1
|
Soleimani-Jelodar R, Arashkia A, Shoja Z, Akhavan S, Yarandi F, Sharifian K, Farahmand M, Nili F, Jalilvand S. The expression analysis of human endogenous retrovirus-K Env, Np9, and Rec transcripts in cervical cancer. J Med Virol 2024; 96:e29501. [PMID: 38445563 DOI: 10.1002/jmv.29501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
While infection with high-risk human papillomavirus (HPV) types is necessary for cervical cancer (CC) development, it is not enough, and other risk factors are required. Several studies have reported the activation of HERV-K in different cancers; however, the investigation of HERV-K expression levels in CC is scarce. In this study, it was hypothesized that activation of HERV-K could play an essential role in CC development. In this order, the expression levels of HERV-K Env, Np9, and Rec transcripts were investigated on 147 normal to CC uterine cervical tissues using quantitative real-time PCR. The significantly higher levels of HERV-K Env and Np9 transcripts were found in patients with cervical intraepithelial neoplasia (CIN) II-III and CC groups compared to those in the normal/CIN I group. Expression of Rec transcript was also higher only in the CC group than normal/CIN I group. Among CC patients, meaningfully higher levels of HERV-K Env and Np9 transcripts were found in patients with squamous cell carcinoma rather than in adenocarcinoma. When only the HPV 16 positive samples were investigated, it was found that the mean difference in Env and Np9 mRNA levels was meaningfully higher among precancer lesions and the cancer group in comparison with the normal group. However, the Rec mRNA level showed no significant differences. The association between the expression of HERV-K genes was investigated, and a significant positive correlation of Env expression with Np9 transcript was found only in the group with precancer lesions (R = 0.6, p = 0.0037). Moreover, a significant positive correlation was found between Rec and Np9 transcripts in patients with normal cervix tissues (R = 0.26, p = 0.033). However, no correlations were observed between the expression of Env and Rec in the three groups. In conclusion, our results showed that HERV-K transcripts, especially Env and Np9, upregulated during cervical lesion progression. These findings highlight the potential use of HERV-K Env and Np9 as biomarkers for CC diagnosis and prognosis. Further investigation is needed to determine the clinical utility of these markers and whether targeting HERV-K oncogenes could be a viable therapeutic strategy for CC.
Collapse
Affiliation(s)
- Rahim Soleimani-Jelodar
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Setareh Akhavan
- Department of Gynecology Oncology, Imam Khomeini Hospital Complex, Valiasr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Yarandi
- Department of Obstetrics and Gynecology, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Sharifian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Research Center for Emergency and Disaster Society of the Islamic Republic of Iran, Tehran, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kanholm T, Rentia U, Hadley M, Karlow JA, Cox OL, Diab N, Bendall ML, Dawson T, McDonald JI, Xie W, Crandall KA, Burns KH, Baylin SB, Easwaran H, Chiappinelli KB. Oncogenic Transformation Drives DNA Methylation Loss and Transcriptional Activation at Transposable Element Loci. Cancer Res 2023; 83:2584-2599. [PMID: 37249603 PMCID: PMC10527578 DOI: 10.1158/0008-5472.can-22-3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. SIGNIFICANCE Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.
