1
|
Evans LL, Hill LRS, Kulungowski AM. Neonatal Cutaneous Vascular Anomalies. Neoreviews 2025; 26:e12-e27. [PMID: 39740173 DOI: 10.1542/neo.26-1-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 01/02/2025]
Abstract
Vascular anomalies are broadly classified into 2 categories: vascular tumors and vascular malformations. Vascular anomalies frequently present as cutaneous lesions in infants. This review summarizes vascular anomalies that most commonly present as dermatologic lesions in the neonatal period, with a focus on the clinical findings, pathophysiology and histology, relevant radiographic findings, and management of common vascular anomalies such as infantile hemangiomas, congenital hemangiomas, and Kaposiform hemangioendothelioma, along with vascular malformations, including capillary, lymphatic, venous, and arteriovenous malformations.
Collapse
Affiliation(s)
- Lauren L Evans
- Vascular Anomalies Center, Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Lauren R S Hill
- Vascular Anomalies Center, Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Ann M Kulungowski
- Vascular Anomalies Center, Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
2
|
Borst A. Targeted medical therapies for vascular anomalies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:709-717. [PMID: 39644074 DOI: 10.1182/hematology.2024000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The last 2 decades of genetic discovery in the field of vascular anomalies have brought targeted medical therapies to the forefront of care patients with vascular anomalies and have broadened the role of hematologists/oncologists in this field. Many vascular anomalies have now been identified to be driven by somatic gain-of-function variants in the PI3K/AKT/ mTOR and Ras/MAPK intracellular signaling pathways. This has led to the introduction of various antiangiogenic agents that inhibit these pathways. Knowledge of the indications for and the safe administration of these agents in patients with vascular anomalies is now a crucial part of training for hematologists/oncologists.
Collapse
Affiliation(s)
- Alexandra Borst
- Comprehensive Vascular Anomalies Program, The Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
3
|
Gulino A, Dierna F, Zanghì A, Vecchio M, Salafia S, Marino F, Foti P, Belfiore G, Basile A, Ruggieri M, Polizzi A. Anomalies of Midbrain/Hindbrain Development and Related Disabilities: Pontocerebellar Hypoplasia, Congenital Disorders of Glycosylation, and Cerebellar Hemisphere Hypoplasia. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:396-406. [DOI: 10.1055/s-0044-1786782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractRecent progress in developmental biology, molecular genetics, and neuroimaging has enabled a more profound comprehension of developmental disorders affecting the embryonic midbrain and hindbrain, which manifest clinically. The purpose of this review is to describe anomalies of the midbrain/hindbrain such as pontocerebellar hypoplasia (PCH), congenital disorders of glycosylation (CDG), cerebellar hemisphere hypoplasia. PCH is a group of disorders that is both clinically and genetically diverse. These disorders are identified by the hypoplasia and degeneration of the cerebellum and ventral pons. A total of 18 distinct clinical subtypes of PCH, each linked to pathogenic variants in 19 different genes, have been documented, like mutations in TSEN54 (coding a subunit of tRNA splicing endonucleases complex) and TBC1D23 which display moderate-to-severe intellectual disability (ID) and microcephaly. CDG represent a set of inherited conditions marked by impaired glycosylation of proteins and lipids. The most prevalent subtype among CDG is PMM2-CDG, inherited in a recessive manner, causing reduced activity of phosphomannomutase. Its phenotype varies from mild to severe, involving the central nervous system and affecting many other organs as well. Patients who are severely affected also exhibit visceral symptoms alongside severe ID and other neurological manifestations. Cerebellar hypoplasia (CH) is characterized by a cerebellum of diminished volume while maintaining its shape. CH exhibits a diverse range of neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental involvement. Cerebello–oculo–facio–genital syndrome is linked to a recessive MAB21L1 mutation. Jubert's syndrome, associated with a rare autosomal recessive mutation, is identified on magnetic resonance imaging by cerebellar worm hypoplasia and midbrain malformations. The rhombencephalosynapsis, characterized by vermian agenesis or hypogenesis with the fusion of the cerebellar hemispheres, emerges during embryogenesis. It can manifest alone or in conjunction with other and/or extracerebral abnormalities.
Collapse
Affiliation(s)
- Alessandro Gulino
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Federica Dierna
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Rehabilitation Unit, University of Catania, Catania, Italy
| | | | - Francesco Marino
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Foti
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, Chair of Pediatrics, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Presti S, Dierna F, Zanghì A, Vecchio M, Lavalle S, Praticò ER, Ruggieri M, Polizzi A. Cerebral Malformations Related to Coronavirus Disease 2019 during Pregnancy. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:419-423. [DOI: 10.1055/s-0044-1786785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractThe pandemic of severe-acute-respiratory-syndrome-related coronavirus (SARS-CoV-2) has shown a wide spectrum of possible consequences in children, ranging from asymptomatic patients to the development of severe conditions, such as multisystem inflammatory syndrome in children and encephalopathies related to cytokine storm. Specifically, neurological and neuroimaging abnormalities, ranging from mild-to-the severe ones, have been documented in children as well, such as postinfectious immune-mediated acute disseminated encephalomyelitis, myelitis, neural enhancement, cranial nerve enhancement, and cortical injury, also without neurological symptoms. Considering the neurotropism of coronaviruses and SARS-CoV-2, which has been well described in the literature, we reviewed the literature reporting possible cerebral malformation in neonates due to the infection of SARS-CoV-2 in pregnancy. Coronavirus disease 2019 (COVID-19) during pregnancy might develop cerebral disorders in several ways. Articles in English in the literature were screened using the following search terms: (1) “brain malformations” AND “COVID-19”; (2) “cerebral malformations” AND “COVID-19”; (3) brain malformations AND “Sars-Cov-2”; (4) “cerebral malformations “AND “Sars-Cov-2.” Considering the congenital brain malformation found in newborns exposed to infection of SARS-Cov-2 pre- or neonatally, we identified one paper which reported three neonates with cerebral malformation. Although sporadic, cerebral malformations like atypical signals in white matter with delayed myelination, brain dysplasia/hypoplasia with delayed myelination, and unusual signals in the periventricular regions have been documented.
Collapse
Affiliation(s)
- Santiago Presti
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Federica Dierna
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Rehabilitation Unit, University of Catania, Catania, Italy
| | - Salvatore Lavalle
- Chair of Radiology, Department of Medicine and Surgery, Kore Universisty, Enna, Italy
| | | | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Campo E, Dierna F, Zanghì A, Vecchio M, Salafia S, Foti P, David E, Belfiore G, Lavalle S, Ruggieri M, Polizzi A. Anomalies of Midbrain Hindbrain Development: Midbrain Clefts, Cerebellar Nodular Heterotopia with Overlying Dysgenesis, Cerebellar Foliation Disorder, Pontine Tegmental Cap Dysplasia; Joubert Syndrome; Lhermitte Duclos Syndrome. Diagnosis, Classification and Rehabilitation Hypothesis. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:387-395. [DOI: 10.1055/s-0044-1786789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMidbrain and hindbrain (MBHB) malformations are a rare group of congenital abnormalities that involve the neural structure of the posterior cranial fossa, leading to significant causes of neurodevelopmental dysfunction. Recent advancements in genetic and neuroimaging technologies have significantly enhanced our understanding of these disorders. The integration of these advances has facilitated a systematic classification of these conditions. A basic understanding of MBHB embryology is fundamental in order to understand the malformations occurring in their structures: MBHB neurons are mainly generated in the neuroepithelium, lining the walls of the fourth ventricle. Moreover, the regional specificity of the neural tube is determined by a combination of transcription factors expressed, organizing the fate of the neighboring regions as well. Clinical features of MBHB malformations are typically nonspecific; some patients may be asymptomatic or may develop neurological symptoms including hypotonia, ataxia, abnormal eye movements, decreased visual attention, cranial nerve deficits, cognitive impairment, and psychiatric symptoms. Many malformations have been described. We proposed the description of some of them, reporting their main morphologic aspects, magnetic resonance imaging (MRI) peculiar signs and their clinical presentation. Midbrain clefts, for example, are malformations characterized by median separation in the ventral midbrain which involves a communication with the cerebral aqueduct giving a “keyhole” shape. Pontine tegmental cap dysplasia, instead, is a rare hindbrain malformation responsible for a nonprogressive neurological disorder and is described with hypoplastic flat ventral pons, hypoplasia of the middle cerebellar peduncles, and hypoplasia and malformation of the worm. Joubert syndrome, cerebellar nodular heterotopia, abnormal cerebellar foliation, and Lhermitte–Duclos disease, also called dysplastic cerebellar gangliocytoma, have been described as well in order to provide a general overview on this diagnostic challenge reporting the most recent findings.
Collapse
Affiliation(s)
- Ersilia Campo
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Federica Dierna
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Rehabilitation Unit, University of Catania, Catania, Italy
| | | | - Pietro Foti
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Salvatore Lavalle
- Chair of Radiology, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, Chair of Pediatrics, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Kane G, Fernandez-Pineda I. Targeted therapies for vascular malformations. Front Med (Lausanne) 2024; 11:1446046. [PMID: 39290395 PMCID: PMC11405217 DOI: 10.3389/fmed.2024.1446046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Targeted medical therapies for the treatment of vascular malformations is an exciting and evolving area of research. As the identification of specific causative genetic mutations involved in vascular malformations becomes more accessible and inexpensive, the development of targeted therapies to address these genetic anomalies becomes all the more enticing. It is an excellent example of the potential of translational research where basic science discoveries are translated to clinical practise from 'bench to bedside'. In this mini-review we aim to synopsise some of the recent studies published in this area with specific focus on the paediatric population. We also aim to highlight the growing demand for future research in the field to elucidate further the optimum duration of treatments, strategies for discontinuation, potential for combination of therapies and the effects of prolonged use of these medications.
Collapse
Affiliation(s)
- Gavin Kane
- Children's Health Ireland, Dublin, Ireland
| | | |
Collapse
|
7
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Wang S, Yuan S. Combined surgery and sclerotherapy for 13 years: a case report of a patient with CLOVES. Front Pediatr 2024; 12:1336358. [PMID: 38500592 PMCID: PMC10944971 DOI: 10.3389/fped.2024.1336358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Congenital lipomatous overgrowth, vascular malformations, epidermal nevi, and skeletal anomalies (CLOVES) constitute a rare overgrowth disorder resulting from a mosaic function-acquiring mutation in the PIK3CA gene. Targeted drugs for the PI3K-AKT signaling pathway remain under clinical trial and surgery is commonly used to meet both aesthetic and functional requirements for CLOVES patients. We report here the course and experience of a male patient treated at our institution for up to 13 years. The course of treatment consisted of nine anhydrous ethanol sclerotherapy procedures and two segmental trunk mass resections. After undergoing sequential treatment, the patient experienced improved thoracic deformity and scoliosis, enabling him to grow and develop normally.
