European sites. RESULTS The yield of pathogenic CNVs was high - 13%. Focusing on established neurodevelopmental disorder risk loci we find a significantly higher frequency in individuals with intellectual disabilities and comorbid psychiatric disorder (10%) compared with healthy controls (1.2%, P<0.0001), schizophrenia (3.1%, P<0.0001) and intellectual disability/autism spectrum disorder (6.5%, P < 0.00084) populations. CONCLUSIONS In the largest sample of adults with intellectual disabilities and comorbid psychiatric disorders to date, we find a high rate of pathogenic CNVs. This has clinical implications for the use of genetic investigations in intellectual disability psychiatry.Declaration of interestNone.
Collapse
Affiliation(s)
| | - Kate Wolfe
- Division of Psychiatry, University College London, London, UK
| | | | - Marina Viñas-Jornet
- Genetics Laboratory, UDIAT-Centre Diagnostic, Hospital de Sabadell, Parc Taulí, Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Neus Baena
- Genetics Laboratory, UDIAT-Centre Diagnostic, Hospital de Sabadell, Parc Taulí, Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nathalie Brison
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Susanna Esteba-Castillo
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Elisabeth Gabau
- Genetics Laboratory, UDIAT-Centre Diagnostic, Hospital de Sabadell, Parc Taulí, Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Núria Ribas-Vidal
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnostic, Hospital de Sabadell, Parc Taulí, Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Joris Vermeesch
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Eddy Weyts
- St Camillus Psychiatric Hospital, Bierbeek, Belgium
| | - Ramon Novell
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Griet Van Buggenhout
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - André Strydom
- Division of Psychiatry, University College London and Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nick Bass
- Division of Psychiatry, University College London, London, UK
| | - Miriam Guitart
- Genetics Laboratory, UDIAT-Centre Diagnostic, Hospital de Sabadell, Parc Taulí, Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Annick Vogels
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium,Correspondence: Annick Vogels, Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - Box 602, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Sekine M, Makino T. Inference of Causative Genes for Alzheimer's Disease Due to Dosage Imbalance. Mol Biol Evol 2017; 34:2396-2407. [PMID: 28666362 DOI: 10.1093/molbev/msx183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) have recently drawn attention as an important genetic factor for diseases, especially common neuropsychiatric disorders including Alzheimer's disease (AD). Because most of the pathogenic CNV regions overlap with multiple genes, it has been challenging to identify the true disease-causing genes amongst them. Notably, a recent study reported that CNV regions containing ohnologs, which are dosage-sensitive genes, are likely to be deleterious. Utilizing the unique feature of ohnologs could be useful for identifying causative genes with pathogenic CNVs, however its effectiveness is still unclear. Although it has been reported that AD is strongly affected by CNVs, most of AD-causing genes with pathogenic CNVs have not been identified yet. Here, we show that dosage-sensitive ohnologs within CNV regions reported in patients with AD are related to the nervous system and are highly expressed in the brain, similar to other known susceptible genes for AD. We found that CNV regions in patients with AD contained dosage-sensitive genes, which are ohnologs not overlapping with control CNV regions, frequently. Furthermore, these dosage-sensitive genes in pathogenic CNV regions had a strong enrichment in the nervous system for mouse knockout phenotype and high expression in the brain similar to the known susceptible genes for AD. Our results demonstrated that selecting dosage-sensitive ohnologs out of multiple genes with pathogenic CNVs is effective in identifying the causative genes for AD. This methodology can be applied to other diseases caused by dosage imbalance and might help to establish the medical diagnosis by analysis of CNVs.