Collapse
Affiliation(s)
- Tomas Kanholm
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at the George Washington University
| | - Uzma Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Melissa Hadley
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Jennifer A. Karlow
- Department of Pathology, Dana-Farber Cancer Institute / Harvard Medical School, Boston, MA, USA
| | - Olivia L. Cox
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Noor Diab
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- George Washington University School of Medicine and Health Sciences
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tyson Dawson
- The Institute for Biomedical Sciences at the George Washington University
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - James I. McDonald
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Wenbing Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Keith A. Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Kathleen H. Burns
- Department of Pathology, Dana-Farber Cancer Institute / Harvard Medical School, Boston, MA, USA
| | - Stephen B. Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Hari Easwaran
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Katherine B. Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at the George Washington University
| |
Collapse
|
3
|
Hosseiniporgham S, Sechi LA. Anti-HERV-K Drugs and Vaccines, Possible Therapies against Tumors. Vaccines (Basel) 2023; 11:vaccines11040751. [PMID: 37112663 PMCID: PMC10144246 DOI: 10.3390/vaccines11040751] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The footprint of human endogenous retroviruses (HERV), specifically HERV-K, has been found in malignancies, such as melanoma, teratocarcinoma, osteosarcoma, breast cancer, lymphoma, and ovary and prostate cancers. HERV-K is characterized as the most biologically active HERV due to possession of open reading frames (ORF) for all Gag, Pol, and Env genes, which enables it to be more infective and obstructive towards specific cell lines and other exogenous viruses, respectively. Some factors might contribute to carcinogenicity and at least one of them has been recognized in various tumors, including overexpression/methylation of long interspersed nuclear element 1 (LINE-1), HERV-K Gag, and Env genes themselves plus their transcripts and protein products, and HERV-K reverse transcriptase (RT). Therapies effective for HERV-K-associated tumors mostly target invasive autoimmune responses or growth of tumors through suppression of HERV-K Gag or Env protein and RT. To design new therapeutic options, more studies are needed to better understand whether HERV-K and its products (Gag/Env transcripts and HERV-K proteins/RT) are the initiators of tumor formation or just the disorder’s developers. Accordingly, this review aims to present evidence that highlights the association between HERV-K and tumorigenicity and introduces some of the available or potential therapies against HERV-K-induced tumors.
Collapse
|
4
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
5
|
Agoni L. Alternative and aberrant splicing of human endogenous retroviruses in cancer. What about head and neck? —A mini review. Front Oncol 2022; 12:1019085. [PMID: 36338752 PMCID: PMC9631305 DOI: 10.3389/fonc.2022.1019085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are transcribed in many cancer types, including head and neck cancer. Because of accumulating mutations at proviral loci over evolutionary time, HERVs are functionally defective and cannot complete their viral life cycle. Despite that, HERV transcripts, including full-length viral RNAs and viral RNAs spliced as expected at the conventional viral splice sites, can be detected in particular conditions, such as cancer. Interestingly, non-viral–related transcription, including aberrant, non-conventionally spliced RNAs, has been reported as well. The role of HERV transcription in cancer and its contribution to oncogenesis or progression are still debated. Nonetheless, HERVs may constitute a suitable cancer biomarker or a target for therapy. Thus, ongoing research aims both to clarify the basic mechanisms underlying HERV transcription in cancer and to exploit its potential toward clinical application. In this mini-review, we summarize the current knowledge, the most recent findings, and the future perspectives of research on HERV transcription and splicing, with particular focus on head and neck cancer.
Collapse
|
6
|
Lee DH, Bae WH, Ha H, Park EG, Lee YJ, Kim WR, Kim HS. Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes. Mol Cells 2022; 45:522-530. [PMID: 35950452 PMCID: PMC9385571 DOI: 10.14348/molcells.2022.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46231, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
Yang C, Guo X, Li J, Han J, Jia L, Wen HL, Sun C, Wang X, Zhang B, Li J, Chi Y, An T, Wang Y, Wang Z, Li H, Li L. Significant Upregulation of HERV-K (HML-2) Transcription Levels in Human Lung Cancer and Cancer Cells. Front Microbiol 2022; 13:850444. [PMID: 35359739 PMCID: PMC8960717 DOI: 10.3389/fmicb.2022.850444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the second most common cancer worldwide and the leading cause of cancer death in the world. Therefore, there is an urgent need to develop new and effective biomarkers for diagnosis and treatment. Under this circumstance, human endogenous retroviruses (HERVs) were recently introduced as novel biomarkers for cancer diagnosis. This study focused on the correlation between lung cancer and HERV-K (HML-2) transcription levels. At the cellular level, different types of lung cancer cells and human normal lung epithelial cells were used to analyze the transcription levels of the HERV-K (HML-2) gag, pol, and env genes by RT–qPCR. At the level of lung cancer patients, blood samples with background information from 734 lung cancer patients and 96 healthy persons were collected to analyze the transcription levels of HERV-K (HML-2) gag, pol, and env genes. The results showed that the transcriptional levels of the HERV-K (HML-2) gag, pol, and env genes in lung cancer cells and lung cancer patient blood samples were significantly higher than those in the healthy controls, which was also verified by RNAScope ISH technology. In addition, we also found that there was a correlation between the abnormal transcription levels of HERV-K (HML-2) genes in lung cancer patients and the clinicopathological parameters of lung cancer. We also identified the distribution locations of the gag, pol, and env primer sequences on each chromosome and analyzed the function of these loci. In conclusion, HERV-K (HML-2) genes may be a potential biomarker for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Caiqin Yang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingwan Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Lei Jia