Collapse
Affiliation(s)
| | - Siming Yuan
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Yoh Y, Shiohama T, Uchida T, Ebata R, Kobayashi H, Okunushi K, Kato M, Watanabe K, Nakashima M, Saitsu H, Hamada H. Case report: Progressive pulmonary artery hypertension in a case of megalencephaly-capillary malformation syndrome. Front Genet 2023; 14:1221745. [PMID: 37614820 PMCID: PMC10442816 DOI: 10.3389/fgene.2023.1221745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Megalencephaly-capillary malformation syndrome (MCAP, OMIM # 602501) is caused by hyperactivity of the thephosphoinositide-3-kinase (PI3K)-Vakt murine thymoma viral oncogene homolog (AKT)-mammalian target of rapamycin (mTOR) pathway, which results in megalencephaly, capillary malformations, asymmetrical overgrowth, and connective tissue dysplasia. Herein, we report the case of a 7-month-old girl with MCAP due to a PIK3CA somatic mosaic variant who presented with atrial tachycardia, finally diagnosed as pulmonary arterial hypertension (PAH). Oxygen therapy and sildenafil decreased pulmonary blood pressure and improved atrial tachycardia. Previous studies reported an association between the PI3K/AKT/mTOR pathway and abnormal pulmonary arterial smooth muscle cell proliferation, which may be associated with PAH. PAH should be considered a potentially lethal complication in MCAP patients, even when no structural cardiac abnormalities are identified in the neonatal period.
Collapse
Affiliation(s)
- Yuri Yoh
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Tomoko Uchida
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Ryota Ebata
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | | | - Kentaro Okunushi
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kazuki Watanabe
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
10
|
Amiran MR, Taghdir M, Joozdani FA. Molecular insights into the behavior of the allosteric and ATP-competitive inhibitors in interaction with AKT1 protein: A molecular dynamics study. Int J Biol Macromol 2023; 242:124853. [PMID: 37172698 DOI: 10.1016/j.ijbiomac.2023.124853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
AKT1 is a family of serine/threonine kinases that play a key role in regulating cell growth, proliferation, metabolism, and survival. Two significant classes of AKT1 inhibitors (allosteric and ATP-competitive) are used in clinical development, and both of them could be effective in specific conditions. In this study, we investigated the effect of several different inhibitors on two conformations of the AKT1 by computational approach. We studied the effects of four inhibitors, including MK-2206, Miransertib, Herbacetin, and Shogaol, on the inactive conformation of AKT1 protein and the effects of four inhibitors, Capivasertib, AT7867, Quercetin, and Oridonin molecules on the active conformation of AKT1 protein. The results of simulations showed that each inhibitor creates a stable complex with AKT1 protein, although AKT1/Shogaol and AKT1/AT7867 complexes showed less stability than other complexes. Based on RMSF calculations, the fluctuation of residues in the mentioned complexes is higher than in other complexes. As compared to other complexes in either of its two conformations, MK-2206 has a stronger binding free energy affinity in the inactive conformation, -203.446 kJ/mol. MM-PBSA calculations showed that the van der Waals interactions contribute more than the electrostatic interactions to the binding energy of inhibitors to AKT1 protein.
Collapse
Affiliation(s)
- Mohammad Reza Amiran
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| |
Collapse
|
11
|
Chen H, Gao W, Liu H, Sun B, Hua C, Lin X. Updates on Diagnosis and Treatment of PIK3CA-Related Overgrowth Spectrum. Ann Plast Surg 2023; 90:S209-S215. [PMID: 36729078 DOI: 10.1097/sap.0000000000003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Hyperactivation of the PI3K/AKT/mTOR signaling pathway caused by PIK3CA mutations is associated with a category of overgrowth syndromes that are defined as PIK3CA -related overgrowth spectrum (PROS). The clinical features of PROS are highly heterogeneous and usually present as vascular malformations, bone and soft tissue overgrowth, and neurological and visceral abnormalities. Detection of PIK3CA variants is necessary for diagnosis and provides the basis for targeted therapy for PROS. Drugs that inhibit the PI3K pathway offer alternatives to conventional therapies. This article reviews the current knowledge of PROS and summarizes the latest progress in precise treatment, providing new insights into future therapies and research goals.
Collapse
Affiliation(s)
- Hongrui Chen
- From the Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
12
|
Mansur A, Radovanovic I. Vascular malformations: An overview of their molecular pathways, detection of mutational profiles and subsequent targets for drug therapy. Front Neurol 2023; 14:1099328. [PMID: 36846125 PMCID: PMC9950274 DOI: 10.3389/fneur.2023.1099328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular malformations are anomalies in vascular development that portend a significant risk of hemorrhage, morbidity and mortality. Conventional treatments with surgery, radiosurgery and/or endovascular approaches are often insufficient for cure, thereby presenting an ongoing challenge for physicians and their patients. In the last two decades, we have learned that each type of vascular malformation harbors inherited germline and somatic mutations in two well-known cellular pathways that are also implicated in cancer biology: the PI3K/AKT/mTOR and RAS/RAF/MEK pathways. This knowledge has led to recent efforts in: (1) identifying reliable mechanisms to detect a patient's mutational burden in a minimally-invasive manner, and then (2) understand how cancer drugs that target these mutations can be repurposed for vascular malformation care. The idea of precision medicine for vascular pathologies is growing in potential and will be critical in expanding the clinician's therapeutic armamentarium.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Di Rocco F, Licci ML, Garde A, Mottolese C, Thauvin-Robinet C, Chevarin M, Guibaud L, Vabres P, Kuentz P, Faivre L. Surgical management of Chiari malformation type 1 associated to MCAP syndrome and study of cerebellar and adjacent tissues for PIK3CA mosaicism. Eur J Med Genet 2023; 66:104678. [PMID: 36503153 DOI: 10.1016/j.ejmg.2022.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Subjects with Megalencephaly-Capillary Malformation-Polymicrogyria syndrome (MCAP) can present with a Chiari Malformation Type 1 and resulting alterations in cerebrospinal fluid (CSF) dynamics, which may require surgical treatment. The aim of this paper is to describe the features of children with MCAP who underwent surgical decompression for CM1, and to explore the PIK3CA variant allele frequency (VAF) identified in cerebellar parenchyma and other adjacent structures. METHODS This study reviewed two cases of children with CM1 and MCAP who underwent surgical decompression treatment. These two cases were part of a national cohort of 12 MCAP patients who had CM1, due to their surgical eligibility. Tissue samples were obtained from the cerebellar tonsils and adjacent anatomical structures during the surgical procedures. Samples were then subsequently analyzed for PIK3CA postzygotic variants. RESULTS In both cases, alterations in CSF dynamics, specifically hydrocephalus and syringomyelia, were observed and required surgical treatment. PIK3CA targeted sequencing determined the VAF of the postzygotic variant in both cerebellar and adjacent bone/connective tissues. DISCUSSION The recognition of a CM1 comorbidity in MCAP patients is of paramount importance when considering personalized treatment options, especially because these patients are at higher risk of developing complications during surgical decompression surgery. The variable PIK3CA VAF identified in the different analyzed tissues might help explain the heterogeneous nature and severity of anomalies observed in the volume of the posterior fossa structures in MCAP patients and associated CSF and venous disorders.
Collapse
Affiliation(s)
- Federico Di Rocco
- Service de Neurochirurgie Pédiatrique, Centre de Référence Craniosténoses-Lyon, HCL, Hôpital Femme Mère Enfant, Bron, France.
| | - Maria Lucia Licci
- Service de Neurochirurgie Pédiatrique, Centre de Référence Craniosténoses-Lyon, HCL, Hôpital Femme Mère Enfant, Bron, France
| | - Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; Equipe GAD, INSERM UMR1231, Université de Bourgogne, Dijon, France
| | - Carmine Mottolese
- Service de Neurochirurgie Pédiatrique, Centre de Référence Craniosténoses-Lyon, HCL, Hôpital Femme Mère Enfant, Bron, France
| | - Christel Thauvin-Robinet
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; Equipe GAD, INSERM UMR1231, Université de Bourgogne, Dijon, France
| | - Martin Chevarin
- Equipe GAD, INSERM UMR1231, Université de Bourgogne, Dijon, France
| | - Laurent Guibaud
- Service de Radiologie Pédiatrique, HCL, Hôpital Femme Mère Enfant, Bron, France
| | - Pierre Vabres
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'origine Génétique (MAGEC), FHU TRANSLAD, Service de Dermatologie, CHU Dijon, France
| | - Paul Kuentz
- Equipe GAD, INSERM UMR1231, Université de Bourgogne, Dijon, France; Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'origine Génétique (MAGEC), FHU TRANSLAD, Service de Dermatologie, CHU Dijon, France; Oncobiologie Génétique Bioinformatique, CHU Besançon, F-25000, Besançon, France
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; Equipe GAD, INSERM UMR1231, Université de Bourgogne, Dijon, France
| |
Collapse
|
14
|
Mussa A, Leoni C, Iacoviello M, Carli D, Ranieri C, Pantaleo A, Buonuomo PS, Bagnulo R, Ferrero GB, Bartuli A, Melis D, Maitz S, Loconte DC, Turchiano A, Piglionica M, De Luisi A, Susca FC, Bukvic N, Forleo C, Selicorni A, Zampino G, Onesimo R, Cappuccio G, Garavelli L, Novelli C, Memo L, Morando C, Della Monica M, Accadia M, Capurso M, Piscopo C, Cereda A, Di Giacomo MC, Saletti V, Spinelli AM, Lastella P, Tenconi R, Dvorakova V, Irvine AD, Resta N. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1007 patients with PIK3CA pathogenetic variants. J Med Genet 2023; 60:163-173. [PMID: 35256403 DOI: 10.1136/jmedgenet-2021-108093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Clinical Genetics, Regina Margherita Children's Hospital, Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Matteo Iacoviello
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Città Della Salute e Della Scienza di Torino, Torino, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonino Pantaleo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Paola Sabrina Buonuomo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Rosanna Bagnulo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, MBBM Foundation, San Gerardo Hospital, Monza, Italy
| | - Daria Carmela Loconte
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonella Turchiano
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Marilidia Piglionica
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Annunziata De Luisi
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Claudio Susca
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nenad Bukvic
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University Hospital, Napoli, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Novelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Luigi Memo
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Carla Morando
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | | | - Maria Accadia
- Medical Genetics Unit, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Martina Capurso
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Carmelo Piscopo
- Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy, Italy
| | - Anna Cereda
- Pediatric Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Patrizia Lastella
- Centro Sovraziendale di Assistenza e Ricerca per le Malattie Rare, Internal Medicine Unit 'C. Frugoni', Ospedale Consorziale Policlinico di Bari, Bari, Italy
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Universita degli Studi di Padova, Padova, Italy
| | - Veronika Dvorakova
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Alan D Irvine
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
15
|
Zanfardino P, Longo G, Amati A, Morani F, Picardi E, Girolamo F, Pafundi M, Cox SN, Manzari C, Tullo A, Doccini S, Santorelli FM, Petruzzella V. Mitofusin 2 mutation drives cell proliferation in Charcot-Marie-Tooth 2A fibroblasts. Hum Mol Genet 2023; 32:333-350. [PMID: 35994048 DOI: 10.1093/hmg/ddac201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023] Open
Abstract
Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanna Longo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Francesco Girolamo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariella Pafundi
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
16
|
DeMaio A, New C, Bergmann S. Medical Treatment of Vascular Anomalies. Dermatol Clin 2022; 40:461-471. [DOI: 10.1016/j.det.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Tsai PJ, Lai YH, Manne RK, Tsai YS, Sarbassov D, Lin HK. Akt: a key transducer in cancer. J Biomed Sci 2022; 29:76. [PMID: 36180910 PMCID: PMC9526305 DOI: 10.1186/s12929-022-00860-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023] Open
Abstract
Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.