Collapse
Affiliation(s)
- Mizuka Sekine
- Department of Biology, Faculty of Science, Tohoku University, Sendai, Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
35
|
Poot M. The Age of the Father. Mol Syndromol 2017; 8:169-171. [PMID: 28690481 DOI: 10.1159/000471776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 11/19/2022] Open
|
36
|
Mercati O, Huguet G, Danckaert A, André-Leroux G, Maruani A, Bellinzoni M, Rolland T, Gouder L, Mathieu A, Buratti J, Amsellem F, Benabou M, Van-Gils J, Beggiato A, Konyukh M, Bourgeois JP, Gazzellone MJ, Yuen RKC, Walker S, Delépine M, Boland A, Régnault B, Francois M, Van Den Abbeele T, Mosca-Boidron AL, Faivre L, Shimoda Y, Watanabe K, Bonneau D, Rastam M, Leboyer M, Scherer SW, Gillberg C, Delorme R, Cloëz-Tayarani I, Bourgeron T. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Mol Psychiatry 2017; 22:625-633. [PMID: 27166760 PMCID: PMC5378808 DOI: 10.1038/mp.2016.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.
Collapse
Affiliation(s)
- O Mercati
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - G Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Danckaert
- Imagopole, Citech, Institut Pasteur, Paris, France
| | - G André-Leroux
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
- INRA, Unité MaIAGE, UR1404, Jouy-en-Josas, France
| | - A Maruani
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Bellinzoni
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
| | - T Rolland
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - L Gouder
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Mathieu
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Buratti
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - F Amsellem
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Benabou
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Van-Gils
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Beggiato
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Konyukh
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J-P Bourgeois
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - M J Gazzellone
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - R K C Yuen
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - S Walker
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - M Delépine
- Centre National de Génotypage, Evry, France
| | - A Boland
- Centre National de Génotypage, Evry, France
| | - B Régnault
- Eukaryote Genotyping Platform, Genopole, Institut Pasteur, Paris, France
| | - M Francois
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - T Van Den Abbeele
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - A L Mosca-Boidron
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - L Faivre
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - Y Shimoda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - K Watanabe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - D Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - M Rastam
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - M Leboyer
- INSERM U955, Psychiatrie Translationnelle, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Assistance Publique-Hôpitaux de Paris, DHU Pe-PSY, H. Mondor Hospital, Department of Psychiatry, Créteil, France
- FondaMental Foundation, Créteil, France
| | - S W Scherer
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- McLaughlin Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - R Delorme
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - I Cloëz-Tayarani
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - T Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
- FondaMental Foundation, Créteil, France
| |
Collapse
|
37
|
Kleijer KTE, van Nieuwenhuize D, Spierenburg HA, Gregorio-Jordan S, Kas MJH, Burbach JPH. Structural abnormalities in the primary somatosensory cortex and a normal behavioral profile in Contactin-5 deficient mice. Cell Adh Migr 2017; 12:5-18. [PMID: 28346043 PMCID: PMC5810773 DOI: 10.1080/19336918.2017.1288788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Contactin-5 (Cntn5) is an immunoglobulin cell adhesion molecule that is exclusively expressed in the central nervous system. In view of its association with neurodevelopmental disorders, particularly autism spectrum disorder (ASD), this study focused on Cntn5-positive areas in the forebrain and aimed to explore the morphological and behavioral phenotypes of the Cntn5 null mutant (Cntn5−/−) mouse in relation to these areas and ASD symptomatology. A newly generated antibody enabled us to elaborately describe the spatial expression pattern of Cntn5 in P7 wild type (Cntn5+/+) mice. The Cntn5 expression pattern included strong expression in the cerebral cortex, hippocampus and mammillary bodies in addition to described previously brain nuclei of the auditory pathway and the dorsal thalamus. Thinning of the primary somatosensory (S1) cortex was found in Cntn5−/− mice and ascribed to a misplacement of Cntn5-ablated cells. This phenotype was accompanied by a reduction in the barrel/septa ratio of the S1 barrel field. The structure and morphology of the hippocampus was intact in Cntn5−/− mice. A set of behavioral experiments including social, exploratory and repetitive behaviors showed that these were unaffected in Cntn5−/− mice. Taken together, these data demonstrate a selective role of Cntn5 in development of the cerebral cortex without overt behavioral phenotypes.