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hong-Ling Wen
- Key Laboratory for the Prevention and Control of Infectious Diseases, Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengxi Sun
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Bohan Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jingyun Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yujia Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongtong An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Ziping Wang,
| | - Hanping Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Hanping Li,
| | - Lin Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Lin Li,
| |
Collapse
|
8
|
Dolci M, Favero C, Toumi W, Favi E, Tarantini L, Signorini L, Basile G, Bollati V, D'Alessandro S, Bagnoli P, Ferrante P, Delbue S. Human Endogenous Retroviruses Long Terminal Repeat Methylation, Transcription, and Protein Expression in Human Colon Cancer. Front Oncol 2020; 10:569015. [PMID: 33194657 PMCID: PMC7653092 DOI: 10.3389/fonc.2020.569015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Colon cancer is the fourth most common malignancy in both incidence and mortality in developed countries. Infectious agents are among the risk factors for colon cancer. Variations in human endogenous retrovirus (HERV) transcript and protein levels are associated with several types of cancers, but few studies address HERV expression in colon cancer. Fifty-eight patients with advanced-stage colon cancer were enrolled in this study. HERV-H, -K (HML-2), -P LTRs, Alu, and LINE-1 methylation levels and transcription of HERV-H, -K (HML-2), and -P env and HERV-K pol genes in normal adjacent and tumor tissues were investigated by pyrosequencing and RT-qPCR, respectively. Expression of the HERV-K (HML-2) Pol and Env proteins in selected tissues was examined by Western blotting. Associations between HERV transcript expression and methylation levels and between clinical characteristics and HERV expression were evaluated. Compared to adjacent normal tissues, LINE-1 was hypomethylated in tumor tissues (p < 0.05), whereas Alu, HERV-K (HML-2), and -H LTRs showed a decreasing trend in tumor tissue compared to normal tissue, though without a significant difference. The transcription levels of HERV env and pol genes were similar. However, the HERV-K (HML-2) Pol protein was more highly expressed (p < 0.01) in surrounding normal tissues, but the HERV-K (HML-2) Env protein was only expressed in tumor tissues. Although HERV LTR methylation and gene expression did not show significant differences between tumor and normal tissues, HERV protein expression differed greatly. Pol protein expression in normal cells may induce reverse transcription and subsequent integration into the host genome, likely favoring cell transformation; in contrast, the Env protein in tumor tissue may contribute to cancer progression through cell-to-cell fusion.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Chiara Favero
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Wafa Toumi
- Laboratory Services, Viral and Molecular Tumor Diagnostics Unit, Habib Thameur Hospital, Tunis, Tunisia
| | - Evaldo Favi
- Renal Transplantation, Fondazione Scientific Institute for Research, Hospitalization and Health Care Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Letizia Tarantini
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giuseppe Basile
- Orthopedic Department, San Siro Clinical Institute, Milan, Italy
| | - Valentina Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Pietro Bagnoli
- Surgical Department, Istituto Clinico Città Studi, Milan, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Ovejero T, Sadones O, Sánchez-Fito T, Almenar-Pérez E, Espejo JA, Martín-Martínez E, Nathanson L, Oltra E. Activation of Transposable Elements in Immune Cells of Fibromyalgia Patients. Int J Mol Sci 2020; 21:E1366. [PMID: 32085571 PMCID: PMC7072917 DOI: 10.3390/ijms21041366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Advancements in nucleic acid sequencing technology combined with an unprecedented availability of metadata have revealed that 45% of the human genome constituted by transposable elements (TEs) is not only transcriptionally active but also physiologically necessary. Dysregulation of TEs, including human retroviral endogenous sequences (HERVs) has been shown to associate with several neurologic and autoimmune diseases, including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). However, no study has yet addressed whether abnormal expression of these sequences correlates with fibromyalgia (FM), a disease frequently comorbid with ME/CFS. The work presented here shows, for the first time, that, in fact, HERVs of the H, K and W types are overexpressed in immune cells of FM patients with or without comorbid ME/CFS. Patients with increased HERV expression (N = 14) presented increased levels of interferon (INF-β and INF-γ) but unchanged levels of TNF-α. The findings reported in this study could explain the flu-like symptoms FM patients present with in clinical practice, in the absence of concomitant infections. Future work aimed at identifying specific genomic loci differentially affected in FM and/or ME/CFS is warranted.