Collapse
Affiliation(s)
- Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Dos Sarbassov
- Biology Department, School of Sciences and Humanities, and National Laboratory Astana, Nazarbayev University, Nur-Sultan City, 010000, Kazakhstan.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
18
|
Sueta A, Takeno M, Goto-Yamaguchi L, Tomiguchi M, Inao T, Yamamoto-Ibusuki M, Yamamoto Y. A progressive and refractory case of breast cancer with Cowden syndrome. World J Surg Oncol 2022; 20:279. [PMID: 36057718 PMCID: PMC9440557 DOI: 10.1186/s12957-022-02745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cowden syndrome is a rare autosomal-dominant disease with a high risk of malignant tumors of the breast, commonly caused by germline mutations in the PTEN gene. Most breast cancers related to Cowden syndrome showed typically a slow-growing and favorable clinical course. Here, we report a progressive case of triple-negative breast cancer in a patient who was diagnosed with Cowden syndrome. CASE PRESENTATION A 35-year-old female with breast cancer was referred to our hospital. Histopathological examination of the tumor showed that it was triple-negative breast cancer with high proliferation marker. Preoperative positron emission tomography-computed tomography showed abnormal uptake in the left cerebellar hemisphere in addition to the right breast and axillary lymph node. Brain T2-weighted magnetic resonance imaging revealed hyperintense bands in the left cerebellar hemisphere lesion, which demonstrated a "tiger-stripe" appearance. The patient's mother had died of endometrial cancer. Subsequently, she underwent genetic testing, leading to a diagnosis of Cowden syndrome with a pathogenic variant c.823_840del.18 at exon 8 in PTEN. She was treated with neoadjuvant chemotherapy of eribulin and cyclophosphamide followed by adriamycin and cyclophosphamide. However, her tumors increased after these treatments. She was immediately surgically treated and received adjuvant chemotherapy of capecitabine. Unfortunately, the cancer recurred in the lung nine months after surgery. We then administered paclitaxel and bevacizumab therapy, but the disease rapidly progressed. Consequently, the patient died due to breast cancer about three months after recurrence. CONCLUSION We report an aggressive case of cancer with Cowden syndrome which was resistant to standard chemotherapy. Alteration of the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin pathway due to inactivating PTEN protein may be associated with chemoresistance and serves as a candidate for therapeutic intervention in PTEN-related cancers.
Collapse
Affiliation(s)
- Aiko Sueta
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masako Takeno
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Lisa Goto-Yamaguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mai Tomiguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toko Inao
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
19
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Shimano KA, Eng W, Adams DM. How we approach the use of sirolimus and new agents: Medical therapy to treat vascular anomalies. Pediatr Blood Cancer 2022; 69 Suppl 3:e29603. [PMID: 35253343 DOI: 10.1002/pbc.29603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Vascular anomalies (VAs) are a heterogeneous group of primarily congenital tumors and malformations. The International Society for the Study of Vascular Anomalies (ISSVA) has developed a standard classification of these disorders, creating a uniform approach to their diagnosis. Recent discoveries evaluating the genetic causes of VAs have revealed that they are due to mutations in cancer pathways, including the PI3K/AKT/mTOR and RAS/MAPK/MEK pathways. These discoveries have led to improved phenotype-genotype correlation and have expanded medical therapy for this group of unique disorders.
Collapse
Affiliation(s)
- Kristin A Shimano
- Division of Allergy, Immunology, and Bone Marrow Transplant, UCSF Benioff Children's Hospital, University of California, San Francisco, California, USA
| | - Whitney Eng
- Division of Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Denise M Adams
- Division of Oncology, Comprehensive Vascular Anomalies Program/Frontier Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Mussa A, Turchiano A, Cardaropoli S, Coppo P, Pantaleo A, Bagnulo R, Ranieri C, Iacoviello M, Garganese A, Stella A, Vallero SG, Bertin D, Santoro F, Carli D, Ferrero GB, Resta N. Lateralized overgrowth with vascular malformation caused by a somatic PTPN11 pathogenic variant: another piece added to the puzzle of mosaic RASopathies. Genes Chromosomes Cancer 2022; 61:689-695. [PMID: 35778969 PMCID: PMC9542063 DOI: 10.1002/gcc.23086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Lateralized/segmental overgrowth disorders (LOs) encompass a heterogeneous group of congenital conditions with excessive body tissue growth. Documented molecular alterations in LOs mostly consist of somatic variants in genes of the PI3KCA/AKT/mTOR pathway or of chromosome band 11p15.5 imprinted region anomalies. In some cases, somatic pathogenic variants in genes of the RAS/MAPK pathway have been reported. We present the first case of a somatic pathogenic variant (T507K) in PTPN11 causing a LO phenotype characterized by severe lateralized overgrowth, vascular proliferation, and cerebral astrocytoma. The T507K variant was detected in DNA from overgrown tissue in a leg with capillary malformation. The astrocytoma tissue showed a higher PTPN11 variant allele frequency. A pathogenic variant in FGFR1 was also found in tumor tissue, representing a second hit on the RAS/MAPK pathway. These findings indicate that RAS/MAPK cascade overactivation can cause mosaic overgrowth phenotypes resembling PIK3CA‐related overgrowth disorders (PROS) with cancer predisposition and are consistent with the hypothesis that RAS/MAPK hyperactivation can be involved in the pathogenesis of astrocytoma. This observation raises the issue of cancer predisposition in patients with RAS/MAPK pathway gene variants and expands genotype spectrum of LOs and the treatment options for similar cases through inhibition of the RAS/MAPK oversignaling.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Clinical Genetics Unit, Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| | - Antonella Turchiano
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Paola Coppo
- Pediatric Dermatology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonino Pantaleo
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Rosanna Bagnulo
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Matteo Iacoviello
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Garganese
- Unit of Medical Genetics, Ospedale Consorziale Policlinico di Bari, Bari, Italy
| | - Alessandro Stella
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Stefano Gabriele Vallero
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Daniele Bertin
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica Santoro
- Pathology Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
22
|
Diociaiuti A, Rotunno R, Pisaneschi E, Cesario C, Carnevale C, Condorelli AG, Rollo M, Di Cecca S, Quintarelli C, Novelli A, Zambruno G, El Hachem M. Clinical and Molecular Spectrum of Sporadic Vascular Malformations: A Single-Center Study. Biomedicines 2022; 10:biomedicines10061460. [PMID: 35740480 PMCID: PMC9220263 DOI: 10.3390/biomedicines10061460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
Sporadic vascular malformations (VMs) are a large group of disorders of the blood and lymphatic vessels caused by somatic mutations in several genes—mainly regulating the RAS/MAPK/ERK and PI3K/AKT/mTOR pathways. We performed a cross-sectional study of 43 patients affected with sporadic VMs, who had received molecular diagnosis by high-depth targeted next-generation sequencing in our center. Clinical and imaging features were correlated with the sequence variants identified in lesional tissues. Six of nine patients with capillary malformation and overgrowth (CMO) carried the recurrent GNAQ somatic mutation p.Arg183Gln, while two had PIK3CA mutations. Unexpectedly, 8 of 11 cases of diffuse CM with overgrowth (DCMO) carried known PIK3CA mutations, and the remaining 3 had pathogenic GNA11 variants. Recurrent PIK3CA mutations were identified in the patients with megalencephaly–CM–polymicrogyria (MCAP), CLOVES, and Klippel–Trenaunay syndrome. Interestingly, PIK3CA somatic mutations were associated with hand/foot anomalies not only in MCAP and CLOVES, but also in CMO and DCMO. Two patients with blue rubber bleb nevus syndrome carried double somatic TEK mutations, two of which were previously undescribed. In addition, a novel sporadic case of Parkes Weber syndrome (PWS) due to an RASA1 mosaic pathogenic variant was described. Finally, a girl with a mild PWS and another diagnosed with CMO carried pathogenic KRAS somatic variants, showing the variability of phenotypic features associated with KRAS mutations. Overall, our findings expand the clinical and molecular spectrum of sporadic VMs, and show the relevance of genetic testing for accurate diagnosis and emerging targeted therapies.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
- Correspondence: ; Tel.: +39-0668592509
| | - Roberta Rotunno
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| | - Elisa Pisaneschi
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Claudia Cesario
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Claudia Carnevale
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - Massimo Rollo
- Interventional Radiology Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Stefano Di Cecca
- Department Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (S.D.C.); (C.Q.)