Collapse
Affiliation(s)
- Kristel T E Kleijer
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Denise van Nieuwenhuize
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Henk A Spierenburg
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Sara Gregorio-Jordan
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Martien J H Kas
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - J Peter H Burbach
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| |
Collapse
|
38
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Investigating the validation of the Chinese Mandarin version of the Social Responsiveness Scale in a Mainland China child population. BMC Psychiatry 2017; 17:51. [PMID: 28166747 PMCID: PMC5292795 DOI: 10.1186/s12888-016-1185-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/30/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Researchers from several different countries have found the Social Responsiveness Scale (SRS) to have good psychometric properties. However, to our knowledge, no studies on this subject have been reported in Mainland China. In this study, we investigated the psychometric properties of the Chinese Mandarin version of the SRS when used in Mainland China. METHODS The reliability and validity of the parent-report SRS in a sample of 749 children of 4- to 14-year-olds: 411 typically developing and 338 clinical participants (202 with autism spectrum disorder (ASD)) were examined. RESULTS Internal consistency for total scale (0.871-0.922), test-retest reliability (0.81-0.94), and convergent validity with the Autism Behavior Checklist (ABC) (0.302-0.647) were satisfactory. The SRS total score discriminated between the ASD and other developmental disorders. Receiver operating characteristic (ROC) analyses revealed that the SRS was predicted to accurately classify 69.2-97.2% of youth ASD. Exploratory factor analysis (EFA) supported a single-factor solution for the ASD subsample. Confirmatory factor analysis (CFA) did not confirm the theoretical construct of five factors model with inadequate fit in the ASD subsample. CONCLUSIONS Overall, our findings supported the reliability and validity of the parent-report SRS as one ASD screening instrument. In addition, we also suggest that the use of separate cut-offs for screening purposes (optimizing sensitivity) vs. clinical confirmation (optimizing specificity) should be considered.
Collapse
|
40
|
A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Mol Cell Neurosci 2017; 81:72-83. [PMID: 28064060 DOI: 10.1016/j.mcn.2016.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 12/25/2016] [Indexed: 12/30/2022] Open
Abstract
Contactins (Cntns) are a six-member subgroup of the immunoglobulin cell adhesion molecule superfamily (IgCAMs) with pronounced brain expression and function. Recent genetic studies of neuropsychiatric disorders have pinpointed contactin-4 (CNTN4), contactin-5 (CNTN5) and contactin-6 (CNTN6) as candidate genes in neurodevelopmental disorders, particularly in autism spectrum disorders (ASDs), but also in intellectual disability, schizophrenia (SCZ), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD), alcohol use disorder (AUD) and anorexia nervosa (AN). This suggests that they have important functions during neurodevelopment. This suggestion is supported by data showing that neurite outgrowth, cell survival and neural circuit formation can be affected by disruption of these genes. Here, we review the current genetic data about their involvement in neuropsychiatric disorders and explore studies on how null mutations affect mouse behavior. Finally, we highlight to role of protein-protein interactions in the potential mechanism of action of Cntn4, -5 and -6 and emphasize that complexes with other membrane proteins may play a role in neuronal developmental functions.
Collapse
|
41
|
Anatomy and Cell Biology of Autism Spectrum Disorder: Lessons from Human Genetics. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:1-25. [PMID: 28551748 DOI: 10.1007/978-3-319-52498-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Until recently autism spectrum disorder (ASD) was regarded as a neurodevelopmental condition with unknown causes and pathogenesis. In the footsteps of the revolution of genome technologies and genetics, and with its high degree of heritability, ASD became the first neuropsychiatric disorder for which clues towards molecular and cellular pathogenesis were uncovered by genetic identification of susceptibility genes. Currently several hundreds of risk genes have been assigned, with a recurrence below 1% in the ASD population. The multitude and diversity of known ASD genes has extended the clinical notion that ASD comprises very heterogeneous conditions ranging from severe intellectual disabilities to mild high-functioning forms. The results of genetics have allowed to pinpoint a limited number of cellular and molecular processes likely involved in ASD including protein synthesis, signal transduction, transcription/chromatin remodelling and synaptic function all playing an essential role in the regulation of synaptic homeostasis during brain development. In this context, we highlight the role of protein synthesis as a key process in ASD pathogenesis as it might be central in synaptic deregulation and a potential target for intervention. These current insights should lead to a rational design of interventions in molecular and cellular pathways of ASD pathogenesis that may be applied to affected individuals in the future.