Collapse
Affiliation(s)
- Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - José Andrés Espejo
- School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA;
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
10
|
Dolci M, Favero C, Tarantini L, Villani S, Bregni M, Signorini L, Della Valle A, Crivelli F, D'Alessandro S, Ferrante P, Bollati V, Delbue S. Human endogenous retroviruses env gene expression and long terminal repeat methylation in colorectal cancer patients. Med Microbiol Immunol 2020; 209:189-199. [PMID: 32040616 DOI: 10.1007/s00430-020-00662-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Human endogenous retroviruses (HERV) are remnants of exogenous retroviral infections, representing 8% of the human genome. Their regulation is based on the DNA methylation of promoters, the long terminal repeats (LTRs). Transcripts from HERV have been associated with cancers, but reports concerning HERV expression in colorectal cancer remain sporadic. Sixty-three patients with advanced stages of colorectal cancer were enrolled in this study. The expressions of HERV env gene, and HERV-H, -K, -R and -P LTRs and Alu, LINE-1 methylation levels, were investigated in the tumor, normal adjacent tissues, and, where possible, blood and plasmatic extracellular vesicles (EVs). Associations among HERV env expression, methylation status and clinical characteristics were evaluated. No differences were observed in HERV env gene expression levels among the clinical specimens, while Alu, LINE-1, HERV-H and -K LTRs were demethylated in the tumor compared to the normal adjacent tissues (p < 0.05).The HERV env gene was expressed in the EVs at of 54% (-H), 38% (-K), 31% (-R) patients. Association was not found between HERV env expression and LTR methylation, but significant higher expression of HERV-P and -R env was found in tumor tissues arising from the right colon. Our findings do not demonstrate significant overexpression of the studied HERV in colorectal cancer, but their association with tumor localization and specificity of the changes in DNA methylation of retroelements are shown. HERV sequences were packaged in the EVs and might be transferred from one cell to another.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Chiara Favero
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, Milan, Italy
| | - Letizia Tarantini
- Department of Preventive Medicine, Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan, Italy
| | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Marco Bregni
- Hematology Unit, ASST Valle Olona, Ospedale di Circolo di Busto Arsizio, Via Arnaldo da Brescia 3, Busto Arsizio, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Alberto Della Valle
- General Surgery Unit, Istituto Clinico Città Studi, Via Jommelli 19, Milan, Italy
| | - Filippo Crivelli
- Pathology Unit, ASST Valle Olona, Ospedale di Circolo di Busto Arsizio, Via Arnaldo da Brescia 3, Busto Arsizio, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, Milan, Italy.,Department of Preventive Medicine, Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy.
| |
Collapse
|
11
|
Bergallo M, Mareschi K, Montanari P, Calvi C, Berger M, Bini I, Daprà V, Galliano I, Fagioli F. Human endogenous retrovirus, HERV-P and HERV-R in pediatric leukemia patients. J Hematop 2019. [DOI: 10.1007/s12308-019-00352-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Bergallo M, Fava P, Galliano I, Novelli M, Montanari P, Daprà V, Rassu M, Quaglino P, Fierro MT. Molecular genetic analyses of human endogenous retroviral elements belonging to the HERV-P and HERV-R family in primary cutaneous T-cell lymphomas. J Eur Acad Dermatol Venereol 2018; 32:e297-e298. [PMID: 29405482 DOI: 10.1111/jdv.14840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- M Bergallo
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - P Fava
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - I Galliano
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - M Novelli
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - P Montanari
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - V Daprà
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - M Rassu
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - P Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - M T Fierro
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Zare M, Mostafaei S, Ahmadi A, Azimzadeh Jamalkandi S, Abedini A, Esfahani-Monfared Z, Dorostkar R, Saadati M. Human endogenous retrovirus env genes: Potential blood biomarkers in lung cancer. Microb Pathog 2018; 115:189-193. [DOI: 10.1016/j.micpath.2017.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
|
14
|
Bustamante Rivera YY, Brütting C, Schmidt C, Volkmer I, Staege MS. Endogenous Retrovirus 3 - History, Physiology, and Pathology. Front Microbiol 2018; 8:2691. [PMID: 29379485 PMCID: PMC5775217 DOI: 10.3389/fmicb.2017.02691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
Abstract
Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The composition of EVE varies between different species. The endogenous retrovirus 3 (ERV3) is one of these elements that is present only in humans and other Catarrhini. Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3 has been implicated in the pathogenesis of auto-immunity and cancer. In the present review we summarize knowledge about this interesting EVE. We propose the model that expression of ERV3 (and probably other EVE loci) under pathological conditions might be part of a metazoan SOS response.