| | - Concetta Quintarelli
- Department Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (S.D.C.); (C.Q.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonio Novelli
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| |
Collapse
|
23
|
Garneau AP, Haydock L, Tremblay LE, Harvey-Michaud PL, Hsiao YHE, Strom SP, Canaud G, Isenring P. Somatic non-cancerous overgrowth syndrome of obscure molecular etiology: what are the causes and options? J Mol Med (Berl) 2022; 100:1087-1090. [PMID: 35657398 PMCID: PMC9213277 DOI: 10.1007/s00109-022-02214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, L'Hôtel-Dieu de Québec du CHU de Québec, Laval University, Quebec City, Québec, G1R 2J6, Canada.,Unité d'hypercroissance dysharmonieuse, Hôpital Necker-Enfants Malades, AP-HP, Inserm U1151, Université de Paris, rue de Sèvres, 75105, Paris, France
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, L'Hôtel-Dieu de Québec du CHU de Québec, Laval University, Quebec City, Québec, G1R 2J6, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, L'Hôtel-Dieu de Québec du CHU de Québec, Laval University, Quebec City, Québec, G1R 2J6, Canada
| | - Pierre-Luc Harvey-Michaud
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, L'Hôtel-Dieu de Québec du CHU de Québec, Laval University, Quebec City, Québec, G1R 2J6, Canada
| | | | | | - Guillaume Canaud
- Unité d'hypercroissance dysharmonieuse, Hôpital Necker-Enfants Malades, AP-HP, Inserm U1151, Université de Paris, rue de Sèvres, 75105, Paris, France
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, L'Hôtel-Dieu de Québec du CHU de Québec, Laval University, Quebec City, Québec, G1R 2J6, Canada.
| |
Collapse
|
24
|
Sarma K, Nayak MK, Mishra B, Gaikwad SB. Megalencephaly-Capillary Malformation-Polymicrogyria Syndrome (MCAP): A Rare Dynamic Genetic Disorder. Cureus 2022; 14:e25123. [PMID: 35733479 PMCID: PMC9205759 DOI: 10.7759/cureus.25123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP) is an uncommon malformation syndrome, characterized by primary megalencephaly, capillary malformations of the midline face and body, or distal limb anomalies such as syndactyly and polymicrogyria. Herein, we report a young male child, who presented with complaints of increasing head size, delay in speech, and one episode of focal seizure with distinctive morphological and neuroradiological manifestations which led to the diagnosis of MCAP. We have also reviewed recently published literature and the various diagnostic criteria proposed by authors to achieve the early clinical diagnosis of these patients in the outpatient department.
Collapse
|
25
|
Systemic Therapy for Vascular Anomalies and the Emergence of Genotype-Guided Management. Dermatol Clin 2022; 40:127-136. [DOI: 10.1016/j.det.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Activating PIK3CA postzygotic mutations in segmental overgrowth of muscles with bone involvement in the body extremities. Mol Genet Genomics 2022; 297:387-396. [PMID: 35122151 DOI: 10.1007/s00438-022-01853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Segmental overgrowth of the skeletal muscles with bone involvement in body extremities, predominantly affecting the upper limb, is an extremely rare condition with only 40-50 affected children described clinically. The molecular pathogenesis of this disorder remains largely unclear except for the identification of a somatic PIK3CA mutation in each of the six patients genetically tested, all restricted to upper limbs in the literature. This study aimed to further characterize the molecular defects for patients affected with segmental overgrowth of the skeletal muscles by analyzing a 9-gene panel selected from the PI3K/AKT/mTOR pathway and genes associated with other related conditions. Nineteen unrelated patients were chosen for this study, comprising ten upper limb (nine unilateral and one bilateral) and nine lower limb (eight unilateral and one bilateral) cases with variable bone involvement. In each case, an activating PIK3CA mutation (p.E110del, p.N345K, p.E542K, p.E545K, p.H1047R, or p.H1047L) was identified in the affected muscle tissue with variant allele frequencies ranging from 13.88 to 30.43%, while no mutation was detected in the paired peripheral blood sample, indicating somatic mosaicism. All detected mutations were limited to PIK3CA and were previously reported in other overgrowth syndromes currently categorized under the PIK3CA-Related Overgrowth Spectrum (PROS). Our study provides strong molecular evidence that isolated segmental overgrowth of the skeletal muscle with bone involvement is a subtype of PROS. Our findings expand the PROS clinical presentations with a newly molecularly classified condition and can provide guidance in clinical and molecular diagnosis and treatment for patients with this condition.
Collapse
|
27
|
Watanabe T, Soeda S, Endo Y, Okabe C, Sato T, Kamo N, Ueda M, Kojima M, Furukawa S, Nishigori H, Takahashi T, Fujimori K. Rare Hereditary Gynecological Cancer Syndromes. Int J Mol Sci 2022; 23:1563. [PMID: 35163487 PMCID: PMC8835983 DOI: 10.3390/ijms23031563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Hereditary cancer syndromes, which are characterized by onset at an early age and an increased risk of developing certain tumors, are caused by germline pathogenic variants in tumor suppressor genes and are mostly inherited in an autosomal dominant manner. Therefore, hereditary cancer syndromes have been used as powerful models to identify and characterize susceptibility genes associated with cancer. Furthermore, clarification of the association between genotypes and phenotypes in one disease has provided insights into the etiology of other seemingly different diseases. Molecular genetic discoveries from the study of hereditary cancer syndrome have not only changed the methods of diagnosis and management, but have also shed light on the molecular regulatory pathways that are important in the development and treatment of sporadic tumors. The main cancer susceptibility syndromes that involve gynecologic cancers include hereditary breast and ovarian cancer syndrome as well as Lynch syndrome. However, in addition to these two hereditary cancer syndromes, there are several other hereditary syndromes associated with gynecologic cancers. In the present review, we provide an overview of the clinical features, and discuss the molecular genetics, of four rare hereditary gynecological cancer syndromes; Cowden syndrome, Peutz-Jeghers syndrome, DICER1 syndrome and rhabdoid tumor predisposition syndrome 2.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Yuta Endo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Chikako Okabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Tetsu Sato
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Norihito Kamo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Makiko Ueda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Manabu Kojima
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shigenori Furukawa
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Hidekazu Nishigori
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| |
Collapse
|
28
|
Morin G, Canaud G. Treatment strategies for mosaic overgrowth syndromes of the PI3K-AKT-mTOR pathway. Br Med Bull 2021; 140:36-49. [PMID: 34530449 DOI: 10.1093/bmb/ldab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 11/14/2022]
Abstract
INTRODUCTION OR BACKGROUND Mosaic overgrowth syndromes (OS) are a proteiform ensemble of rare diseases displaying asymmetric overgrowth involving any tissue type, with degrees of severity ranging from isolated malformation to life-threatening conditions such as pulmonary embolism. Despite discordant clinical presentations, all those syndromes share common genetic anomalies: somatic mutations of genes involved in cell growth and proliferation. The PI3K-AKT-mTOR signaling pathway is one of the most prominent regulators of cell homeostasis, and somatic oncogenic mutations affecting this pathway are responsible for mosaic OS. This review aims to describe the clinical and molecular characteristics of the main OS involving the PI3K-AKT-mTOR pathway, along with the treatments available or under development. SOURCES OF DATA This review summarizes available data regarding OS in scientific articles published in peer-reviewed journals. AREAS OF AGREEMENT OS care requires a multidisciplinary approach relying on clinical and radiological follow-up along with symptomatic treatment. However, no specific treatment has yet shown efficacy in randomized control trials. AREAS OF CONTROVERSY Clinical classifications of OS led to frequent misdiagnosis. Moreover, targeted therapies directed at causal mutated proteins are developing in OSs through cancer drugs repositioning, but the evidence of efficacy and tolerance is still lacking for most of them. GROWING POINTS The genetic landscape of OS is constantly widening and molecular classifications tend to increase the accuracy of diagnosis, opening opportunities for targeted therapies. AREAS TIMELY FOR DEVELOPING RESEARCH OS are a dynamic, expanding field of research. Studies focusing on the identification of genetic anomalies and their pharmacological inhibition are needed.
Collapse
Affiliation(s)
- Gabriel Morin
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Unité d'hypercroissance dysharmonieuse et centre d'anomalies vasculaires, hôpital Necker Enfants Malades, AP-HP, France
| | - Guillaume Canaud
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Unité d'hypercroissance dysharmonieuse et centre d'anomalies vasculaires, hôpital Necker Enfants Malades, AP-HP, France
| |
Collapse
|
29
|
Schmidt VF, Masthoff M, Czihal M, Cucuruz B, Häberle B, Brill R, Wohlgemuth WA, Wildgruber M. Imaging of peripheral vascular malformations - current concepts and future perspectives. Mol Cell Pediatr 2021; 8:19. [PMID: 34874510 PMCID: PMC8651875 DOI: 10.1186/s40348-021-00132-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular Malformations belong to the spectrum of orphan diseases and can involve all segments of the vascular tree: arteries, capillaries, and veins, and similarly the lymphatic vasculature. The classification according to the International Society for the Study of Vascular Anomalies (ISSVA) is of major importance to guide proper treatment. Imaging plays a crucial role to classify vascular malformations according to their dominant vessel type, anatomical extension, and flow pattern. Several imaging concepts including color-coded Duplex ultrasound/contrast-enhanced ultrasound (CDUS/CEUS), 4D computed tomography angiography (CTA), magnetic resonance imaging (MRI) including dynamic contrast-enhanced MR-angiography (DCE-MRA), and conventional arterial and venous angiography are established in the current clinical routine. Besides the very heterogenous phenotypes of vascular malformations, molecular and genetic profiling has recently offered an advanced understanding of the pathogenesis and progression of these lesions. As distinct molecular subtypes may be suitable for targeted therapies, capturing certain patterns by means of molecular imaging could enhance non-invasive diagnostics of vascular malformations. This review provides an overview of subtype-specific imaging and established imaging modalities, as well as future perspectives of novel functional and molecular imaging approaches. We highlight recent pioneering imaging studies including thermography, positron emission tomography (PET), and multispectral optoacoustic tomography (MSOT), which have successfully targeted specific biomarkers of vascular malformations.