Collapse
|
42
|
Zuko A, Oguro-Ando A, Post H, Taggenbrock RLRE, van Dijk RE, Altelaar AFM, Heck AJR, Petrenko AG, van der Zwaag B, Shimoda Y, Pasterkamp RJ, Burbach JPH. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis. Front Mol Neurosci 2016; 9:143. [PMID: 28018171 PMCID: PMC5156884 DOI: 10.3389/fnmol.2016.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023] Open
Abstract
In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Renske L R E Taggenbrock
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow, Russia
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht Utrecht, Netherlands
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology Nagaoka, Japan
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - J P H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
43
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
44
|
Lopatkina ME, Kashevarova AA, Lebedev IN. Estimation of association of CNTN6 copy number variation with idiopathic intellectual disability. RUSS J GENET+ 2016. [DOI: 10.1134/s102279541609009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Fry AE, Rees E, Thompson R, Mantripragada K, Blake P, Jones G, Morgan S, Jose S, Mugalaasi H, Archer H, McCann E, Clarke A, Taylor C, Davies S, Gibbon F, Te Water Naude J, Hartley L, Thomas G, White C, Natarajan J, Thomas RH, Drew C, Chung SK, Rees MI, Holmans P, Owen MJ, Kirov G, Pilz DT, Kerr MP. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC MEDICAL GENETICS 2016; 17:34. [PMID: 27113213 PMCID: PMC4845474 DOI: 10.1186/s12881-016-0294-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/14/2016] [Indexed: 11/10/2022]
Abstract
Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0294-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK. .,Institute of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Rose Thompson
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Kiran Mantripragada
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Penny Blake
- Llwyneryr Unit, Learning Disability Services, Clasemont Road, Morriston, Swansea, SA6 6AH, UK
| | - Glyn Jones
- Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff, CF5 5WF, UK
| | - Sian Morgan
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Sian Jose
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Hood Mugalaasi
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Hayley Archer
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Emma McCann
- Department of Clinical Genetics, Glan Clwyd Hospital, Betsi Cadwaladr University Health Board, Rhyl, Denbighshire, LL18 5UJ, UK
| | - Angus Clarke
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK.,Institute of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Clare Taylor
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Sally Davies
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Frances Gibbon
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Johann Te Water Naude
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Louise Hartley
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Gareth Thomas
- Department of Paediatric Neurology, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, SA6 6NL, UK
| | - Catharine White
- Department of Paediatric Neurology, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, SA6 6NL, UK
| | - Jaya Natarajan
- Department of Paediatrics, Royal Glamorgan Hospital, Cwm Taf University Health Board, Pontyclun, Mid Glamorgan, CF72 8XR, UK
| | - Rhys H Thomas
- Welsh Epilepsy Centre, Neurosciences Directorate, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Cheney Drew
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Daniela T Pilz
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Michael P Kerr
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK.,Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff, CF5 5WF, UK
| |
Collapse
|
46
|
Zuko A, Oguro-Ando A, van Dijk R, Gregorio-Jordan S, van der Zwaag B, Burbach JPH. Developmental role of the cell adhesion molecule Contactin-6 in the cerebral cortex and hippocampus. Cell Adh Migr 2016; 10:378-92. [PMID: 26939565 DOI: 10.1080/19336918.2016.1155018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the neural cell adhesion molecule Contactin-6 (Cntn6 a.k.a. NB-3) has been implicated as an autism risk gene, suggesting that its mutation is deleterious to brain development. Due to its GPI-anchor at Cntn6 may exert cell adhesion/receptor functions in complex with other membrane proteins, or serve as a ligand. We aimed to uncover novel phenotypes related to Cntn6 functions during development in the cerebral cortex of adult Cntn6(-/-) mice. We first determined Cntn6 protein and mRNA expression in the cortex, thalamic nuclei and the hippocampus at P14, which decreased specifically in the cortex at adult stages. Neuroanatomical analysis demonstrated a significant decrease of Cux1+ projection neurons in layers II-IV and an increase of FoxP2+ projection neurons in layer VI in the visual cortex of adult Cntn6(-/-) mice compared to wild-type controls. Furthermore, the number of parvalbumin+ (PV) interneurons was decreased in Cntn6(-/-) mice, while the amount of NPY+ interneurons remained unchanged. In the hippocampus the delineation and outgrowth of mossy fibers remained largely unchanged, except for the observation of a larger suprapyramidal bundle. The observed abnormalities in the cerebral cortex and hippocampus of Cntn6(-/-) mice suggests that Cntn6 serves developmental functions involving cell survival, migration and fasciculation. Furthermore, these data suggest that Cntn6 engages in both trans- and cis-interactions and may be involved in larger protein interaction networks.