Collapse
Affiliation(s)
| | - Christine Brütting
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Caroline Schmidt
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
Gim JA, Kim HS. Identification and Expression Analyses of Equine Endogenous Retroviruses in Horses. Mol Cells 2017; 40:796-804. [PMID: 29047258 PMCID: PMC5682256 DOI: 10.14348/molcells.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 11/27/2022] Open
Abstract
Endogenous retroviruses (ERVs) have been integrated into vertebrate genomes and have momentously affected host organisms. Horses (Equus caballus) have been domesticated and selected for elite racing ability over centuries. ERVs played an important role in the evolutionary diversification of the horse genome. In the present study, we identified six equine ERV families (EqERVs-E1, I1, M2, P1, S1, and Y4), their full-length viral open reading frames (ORFs), and elucidated their phylogenetic relationships. The divergence time of EqERV families assuming an evolutionary rate of 0.2%/Myr indicated that EqERV-S3 (75.4 million years ago; mya) on chromosome 10 is an old EqERV family and EqERV-P5 (1.2 Mya) on chromosome 12 is a young member. During the evolutionary diversification of horses, the EqERV-I family diverged 1.7 Mya to 38.7 Mya. Reverse transcription quantitative real-time PCR (RT-qPCR) amplification of EqERV pol genes showed greater expression in the cerebellum of the Jeju horse than the Thoroughbred horse. These results could contribute further dynamic studies for horse genome in relation to EqERV gene function.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- The Genomics Institute, Life Sciences Department, UNIST, Ulsan 44919,
Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
16
|
Bergallo M, Montanari P, Mareschi K, Merlino C, Berger M, Bini I, Daprà V, Galliano I, Fagioli F. Expression of the pol gene of human endogenous retroviruses HERV-K and -W in leukemia patients. Arch Virol 2017; 162:3639-3644. [DOI: 10.1007/s00705-017-3526-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/16/2017] [Indexed: 11/30/2022]
|
17
|
Li W, Lee MH, Henderson L, Tyagi R, Bachani M, Steiner J, Campanac E, Hoffman DA, von Geldern G, Johnson K, Maric D, Morris HD, Lentz M, Pak K, Mammen A, Ostrow L, Rothstein J, Nath A. Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 2016; 7:307ra153. [PMID: 26424568 DOI: 10.1126/scitranslmed.aac8201] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of human endogenous retroviruses (HERVs) in disease pathogenesis is unclear. We show that HERV-K is activated in a subpopulation of patients with sporadic amyotrophic lateral sclerosis (ALS) and that its envelope (env) protein may contribute to neurodegeneration. The virus was expressed in cortical and spinal neurons of ALS patients, but not in neurons from control healthy individuals. Expression of HERV-K or its env protein in human neurons caused retraction and beading of neurites. Transgenic animals expressing the env gene developed progressive motor dysfunction accompanied by selective loss of volume of the motor cortex, decreased synaptic activity in pyramidal neurons, dendritic spine abnormalities, nucleolar dysfunction, and DNA damage. Injury to anterior horn cells in the spinal cord was manifested by muscle atrophy and pathological changes consistent with nerve fiber denervation and reinnervation. Expression of HERV-K was regulated by TAR (trans-activation responsive) DNA binding protein 43, which binds to the long terminal repeat region of the virus. Thus, HERV-K expression within neurons of patients with ALS may contribute to neurodegeneration and disease pathogenesis.