Collapse
Affiliation(s)
- Vanessa F Schmidt
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Masthoff
- Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Michael Czihal
- Angiology Division, Department for Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Beatrix Cucuruz
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Häberle
- Department for Pediatric Surgery, Dr. von Haunersches Kinderspital, University Hospital, LMU Munich, Munich, Germany
| | - Richard Brill
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Walter A Wohlgemuth
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany. .,Clinic for Radiology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
30
|
Carli D, Kalantari S, Manicone R, Coppo P, Francia di Celle P, La Selva R, Santoro F, Ranieri C, Cardaropoli S, Fagioli F, Ferrero GB, Resta N, Mussa A. Kaposiform hemangioendothelioma further broadens the phenotype of PIK3CA-related overgrowth spectrum. Clin Genet 2021; 100:624-627. [PMID: 34402524 DOI: 10.1111/cge.14047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Kaposiform hemangioendothelioma (KHE) is a rare locally aggressive mixed vascular tumor, with typical onset in early childhood and characterized by progressive angio- and lymphangiogenesis. Its etiopathogenesis and molecular bases are still unclear. Here, we report the first case of congenital KHE harboring a PIK3CA mosaic pathogenic variant (c.323G > A, p.Arg108His) in a boy with very subtle PIK3CA-related overgrowth spectrum (PROS) features. This finding provides insights into the pathophysiology of KHE, offering targeted therapeutic options by inhibition of the PI3K/Akt/mTOR pathway. We propose the inclusion of this mixed lymphatic and vascular anomaly within the PROS.
Collapse
Affiliation(s)
- Diana Carli
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.,Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Silvia Kalantari
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Rosaria Manicone
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Paola Coppo
- Pediatric Dermatology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paola Francia di Celle
- Molecular Pathology Laboratory, Pathology Division, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Roberta La Selva
- Pediatric Dermatology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica Santoro
- Department of Medical Sciences, Pathology Unit, Città della Salute e della Scienza Hospital, University of Torino, Torino, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Simona Cardaropoli
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Giovanni Battista Ferrero
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy.,Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Mussa
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| |
Collapse
|
31
|
Zheng Y, Xie L, Xu S, Yan W, Zhang H, Meng Y, Liu J, Wei X. Effects of miR-202-5p silencing PIK3CA gene expression on proliferation, invasion, and epithelial-mesenchymal transition of cervical cancer SiHa cells through inhibiting PI3K/Akt/mTOR signaling pathway activation. Mol Cell Biochem 2021; 476:4031-4044. [PMID: 34244973 DOI: 10.1007/s11010-021-04211-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/16/2021] [Indexed: 01/30/2023]
Abstract
To explore the mechanism of miR-202-5p targeting the expression of PIK3CA and mediating the activation of PI3K/Akt/mTOR signaling pathway on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of cervical cancer. The objects of study were 105 cases of cervical cancer and their corresponding normal tissues. qRT-PCR was used to detect the expression of miR-202-5p and PIK3CA in adjacent normal tissue and cervical cancer tissue. Dual luciferase reporter assay was used to verify the targeting relationship between miR-202-5p and PIK3CA gene. Human cervical cancer cell lines HPV-16E6, SiHa, HeLa, and CaSki were purchased for our cell experiments. The expression levels of PIK3CA in the cells were detected by qRT-PCR. The cell line with higher expression levels was selected to complete the follow-up experiment. The cultured cells were transfected and divided into the miR-202-5p mimic NC group, miR-202-5p mimic group, miR-202-5p inhibitor NC group, miR-202-5p inhibitor group, siRNA-PIK3CA NC group, siRNA-PIK3CA group, miR-202-5p inhibitor NC + siRNA-PIK3CA NC group, miR-202-5p inhibitor + siRNA-PIK3CA NC group, and miR-202-5p inhibitor + siRNA-PIK3CA group. QRT-PCR was used to detect the expression of miR-202-5p. Western blot and qRT-PCR were applied to detect the mRNA and protein expression levels of related pathway proteins (PIK3CA, PI3K, PTEN, p-Akt1, and p-mTOR) and epithelial-mesenchymal transition-related factors (N-cadherin, E-cadherin, and vimentin). Cell proliferation was detected by plate colony formation assay. Transwell assay was used to detect the invasion ability of each group. When compared with the adjacent tissues, PIK3CA mRNA expression level was significantly increased and miR-202-5p expression level was significantly decreased in cervical cancer tissues (all P < 0.05). PIK3CA was a target gene of miR-202-5p. The mRNA expression level of PIK3CA in SiHa cervical cancer cells was significantly higher than that in CaSki, HeLa, and HPV-16E6 cells (all P < 0.05), and SiHa cervical cancer cells were selected to complete the follow-up experiments. When compared with the corresponding NC group, the expression of miR-202-5p in miR-202-5p mimic group was increased. In addition, the mRNA and protein expression levels of E-cadherin and PTEN in miR-202-5p mimic and siRNA-PIK3CA groups were increased, and the protein expression of p-Akt1 and p-mTOR was decreased, and also, the mRNA and protein expression levels of PIK3CA, PI3K, N-cadherin, and vimentin were decreased (all P < 0.05); in miR-202-5p inhibitor group, the expression levels of miR-202-5p, E-cadherin, and PTEN decreased, the protein expression of p-Akt1 and p-mTOR increased, and the mRNA and protein expression of PIK3CA, PI3K, N-cadherin, and vimentin increased in miR-202-5p inhibitor group (all P < 0.05); in miR-202-5p inhibitor + siRNA-PIK3CA group, the expression of miR-202-5p decreased (P < 0.05), but the mRNA and protein expression of PIK3CA, PI3K, p-Akt1, p-mTOR, N-cadherin, E-cadherin, and vimentin had no significant changes (all P > 0.05). When compared with the corresponding NC group, the number of cell clones in miR-202-5p mimic group and siRNA-PIK3CA group was decreased, and the invasion ability of miR-202-5p inhibitor group was increased, and the invasion ability was enhanced (all P < 0.05); miR-202-5p inhibitor + siRNA-PIK3CA group showed no significant change in the number of cell clones and the rate of invasion (P > 0.05). In conclusion, the overexpression of miR-202-5p can suppress PIK3CA gene expression and the activation of PI3K/Akt/mTOR signaling pathway to suppress the proliferation, invasion, and EMT of cervical cancer.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Lei Xie
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Shuwen Xu
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Weidong Yan
- Training & Research Support Center, Shijiazhuang Camps of the Army Engineering University, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Hongzhen Zhang
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Yali Meng
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China
| | - Jingqiao Liu
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China.
| | - Xujing Wei
- Department of Gynecology and Obstetrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, People's Republic of China.
| |
Collapse
|
32
|
Canaud G, Hammill AM, Adams D, Vikkula M, Keppler-Noreuil KM. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis 2021; 16:306. [PMID: 34238334 PMCID: PMC8268514 DOI: 10.1186/s13023-021-01929-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PIK3CA-related disorders include vascular malformations and overgrowth of various tissues that are caused by postzygotic, somatic variants in the gene encoding phosphatidylinositol-3-kinase (PI3K) catalytic subunit alpha. These mutations result in activation of the PI3K/AKT/mTOR signaling pathway. The goals of this review are to provide education on the underlying mechanism of disease for this group of rare conditions and to summarize recent advancements in the understanding of, as well as current and emerging treatment options for PIK3CA-related disorders. MAIN BODY PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations, and PIK3CA-related nonvascular lesions. Somatic activating mutations (predominantly in hotspots in the helical and kinase domains of PIK3CA, but also in other domains), lead to hyperactivation of the PI3K signaling pathway, which results in abnormal tissue growth. Diagnosis is complicated by the variability and overlap in phenotypes associated with PIK3CA-related disorders and should be performed by clinicians with the required expertise along with coordinated care from a multidisciplinary team. Although tissue mosaicism presents challenges for confirmation of PIK3CA mutations, next-generation sequencing and tissue selection have improved detection. Clinical improvement, radiological response, and patient-reported outcomes are typically used to assess treatment response in clinical studies of patients with PIK3CA-related disorders, but objective assessment of treatment response is difficult using imaging (due to the heterogeneous nature of these disorders, superimposed upon patient growth and development). Despite their limitations, patient-reported outcome tools may be best suited to gauge patient improvement. New therapeutic options are needed to provide an alternative or supplement to standard approaches such as surgery and sclerotherapy. Currently, there are no systemic agents that have regulatory approval for these disorders, but the mTOR inhibitor sirolimus has been used for several years in clinical trials and off label to address symptoms. There are also other agents under investigation for PIK3CA-related disorders that act as inhibitors to target different components of the PI3K signaling pathway including AKT (miransertib) and PI3K alpha (alpelisib). CONCLUSION Management of patients with PIK3CA-related disorders requires a multidisciplinary approach. Further results from ongoing clinical studies of agents targeting the PI3K pathway are highly anticipated.
Collapse
Affiliation(s)
- Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, INSERM U1151, Assistance Publique-Hôpitaux de Paris, Université de Paris, 149 rue de Sèvres, 75105, Paris, France.
| | - Adrienne M Hammill
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Denise Adams
- Division of Oncology, Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Perelman School of Medicine and the University of Pennsylvania, Philadelphia, PA, USA
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint Luc, University of Louvain, Brussels, Belgium.,VASCERN VASCA European Reference Centre, Bichat-Claude Bernard Hospital, Paris, France.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Kim M Keppler-Noreuil
- Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
33
|
Abstract
Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.