Collapse
Affiliation(s)
- Amila Zuko
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Asami Oguro-Ando
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Roland van Dijk
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Sara Gregorio-Jordan
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Bert van der Zwaag
- b Department of Genetics , University Medical Center Utrecht , Utrecht , The Netherlands
| | - J Peter H Burbach
- a Brain Center Rudolf Magnus , Department of Translational Neuroscience , University Medical Center Utrecht , Utrecht , The Netherlands
| |
Collapse
|
47
|
Contactin-5 expression during development and wiring of the thalamocortical system. Neuroscience 2015; 310:106-13. [DOI: 10.1016/j.neuroscience.2015.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023]
|
48
|
Merikangas AK, Segurado R, Heron EA, Anney RJL, Paterson AD, Cook EH, Pinto D, Scherer SW, Szatmari P, Gill M, Corvin AP, Gallagher L. The phenotypic manifestations of rare genic CNVs in autism spectrum disorder. Mol Psychiatry 2015; 20:1366-72. [PMID: 25421404 PMCID: PMC4759095 DOI: 10.1038/mp.2014.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/10/2014] [Accepted: 09/19/2014] [Indexed: 12/28/2022]
Abstract
Significant evidence exists for the association between copy number variants (CNVs) and Autism Spectrum Disorder (ASD); however, most of this work has focused solely on the diagnosis of ASD. There is limited understanding of the impact of CNVs on the 'sub-phenotypes' of ASD. The objective of this paper is to evaluate associations between CNVs in differentially brain expressed (DBE) genes or genes previously implicated in ASD/intellectual disability (ASD/ID) and specific sub-phenotypes of ASD. The sample consisted of 1590 cases of European ancestry from the Autism Genome Project (AGP) with a diagnosis of an ASD and at least one rare CNV impacting any gene and a core set of phenotypic measures, including symptom severity, language impairments, seizures, gait disturbances, intelligence quotient (IQ) and adaptive function, as well as paternal and maternal age. Classification analyses using a non-parametric recursive partitioning method (random forests) were employed to define sets of phenotypic characteristics that best classify the CNV-defined groups. There was substantial variation in the classification accuracy of the two sets of genes. The best variables for classification were verbal IQ for the ASD/ID genes, paternal age at birth for the DBE genes and adaptive function for de novo CNVs. CNVs in the ASD/ID list were primarily associated with communication and language domains, whereas CNVs in DBE genes were related to broader manifestations of adaptive function. To our knowledge, this is the first study to examine the associations between sub-phenotypes and CNVs genome-wide in ASD. This work highlights the importance of examining the diverse sub-phenotypic manifestations of CNVs in ASD, including the specific features, comorbid conditions and clinical correlates of ASD that comprise underlying characteristics of the disorder.