Collapse
Affiliation(s)
- Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richa Tyagi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muzna Bachani
- Neurotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Steiner
- Neurotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emilie Campanac
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gloria von Geldern
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 21042, USA
| | - Dragan Maric
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Douglas Morris
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 21042, USA
| | - Margaret Lentz
- Integrated Research Facility, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21042, USA
| | - Katherine Pak
- Laboratory of Muscle Stem Cell and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 21042 , USA
| | - Andrew Mammen
- Laboratory of Muscle Stem Cell and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 21042 , USA
| | - Lyle Ostrow
- Department of Neurology, Johns Hopkins University, Baltimore, MD 28217, USA
| | - Jeffrey Rothstein
- Department of Neurology, Johns Hopkins University, Baltimore, MD 28217, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Mullins CS, Hühns M, Krohn M, Peters S, Cheynet V, Oriol G, Guillotte M, Ducrot S, Mallet F, Linnebacher M. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples. PLoS One 2016; 11:e0153349. [PMID: 27119520 PMCID: PMC4847760 DOI: 10.1371/journal.pone.0153349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023] Open
Abstract
Introduction A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). Results The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Conclusion Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.
Collapse
Affiliation(s)
- Christina S. Mullins
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Maja Hühns
- University Medicine Rostock, Institute of Pathology, Strempelstraße 14, 18055 Rostock, Germany
| | - Mathias Krohn
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Sven Peters
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Valérie Cheynet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
| | - Guy Oriol
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
| | | | - Sandrine Ducrot
- R&D Immunoassay, bioMérieux, Raw Material Department, Marcy l’Etoile, France
| | - François Mallet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
- EA Pathophysiology of injury-induced immunosuppression, University of Lyon1–Hospices Civils de Lyon–bioMérieux,Hôpital Edouard Herriot, 5, Place d’Arsonval, 69437 LYON Cedex 3, Lyon, France
| | - Michael Linnebacher
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
- * E-mail:
| |
Collapse
|
19
|
Gim JA, Han K, Kim HS. Identification and expression analysis of human endogenous retrovirus Y (HERV-Y) in various human tissues. Arch Virol 2015; 160:2161-8. [PMID: 26088444 DOI: 10.1007/s00705-015-2486-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/07/2015] [Indexed: 11/29/2022]
Abstract
Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome. To date, several HERV families have been identified in the human genome, with some being valid biomarkers for specific disease states. In this study, we have identified three HERV-Y elements in the human genome and characterized their structure and expression in various human tissues. New HERV-Y elements (HERV-Y101, HERV-Y102, and HERV-Y103) were detected on human chromosomes 8 and 13. In a pol-based phylogenetic tree, HERV-Y elements were closely grouped with HERV-I, -T, -E, and -R. The HERV-Y pol gene was expressed ubiquitously in all examined tissues, and it was dominantly expressed in the pons among the 12 different brain regions investigated. These results will allow future studies to elucidate the potential functional roles of HERVs in the brain and other tissues.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | |
Collapse
|
20
|
Zhou F, Krishnamurthy J, Wei Y, Li M, Hunt K, Johanning GL, Cooper LJ, Wang-Johanning F. Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology 2015; 4:e1047582. [PMID: 26451325 DOI: 10.1080/2162402x.2015.1047582] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously reported that human endogenous retrovirus-K (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) for cancer vaccines, and that its antibodies (mAbs) possess antitumor activity against cancer. In this study, a chimeric antigen receptor (CAR) specific for HERV-K env protein (K-CAR) was generated using anti-HERV-K mAb. K-CAR T cells from peripheral blood mononuclear cells (PBMCs) of 9 breast cancer (BC) patients and 12 normal donors were able to inhibit growth of, and to exhibit significant cytotoxicity toward, BC cells but not MCF-10A normal breast cells. The antitumor effects in cancer cells were significantly reduced when control T cells were used, or the expression of HERV-K was knocked down by an shRNA. Secretion of multiple cytokines, including IFNγ, TNF-α, and IL-2, was significantly enhanced in culture media of BC cells treated with K-CARs. Significantly reduced tumor growth and tumor weight was observed in xenograft models bearing MDA-MB-231 or MDA-MB-435.eB1 BC cells. Importantly, the K-CAR prevented tumor metastasis to other organs. Furthermore, downregulation of HERV-K expression in tumors of mice treated with K-CAR correlated with upregulation of p53 and downregulation of MDM2 and p-ERK. Importantly, the expression of HERV-K env protein in metastatic tumor tissues treated with K-CAR T cells correlated with the expression of Ras. Our results indicate that HERV-K env protein is an oncoprotein and may play an important role in tumorigenesis related to p53 and Ras signaling pathways. Anti-HERV-K treatment, including K-CAR treatment, shows potential for immunotherapy of BC.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Department of Clinical Hematology; Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University ; Xi'an, Shannxi, China