Collapse
Affiliation(s)
- Angela Queisser
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.)
| | - Emmanuel Seront
- Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,University of Louvain, Brussels, Belgium (M.V.).,University of Louvain, Brussels, Belgium (M.V.).,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium (M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| |
Collapse
|
34
|
Brouillard P, Schlögel MJ, Homayun Sepehr N, Helaers R, Queisser A, Fastré E, Boutry S, Schmitz S, Clapuyt P, Hammer F, Dompmartin A, Weitz-Tuoretmaa A, Laranne J, Pasquesoone L, Vilain C, Boon LM, Vikkula M. Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations. Orphanet J Rare Dis 2021; 16:267. [PMID: 34112235 PMCID: PMC8194016 DOI: 10.1186/s13023-021-01898-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Background Theragnostic management, treatment according to precise pathological molecular targets, requests to unravel patients’ genotypes. We used targeted next-generation sequencing (NGS) or digital droplet polymerase chain reaction (ddPCR) to screen for somatic PIK3CA mutations on DNA extracted from resected lesional tissue or lymphatic endothelial cells (LECs) isolated from lesions. Our cohort (n = 143) was composed of unrelated patients suffering from a common lymphatic malformation (LM), a combined lymphatic malformation [lymphatico-venous malformation (LVM), capillaro-lymphatic malformation (CLM), capillaro-lymphatico-venous malformation (CLVM)], or a syndrome [CLVM with hypertrophy (Klippel-Trenaunay-Weber syndrome, KTS), congenital lipomatous overgrowth-vascular malformations-epidermal nevi -syndrome (CLOVES), unclassified PIK3CA-related overgrowth syndrome (PROS) or unclassified vascular (lymphatic) anomaly syndrome (UVA)]. Results We identified a somatic PIK3CA mutation in resected lesions of 108 out of 143 patients (75.5%). The frequency of the variant allele ranged from 0.54 to 25.33% in tissues, and up to 47% in isolated endothelial cells. We detected a statistically significant difference in the distribution of mutations between patients with common and combined LM compared to the syndromes, but not with KTS. Moreover, the variant allele frequency was higher in the syndromes. Conclusions Most patients with an common or combined lymphatic malformation with or without overgrowth harbour a somatic PIK3CA mutation. However, in about a quarter of patients, no such mutation was detected, suggesting the existence of (an)other cause(s). We detected a hotspot mutation more frequently in common and combined LMs compared to syndromic cases (CLOVES and PROS). Diagnostic genotyping should thus not be limited to PIK3CA hotspot mutations. Moreover, the higher mutant allele frequency in syndromes suggests a wider distribution in patients’ tissues, facilitating detection. Clinical trials have demonstrated efficacy of Sirolimus and Alpelisib in treating patients with an LM or PROS. Genotyping might lead to an increase in efficacy, as treatments could be more targeted, and responses could vary depending on presence and type of PIK3CA-mutation. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01898-y.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium
| | - Matthieu J Schlögel
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium
| | - Nassim Homayun Sepehr
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium
| | - Angela Queisser
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium
| | - Elodie Fastré
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium
| | - Simon Boutry
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium
| | - Sandra Schmitz
- Otolaryngology Department, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium.,VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Philippe Clapuyt
- Otolaryngology Department, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium.,VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Frank Hammer
- Otolaryngology Department, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium.,VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Anne Dompmartin
- Department of Dermatology, Université de Caen Basse Normandie, CHU Caen, Caen, France
| | | | - Jussi Laranne
- Department of Otorhinolaryngology, Head and Neck Surgery, Tampere University Hospital, Tampere, Finland
| | - Louise Pasquesoone
- Service de Chirurgie Plastique Reconstructive, Hôpital Salengro, CHU de Lille, Lille, France
| | - Catheline Vilain
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium.,VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5), bte B1.74.06, 1200, Brussels, Belgium. .,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium. .,VASCERN VASCA European Reference Centre, Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium.
| |
Collapse
|
35
|
Yan W, Zhang B, Wang H, Mo R, Jiang X, Qin W, Ma L, Lin Z. Somatic frameshift mutation in PIK3CA causes CLOVES syndrome by provoking PI3K/AKT/mTOR pathway. Hereditas 2021; 158:18. [PMID: 34074347 PMCID: PMC8170820 DOI: 10.1186/s41065-021-00184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/14/2021] [Indexed: 01/05/2023] Open
Abstract
Background CLOVES syndrome (OMIM# 612918) is a rare overgrowth disorder resulted from mosaic gain-of-function mutations in the PIK3CA gene. All the reported CLOVES-associated PIK3CA mutations are missense mutations affecting certain residues. We aim to investigate underlying mutation and its pathogenicity in a patient with CLOVES syndrome and to evaluate the inhibitory effects of the PI3K/AKT/mTOR pathway inhibitors. Results We performed whole-exome sequencing (WES) and Sanger sequencing to detect underlying somatic mutations in the skin lesion of the patient. Quantitative real-time PCR (qRT-PCR) was employed to evaluate the mRNA abundance of PIK3CA in the patient’s skin lesion. AKT phosphorylation level assessed by immunoblotting of lysates from transiently transfected cells was performed to evaluate the PIK3CA mutations and inhibitory effects of PI3K/AKT/mTOR pathway inhibitors. A somatic frameshift mutation c.3206_3207insG (p.X1069Trpfs*4) in PIK3CA was identified in the genomic DNA extracted from the vascular malformation sample of the patient. This mutation affects the canonical stop codon of PIK3CA (NM_006218.4) and is predicted to produce a prolonged protein with four additional residues. qRT-PCR demonstrated that the mRNA expression levels of the patient’s affected skin tissue were comparable compared to the normal control. In vitro studies revealed that p.X1069Trpfs*4 mutant exhibited increased AKT phosphorylation significantly to that of the wildtype, which could be inhibited by PI3K/AKT/mTOR pathway inhibitors. Conclusions We have identified the first frameshift mutation in PIK3CA that causes CLOVES syndrome, which was confirmed to overactive PI3K/AKT/mTOR pathway by transient transfection assays. We also provided more evidence of ARQ092 to be a potential therapeutic option for PROS in vitro.
Collapse
Affiliation(s)
- Wei Yan
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nanlishi Road, Xicheng District, Beijing, 100045, China.,Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Ran Mo
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Xingyuan Jiang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Wen Qin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nanlishi Road, Xicheng District, Beijing, 100045, China. .,Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China.
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, 8 Xishiku St, Beijing, 100034, China.
| |
Collapse
|
36
|
Venti V, Ciccia L, Scalia B, Sciuto L, Cimino C, Marino S, Praticò AD, Falsaperla R. KCNT1-Related Epilepsy: A Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
KCNT1 gene encodes the sodium-dependent potassium channel reported as a causal factor for several different epileptic disorders. The gene has been also linked with cardiac disorders and in a family to sudden unexpected death in epilepsy. KCNT1 mutations, in most cases, result in a gain of function causing a neuronal hyperpolarization with loss of inhibition. Many early-onset epileptic encephalopathies related to gain of function of KCNT1 gene have been described, most often associated with two phenotypes: malignant migrating focal seizures of infancy and familial autosomal-dominant nocturnal frontal lobe epilepsy; however, there is no clear phenotype–genotype correlation, in fact same mutations have been represented in patients with West syndrome, Ohtahara syndrome, and early myoclonic encephalopathy. Additional neurologic features include intellectual disability, psychiatric disorders, hypotonia, microcephaly, strabismus, and movement disorders. Conventional anticonvulsant, vagal stimulation, and ketogenic diet have been used in the absence of clinical benefit in individuals with KCNT1-related epilepsy; in some patients, quinidine therapy off-label has been practiced successfully. This review aims to describe the characteristics of the gene, the phenotypes related to genetic mutations with the possible genotype–phenotype correlations and the treatments proposed to date, discussing the comorbidities reported in the literature.
Collapse
Affiliation(s)
- Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carla Cimino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Simona Marino
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
37
|
Motta M, Consentino MC, Fontana A, Sciuto L, Falsaperla R, Praticò ER, Salafia S, Zanghì A, Praticò AD. DNM1 Gene and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe phenotypic variety associated to mutations in dynamin 1 (DNM1), codifying the presynaptic protein DNM1 has been increasingly reported, mainly related to encephalopathy with intractable epilepsy; currently, it is known the phenotype related to DNM1 gene mutations is relatively homogeneous with developmental delay, hypotonia, and epilepsy characterized by infantile spasms and possible progression to Lennox-Gastaut syndrome. By examining all the papers published until 2020 (18 articles), we compared data from 30 patients (extrapolated from 5 papers) with DNM1 mutations, identifying 26 patients with de novo mutations in DNM1. Nine patients (33.3%) reported the recurrent mutation p.Arg237Trp. A usual phenotype observed comprises severe to deep developmental delay and muscular hypotonia in all patients with epilepsy beginning with infantile spasms, which often evolved into Lennox-Gastaut syndrome. Data about GTPase or central domains mutations, and existing structural modeling and functional suggest a dominant negative effect on DMN1 function. Generally genetic epilepsies consist of a wide spectrum of clinical features, unlike that, DNM1-related CNS impairment phenotype is quite uniform. In up to one third of patients it has been found variant p.Arg237Trp, which is one of the most frequent variant detected in epileptic encephalopathies. The understanding of DNM1 function opens up the chance that this gene would become a new therapeutic target for epilepsies.
Collapse
Affiliation(s)
- Milena Motta
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | | | | | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Department of Clinical and Experimental Medicine, Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
38
|
Garozzo MT, Caruso D, La Mendola FMC, Di Nora A, Romano K, Leonardi R, Falsaperla R, Zanghì A, Praticò AD. SYNGAP1 and Its Related Epileptic Syndromes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSynaptic Ras GTPase-activating protein 1 (SYNGAP1) is abundantly expressed in the postsynaptic space in brain tissue and has a crucial role in the regulation of the excitatory/inhibitory balance and in brain development. It is estimated that SYNGAP1 loss of function variants have an incidence of 1 to 4/10,000 individuals, mostly occurring de novo, even if few cases of vertical transmission of mosaic mutations have been reported. Loss-of-function mutations within this gene have been related with an epileptic encephalopathy characterized by eyelid myoclonia with absences (EMA) and myoclonic-atonic seizures (MAE) with early onset, commonly resistant to antiepileptic drugs (AED). Epilepsy is often associated with other clinical features, including truncal and/or facial hypotonia and/or ataxia with a wide-based and unsteady gate. Other clinical signs are intellectual disability, developmental delay, and behavioral and speech impairment, in a context of a normal neuroimaging study. In selected cases, dysmorphic features, skeletal abnormalities, and eye involvement are also described. The diagnosis of the disorder is usually established by multigene panel and, in unsolved cases, by exome sequencing. Management of the affected individuals involves different specialists and is mainly symptomatic. No clinical trials about the efficacy of AED in SYNGAP1 encephalopathy have been performed yet and Lamotrigine and valproate are commonly prescribed. In more than half of cases, however, epilepsy is refractory to AED.