Collapse
Affiliation(s)
- A K Merikangas
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland,Department of Psychiatry, Neuropsychiatric Genetics Research Group, Trinity College Dublin, Institute of Molecular Medicine, St. James's Hospital, James's Street, Dublin, Dublin 8, Ireland. E-mail:
| | - R Segurado
- Centre for Support and Training in Analysis and Research, University College Dublin, Dublin 4, Ireland
| | - E A Heron
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - R J L Anney
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - A D Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - E H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - D Pinto
- Departments of Psychiatry, and Genetics and Genomic Sciences, Seaver Autism Center, The Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S W Scherer
- Department of Molecular Genetics, The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - P Szatmari
- The Division of Child and Adolescent Psychiatry, Centre for Addiction and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - M Gill
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - A P Corvin
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - L Gallagher
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
49
|
Hu J, Liao J, Sathanoori M, Kochmar S, Sebastian J, Yatsenko SA, Surti U. CNTN6 copy number variations in 14 patients: a possible candidate gene for neurodevelopmental and neuropsychiatric disorders. J Neurodev Disord 2015; 7:26. [PMID: 26257835 PMCID: PMC4528395 DOI: 10.1186/s11689-015-9122-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023] Open
Abstract
Background Neurodevelopmental disorders are impairments of brain function that affect emotion, learning, and memory. Copy number variations of contactin genes (CNTNs), including CNTN3, CNTN4, CNTN5, and CNTN6, have been suggested to be associated with these disorders. However, phenotypes have been reported in only a handful of patients with copy number variations involving CNTNs. Methods From January 2009 to January 2013, 3724 patients ascertained through the University of Pittsburgh Medical Center were referred to our laboratory for clinical array comparative genomic hybridization testing. We screened this cohort of patients to identify individuals with the 3p26.3 copy number variations involving the CNTN6 gene, and then retrospectively reviewed the clinical information and family history of these patients to determine the association between the 3p26.3 copy number variations and neurodevelopmental disorders. Results Fourteen of the 3724 patients had 3p26.3 copy number variations involving the CNTN6 gene. Thirteen of the 14 patients with these CNTN6 copy number variations presented with various neurodevelopmental disorders including developmental delay, autistic spectrum disorders, seizures and attention deficit hyperactivity disorder. Family history was available for 13 of the 14 patients. Twelve of the thirteen families have multiple members with neurodevelopmental and neuropsychiatric disorders including attention deficit hyperactivity disorder, seizures, autism spectrum disorder, intellectual disability, schizophrenia, depression, anxiety, learning disability, and bipolar disorder. Conclusions Our findings suggest that deletion or duplication of the CNTN6 gene is associated with a wide spectrum of neurodevelopmental behavioral disorders.
Collapse
Affiliation(s)
- Jie Hu
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Jun Liao
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA
| | - Malini Sathanoori
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Sally Kochmar
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA
| | | | - Svetlana A Yatsenko
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Urvashi Surti
- Pittsburgh Cytogenetics Laboratory, Center of Medical Genetics and Genomics, Magee-Womens Hospital of UPMC, Pittsburgh, PA 15213 USA ; Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
50
|
Poot M. Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders. Mol Syndromol 2015; 6:7-22. [PMID: 25852443 DOI: 10.1159/000371594] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 12/23/2022] Open
Abstract
Based on genomic rearrangements and copy number variations, the contactin-associated protein-like 2 gene (CNTNAP2) has been implicated in neurodevelopmental disorders such as Gilles de la Tourette syndrome, intellectual disability, obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, and attention deficit hyperactivity disorder. To explain the phenotypic pleiotropy of CNTNAP2 alterations, several hypotheses have been put forward. Those include gene disruption, loss of a gene copy by a heterozygous deletion, altered regulation of gene expression due to loss of transcription factor binding and DNA methylation sites, and mutations in the amino acid sequence of the encoded protein which may provoke altered interactions of the CNTNAP2-encoded protein, Caspr2, with other proteins. Also exome sequencing, which covers <0.2% of the CNTNAP2 genomic DNA, has revealed numerous single nucleotide variants in healthy individuals and in patients with neurodevelopmental disorders. In some of these disorders, disruption of CNTNAP2 may be interpreted as a susceptibility factor rather than a directly causative mutation. In addition to being associated with impaired development of language, CNTNAP2 may turn out to be a central node in the molecular networks controlling neurodevelopment. This review discusses the impact of CNTNAP2 mutations on its functioning at multiple levels of the combinatorial genetic networks that govern brain development. In addition, recommendations for genomic testing in the context of clinical genetic management of patients with neurodevelopmental disorders and their families are put forward.
Collapse
Affiliation(s)
- Martin Poot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|