Collapse
Affiliation(s)
- Maria Teresa Garozzo
- Unit of Pediatric and Pediatric Emergency, Hospital “Cannizzaro,” Catania, Italy
| | - Daniela Caruso
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | - Alessandra Di Nora
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | - Roberta Leonardi
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
39
|
Pecora G, Sortino V, Brafa Musicoro V, Salomone G, Pizzo F, Costanza G, Falsaperla R, Zanghì A, Praticò AD. FOXG1 Gene and Its Related Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFOXG1 is an important transcriptional repressor found in cell precursor of the ventricular region and in neurons in the early stage of differentiation during the development of the nervous epithelium in the cerebrum and optical formation. Mutations involving FOXG1 gene have been described first in subjects with congenital Rett syndrome. They can cause seizure, delayed psychomotor development, language disorders, and autism. FOXG1 deletions or intragenic mutations also determinate reduction in head circumference, structural defects in the corpus callosum, abnormal movements, especially choreiform, and intellectual retardation with no speech. Patients with duplications of 14q12 present infantile spasms and have subsequent intellectual disability with autistic features, head circumference in the normal range, and regular aspect of corpus callosum. Clinical characteristics of patients with FOXG1 variants include growth deficit after birth associated with microcephaly, facial dysmorphisms, important delay with no language, deficit in social interaction like autism, sleep disorders, stereotypes, including dyskinesia, and seizures. In these patients, it is not characteristic a history of loss of acquired skills.
Collapse
Affiliation(s)
- Giulia Pecora
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Sortino
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Viviana Brafa Musicoro
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Salomone
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatric Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Timpanaro T, La Mendola F, Billone S, Nora AD, Collotta A, Sauna A, Salafia S, Falsaperla R. TBC1D24 and Its Related Epileptic Encephalopathy. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
TBC1D24, mapped to 16p13.3, encodes a protein containing a Tre2/Bub2/Cdc16 (TBC) domain, belonging to the super-family of Rab GTPase activating proteins (Rab-GAP). These proteins regulate various functions, including the regulation of the traffic of the vesicular membrane. Several TBC1D24 mutations have been related to autosomal recessive neurological disorders, including severe developmental encephalopathies with malignant early childhood epilepsy, benign epilepsy, epileptic encephalopathy, and a complex neurological syndrome characterized by deafness, onychodystrophy, bone and neurological degeneration. Mutations of TBC1D24 have also been reported in patients with nonsyndromic deafness with dominant or recessive inheritance. Mechanisms underlying TBC1D24-associated disorders and the functions of TBC1D24 products in the generation of such complex spectrum of diseases remain partly unclear and future studies are needed to clarify this aspect, in order to improve the management of seizures and for the prevention of complication (including death) of newly diagnosed patients affected by TBC1D24-related disorders.
Collapse
Affiliation(s)
- Tiziana Timpanaro
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | - Sebastiano Billone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Di Nora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ausilia Collotta
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Sauna
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
41
|
Massimino CR, Portale L, Sapuppo A, Pizzo F, Sciuto L, Romano C, Salafia S, Falsaperla R. PRRT2 Related Epilepsies: A Gene Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
PRRT2 encodes for proline-rich transmembrane protein 2 involved in synaptic vesicle fusion and presynaptic neurotransmitter release. Mutations in human PRRT2 have been related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with choreoathetosis, benign familial infantile epilepsies, and hemiplegic migraine. PRRT2 mutations cause neuronal hyperexcitability, which could be related to basal ganglia or cortical circuits dysfunction, leading to paroxysmal disorders. PRRT2 is expressed in the cerebral cortex, basal ganglia, and cerebellum. Approximately, 90% of pathogenic variants are inherited and 10% are de novo. Paroxysmal attacks in PKD are characterized by dystonia, choreoathetosis, and ballismus. In the benign familial infantile epilepsy (BFIE), seizures are usually focal with or without generalization, usually begin between 3 and 12 months of age and remit by 2 years of age. In 30% of cases of PRRT2-associated PKD, there is an association with BFIE, and this entity is referred to as PKD with infantile convulsions (PKD/IC). PRRT2 mutations are the cause of benign family childhood epilepsy and PKD/IC. On the other hand, PRRT2 mutations do not seem to correlate with other types of epilepsy. The increasing incidence of hemiplegic migraine in families with PRRT2-associated PKD or PKD/IC suggests a common disease pathway, and it is possible to assert that BFIE, paroxysmal kinesigenic dyskinesia, and PKD with IC belong to a continuous disease spectrum of PRRT2-associated diseases.
Collapse
Affiliation(s)
- Carmela Rita Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Romano
- Italian Blind Union, Catania section, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
42
|
Multiple signaling pathways are essential for synapse formation induced by synaptic adhesion molecules. Proc Natl Acad Sci U S A 2021; 118:2000173118. [PMID: 33431662 DOI: 10.1073/pnas.2000173118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about the cellular signals that organize synapse formation. To explore what signaling pathways may be involved, we employed heterologous synapse formation assays in which a synaptic adhesion molecule expressed in a nonneuronal cell induces pre- or postsynaptic specializations in cocultured neurons. We found that interfering pharmacologically with microtubules or actin filaments impaired heterologous synapse formation, whereas blocking protein synthesis had no effect. Unexpectedly, pharmacological inhibition of c-jun N-terminal kinases (JNKs), protein kinase-A (PKA), or AKT kinases also suppressed heterologous synapse formation, while inhibition of other tested signaling pathways-such as MAP kinases or protein kinase C-did not alter heterologous synapse formation. JNK and PKA inhibitors suppressed formation of both pre- and postsynaptic specializations, whereas AKT inhibitors impaired formation of post- but not presynaptic specializations. To independently test whether heterologous synapse formation depends on AKT signaling, we targeted PTEN, an enzyme that hydrolyzes phosphatidylinositol 3-phosphate and thereby prevents AKT kinase activation, to postsynaptic sites by fusing PTEN to Homer1. Targeting PTEN to postsynaptic specializations impaired heterologous postsynaptic synapse formation induced by presynaptic adhesion molecules, such as neurexins and additionally decreased excitatory synapse function in cultured neurons. Taken together, our results suggest that heterologous synapse formation is driven via a multifaceted and multistage kinase network, with diverse signals organizing pre- and postsynaptic specializations.
Collapse
|
43
|
Fontana A, Consentino MC, Motta M, Costanza G, Lo Bianco M, Marino S, Falsaperla R, Praticò AD. Syntaxin Binding Protein 1 Related Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSyntaxin binding protein 1 (STXBP1), commonly known as MUNC18–1, is a member of SEC1 family membrane trafficking proteins; their function consists in controlling the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex assembly, making them essentials regulators of vesicle fusion. The precise function and molecular mechanism through which Munc18–1 contributes to neurotransmitter releasing is not entirely understood, but several evidences suggest its probable role in exocytosis. In 2008, heterozygous de novo mutations in neuronal protein Munc18–1 were first referred as a cause of Ohtahara syndrome development. Currently, a wide examination of the published data proved that 3.1% of patients with severe epilepsy carry a pathogenic de novo mutation including STXBP1 and approximately 10.2% of early onset epileptic encephalopathy is due to an aberrant STXBP1 form codified by the mutated gene. STXBP1 mutations can be associated to a wide clinical heterogeneity. All affected individuals show developmental delay and approximately the 95% of cases have seizures and early onset epileptic encephalopathy, characterized by infantile spasms as the main consistent feature. Burst suppression pattern and hypsarrhythmia are the most frequent EEG anomalies. Other neuronal disorders include Rett syndrome and behavioral and movement disorders. Mild dysmorphic features have been detected in a small number of cases. No genotype–phenotype correlation has been reported. Management of STXBP1 encephalopathy requires a multidisciplinary approach, including epilepsy control and neurological rehabilitation. About 25% of patients are refractory to standard therapy. A single or combined antiepileptic drugs may be required. Several studies described vigabatrin, valproic acid, levetiracetam, topiramate, clobazam, and oxcarbazepine as effective in seizure control. Lamotrigine, zonisamide, and phenobarbital are also commonly used. To date, it remains unclear which therapy is the most effective. Severe morbidity and high mortality are inevitable consequences in some of these patients.
Collapse
Affiliation(s)
- Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Milena Motta
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
44
|
Portale A, Comella M, Salomone G, Di Nora A, Marino L, Leonardi R, Praticò AD, Falsaperla R. The Spectrum of KCNQ2- and KCNQ3-Related Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
KCNQ genes encode for a family of six transmembrane domains, single pore-loop, and K+ channel α-subunits that have a wide range of physiological correlates. In the brain, KCNQ2 and KCNQ3 heteromultimers are thought to underlie the M-current which is essential in raising the threshold for firing an action potential; mutations in these genes may cause several types of infantile epilepsies. KCNQ2-related disorders represent a continuum of overlapping neonatal epileptic phenotypes that range from KCNQ2 benign familial neonatal epilepsy (BFNE), a seizure disorder that occur in children who typically have a normal psychomotor development and are inherited as an autosomal dominant trait, to KCNQ2 early-onset epileptic encephalopathy (EOEE) as the result of a de novo pathogenic variant. KCNQ3-related disorders are rarer and include BFNE, benign familial infantile epilepsy and KCNQ3-related epileptic encephalopathy with intellectual disability with or without seizures and/or cortical visual impairment. For both KCNQ2- and KCNQ3-related disorders, it is possible to use several drugs for different classes of mutations (i.e., gain of function vs. loss of function), and usually their effects vary in relation to the clinical presentation and the phenotype of the patient. However, KCNQ2-EOEE patients have a worse response to treatment than KCNQ2-BFNE patients and usually become drug resistant with multiple daily seizures.
Collapse
Affiliation(s)
- Anna Portale
- Unit of Pediatrics, Avola Hospital, Siracusa, Italy
| | - Mattia Comella
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Salomone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Di Nora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lidia Marino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Leonardi
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
45
|
MECP2-Related Disorders and Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
MECP2 (methyl-CpG binding protein-2) gene, located on chromosome Xq28, encodes for a protein particularly abundant in the brain that is required for maturation of astrocytes and neurons and is developmentally regulated. A defective homeostasis of MECP2 expression, either by haploinsufficiency or overexpression, leads to a neurodevelopmental phenotype. As MECP2 is located on chromosome X, the clinical presentation varies in males and females ranging from mild learning disabilities to severe encephalopathies and early death. Typical Rett syndrome (RTT), the most frequent phenotype associated with MECP2 mutations, primarily affects girls and it was previously thought to be lethal in males; however, MECP2 duplication syndrome, resulting from a duplication of the Xq28 region including MECP2, leads to a severe neurodevelopmental disorder in males. RTT and MECP2 duplication syndrome share overlapping clinical phenotypes including intellectual disabilities, motor deficits, hypotonia, progressive spasticity, and epilepsy. In this manuscript we reviewed literature on epilepsy related to MECP2 disorders, focusing on clinical presentation, genotype–phenotype correlation, and treatment.
Collapse
|
46
|
Ciccia LM, Scalia B, Venti V, Pizzo F, Pappalardo MG, La Mendola FMC, Falsaperla R, Praticò AD. CDKL5 Gene: Beyond Rett Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.
Collapse
Affiliation(s)
- Lina Maria Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Grazia Pappalardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
47
|
Carli D, Ferrero GB, Fusillo A, Coppo P, La Selva R, Zinali F, Cardaropoli S, Ranieri C, Iacoviello M, Resta N, Mussa A. A new case of Smith-Kingsmore syndrome with somatic MTOR pathogenic variant expands the phenotypic spectrum to lateralized overgrowth. Clin Genet 2021; 99:719-723. [PMID: 33506498 DOI: 10.1111/cge.13931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Smith-Kingsmore syndrome (SKS) is a rare autosomal dominant disorder caused by heterozygous germline activating pathogenic variants in mammalian target of rapamycin (MTOR) on chromosome 1p36. A few patients with disseminated mosaicism have been described so far and they seem to display a different phenotype when compared to germline cases. Here we report the sixth case with a disseminated mosaic MTOR pathogenic variant, a 7-year-old boy with hemimegalencephaly, epilepsy, developmental delay, hypomelanosis of Ito, and lateralized overgrowth. Genetic testing revealed a pathogenic variant (c.4448G > A, p.Cys1483Tyr) in MTOR with a frequency of 32% in the DNA extracted from a skin sample, 3% in saliva and 0.46% in blood. The clinical features observed in our patient further corroborate the existence of differences in phenotypic presentation of germline and mosaic SKS cases. Moreover, lateralized overgrowth, a finding never described so far in SKS, further expands the phenotypic spectrum of SKS and allows the inclusion of MTOR pathogenic variants among the several causes of asymmetric body overgrowth.
Collapse
Affiliation(s)
- Diana Carli
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, University of Torino and Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| | | | - Anna Fusillo
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, University of Torino and Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| | - Paola Coppo
- Pediatric Dermatology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Roberta La Selva
- Pediatric Dermatology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica Zinali
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, University of Torino and Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| | - Simona Cardaropoli
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, University of Torino and Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Matteo Iacoviello
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Mussa
- Pediatric Clinical Genetics Unit, Department of Public Health and Pediatric Sciences, University of Torino and Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
48
|
Seiringer P, Biedermann Md T, Schnopp Md C. Asymmetric Overgrowth and a Facial Port Wine Stain. J Pediatr 2021; 229:300-301. [PMID: 33035571 DOI: 10.1016/j.jpeds.2020.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Seiringer
- Department of Dermatology and Allergy and ZAUM - Center of Allergy and Environment, Technical University and Helmholtz Center Munich, Munich, Germany
| | - Tilo Biedermann Md
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Christina Schnopp Md
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
49
|
Garde A, Guibaud L, Goldenberg A, Petit F, Dard R, Roume J, Mazereeuw-Hautier J, Chassaing N, Lacombe D, Morice-Picard F, Toutain A, Arpin S, Boccara O, Touraine R, Blanchet P, Coubes C, Willems M, Pinson L, Van Kien PK, Chiaverini C, Giuliano F, Alessandri JL, Mathieu-Dramard M, Morin G, Bursztejn AC, Mignot C, Doummar D, Di Rocco F, Cornaton J, Nicolas C, Gautier E, Luu M, Bardou M, Sorlin A, Philippe C, Edery P, Rossi M, Carmignac V, Thauvin-Robinet C, Vabres P, Faivre L. Clinical and neuroimaging findings in 33 patients with MCAP syndrome: A survey to evaluate relevant endpoints for future clinical trials. Clin Genet 2021; 99:650-661. [PMID: 33415748 DOI: 10.1111/cge.13918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Megalencephaly-CApillary malformation-Polymicrogyria (MCAP) syndrome results from somatic mosaic gain-of-function variants in PIK3CA. Main features are macrocephaly, somatic overgrowth, cutaneous vascular malformations, connective tissue dysplasia, neurodevelopmental delay, and brain anomalies. The objectives of this study were to describe the clinical and radiological features of MCAP, to suggest relevant clinical endpoints applicable in future trials of targeted drug therapy. Based on a French collaboration, we collected clinical features of 33 patients (21 females, 12 males, median age of 9.9 years) with MCAP carrying mosaic PIK3CA pathogenic variants. MRI images were reviewed for 21 patients. The main clinical features reported were macrocephaly at birth (20/31), postnatal macrocephaly (31/32), body/facial asymmetry (21/33), cutaneous capillary malformations (naevus flammeus 28/33, cutis marmorata 17/33). Intellectual disability was present in 15 patients. Among the MRI images reviewed, the neuroimaging findings were megalencephaly (20/21), thickening of corpus callosum (16/21), Chiari malformation (12/21), ventriculomegaly/hydrocephaly (10/21), cerebral asymmetry (6/21) and polymicrogyria (2/21). This study confirms the main known clinical features that defines MCAP syndrome. Taking into account the phenotypic heterogeneity in MCAP patients, in the context of emerging clinical trials, we suggest that patients should be evaluated based on the main neurocognitive expression on each patient.
Collapse
Affiliation(s)
- Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Laurent Guibaud
- Service de Radiologie, Hôpital Femme-Mère-Enfant, Lyon, France
| | | | - Florence Petit
- Service de Génétique Clinique, Centre de Référence Anomalies du Développement CHU, Lille, France
| | - Rodolphe Dard
- Département de Génétique, CHI Poissy, St Germain-en-Laye, France
| | - Joelle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, France
| | - Juliette Mazereeuw-Hautier
- Département de Dermatologie, Centre de Référence des Maladies Rares de la Peau, CHU de Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, INSERM U543, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Didier Lacombe
- INSERM U1211, Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- INSERM U1211, Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | | | | | - Olivia Boccara
- Département de Dermatologie, Centre de Reference MAGEC, Hopital universitaire Necker-Enfants malades, Paris, France
| | - Renaud Touraine
- Service de Génétique Clinique, Chromosomique et Moléculaire, Centre de Référence des Anomalies du Développement, CHU, de Saint-Etienne, France
| | - Patricia Blanchet
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, CHRU de Montpellier, Montpellier, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, CHRU de Montpellier, Montpellier, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, CHRU de Montpellier, Montpellier, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, CHRU de Montpellier, Montpellier, France
| | | | | | | | | | | | - Gilles Morin
- Service de Génétique Clinique, CHU Amiens-Picardie, Amiens, France
| | | | - Cyril Mignot
- Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, AP-HP, Sorbonne Université, Paris, France
| | - Diane Doummar
- Service de Neurologie pédiatrique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Frederico Di Rocco
- Service de neurochirurgie pédiatrique, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Jenny Cornaton
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France
| | - Claire Nicolas
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France
| | - Elodie Gautier
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France
| | - Maxime Luu
- INSERM CIC 1432, Université de Bourgogne, Dijon, France
| | - Marc Bardou
- INSERM CIC 1432, Université de Bourgogne, Dijon, France
| | - Arthur Sorlin
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | - Patrick Edery
- Département de Génétique, Hospices Civils de Lyon et GENDEV, INSERM U1028, Lyon, France
| | - Massimiliano Rossi
- Département de Génétique, Hospices Civils de Lyon et GENDEV, INSERM U1028, Lyon, France
| | - Virginie Carmignac
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Centre de Référence MAGEC, Service de Dermatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | - Pierre Vabres
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Centre de Référence MAGEC, Service de Dermatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence MAGEC, Service de Dermatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| |
Collapse
|
50
|
Diociaiuti A, Paolantonio G, Zama M, Alaggio R, Carnevale C, Conforti A, Cesario C, Dentici ML, Buonuomo PS, Rollo M, El Hachem M. Vascular Birthmarks as a Clue for Complex and Syndromic Vascular Anomalies. Front Pediatr 2021; 9:730393. [PMID: 34692608 PMCID: PMC8529251 DOI: 10.3389/fped.2021.730393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/02/2021] [Indexed: 01/19/2023] Open
Abstract
Vascular birthmarks are common in neonates (prevalence: 20-30%) and mostly incidental findings sometimes with spontaneous regression (salmon patch and nevus simplex). Capillary malformations are found in about 1% and infantile hemangiomas are found in 4% of mature newborns. Vascular malformations are classified according to their most prominent vessel type. The term "capillary malformation" (port wine stain) includes a wide range of vascular lesions with different characteristics; they may be isolated or part of specific syndromic conditions. Part of the infantile hemangiomas and of the vascular malformations may require treatment for functional or cosmetic reasons, and in rare cases, investigations are also necessary as they represent a clue for the diagnosis of complex vascular malformation or tumors associated with extracutaneous abnormalities. Complex vascular malformations are mostly mosaicism due to early somatic mutations. Genetic advances have led to identify the main pathogenic pathways involved in this disease group. Diffuse capillary malformation with overgrowth, Klippel-Trenaunay syndrome, CLAPO syndrome, CLOVES syndrome, and megalencephaly-capillary malformation belong to the PIK3CA-related overgrowth. Capillary malformation-arteriovenous malformation underlies a fast-flow vascular malformation, sometimes manifesting as Parkes-Weber syndrome. Recognition of these different types of capillary vascular stains is sometimes difficult; however, associated findings may orient the clinicians while genetic testing may confirm the diagnosis. Lymphatic malformation frequently manifests as large masses that compress and/or infiltrate the surrounding tissues, representing a neonatal emergency when airways are involved. Infantile hemangiomas may cause functional and/or permanent esthetical damage, depending on their localization (such as periorbital area, lip, nose); large (more than 5 cm) infantile hemangiomas with a segmental distribution can be associated with obstruction or malformations of the underneath organs with complications: PHACE syndrome, LUMBAR/SACRAL syndrome, and beard infantile hemangioma. In our review, we discuss controversies regarding the international classification and emerging concepts in the field of vascular anomalies. Finally, we discuss potential developments of new, non-invasive diagnostic techniques and repurposing of target therapies from oncology. Complex and/or life-threatening vascular tumors and malformations are extremely rare events and they represent a considerable therapeutic challenge. Early recognition of clinical signs suggestive for a specific disease may improve therapeutic outcomes and avoid severe complications.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Guglielmo Paolantonio
- Interventional Radiology Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mario Zama
- Craniofacial Centre-Plastic and Maxillofacial Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Carnevale
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Conforti
- Department of Neonatal Medicine and Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Sabrina Buonuomo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Massimo Rollo
- Interventional Radiology Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|