| | - Janani Krishnamurthy
- Division of Pediatrics; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Yongchang Wei
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Department of Clinical Oncology, First Affiliated Hospital; School of Medicine; Xi'an Jiaotong University , Xi'an, Shannxi, China
| | - Ming Li
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Kelly Hunt
- Department of Surgical Oncology; University of Texas MD Anderson Cancer Center ; Houston, TX USA
| | - Gary L Johanning
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Laurence Jn Cooper
- Division of Pediatrics; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Feng Wang-Johanning
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Graduate School of Biomedical Sciences ; Houston, TX USA ; Department of Immunology; University of Texas MD Anderson Cancer Center ; Houston, TX USA
| |
Collapse
|
21
|
Bae JH, Eo J, Kim TO, Yi JM. Biological changes of transposable elements by radiation: recent progress. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0256-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Eo J, Cha HJ, Imai H, Hirai H, Kim HS. Short communication: expression profiles of endogenous retroviral envelopes in Macaca mulatta (rhesus monkey). AIDS Res Hum Retroviruses 2014; 30:996-1000. [PMID: 24961963 DOI: 10.1089/aid.2014.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endogenous retroviruses (ERVs), which are footprints of ancient germline infections, were inserted into the genome during the early stages of primate evolution. Human endogenous retroviruses (HERVs) occupy approximately 8% of the human genome. Although most ERV genes are defective, with large deletions, stop codons, and frameshifts in their open reading frames (ORFs), some full-length sequences containing long ORFs are expressed in several tissues and cancers. Several envelope glycoproteins that are encoded by env genes have retained some characteristics of their ancestral infectious viruses. These glycoproteins play essential physiological roles in the organs in which they are expressed. Previous studies have demonstrated the expression of ERV env at the mRNA level in cells and tissues rather than at the protein level, which is more difficult to detect. However, it is not known whether Env is functionally conserved in primates. To understand the possible role of Env in primates, we examined the expression of the env genes of four ERVs (ERV-R, -K, -W, and -FRD) at the protein as well as mRNA levels in various tissues of the rhesus monkey. The ERV env gene products were observed at moderate to high levels in each tissue that was examined and showed tissue-specific expression patterns. Our data suggest a biologically important role for retroviral proteins in healthy tissues of the rhesus monkey.
Collapse
Affiliation(s)
- Jungwoo Eo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hirohisa Hirai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
23
|
Ianc B, Ochis C, Persch R, Popescu O, Damert A. Hominoid composite non-LTR retrotransposons-variety, assembly, evolution, and structural determinants of mobilization. Mol Biol Evol 2014; 31:2847-64. [PMID: 25216663 DOI: 10.1093/molbev/mst256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
SVA (SINE-R-VNTR-Alu) elements constitute the youngest family of composite non-LTR retrotransposons in hominoid primates. The sequence of their assembly, however, remains unclear. Recently, a second family of VNTR-containing composites, LAVA (L1-Alu-VNTR-Alu), has been identified in gibbons. We now report the existence of two additional VNTR composite families, PVA (PTGR2-VNTR-Alu) and FVA (FRAM-VNTR-Alu), in the genome of Nomascus leucogenys. Like LAVA, they share the 5'-Alu-like region and VNTR with SVA, but differ at their 3'-ends. The 3'-end of PVA comprises part of the PTGR2 gene, whereas FVA is characterized by the presence of a partial FRAM element in its 3'-domain. Splicing could be identified as the mechanism of acquisition of the variant 3'-ends in all four families of VNTR composites. SVAs have been shown to be mobilized by the L1 protein machinery in trans. A critical role in this process has been ascribed to their 5'-hexameric repeat/ Alu-like region. The Alu-like region displays specific features in each of the VNTR composite families/subfamilies with characteristic deletions found in the evolutionary younger subfamilies. Using reciprocal exchanges between SVA_E and PVA/FVA elements, we demonstrate that the structure, not the presence of the (CCCTCT)n/ Alu-like region determines mobilization capacity. Combination of LAVA and SVA_E domains does not yield any active elements-suggesting the use of different combinations of host factors for the two major groups of VNTR composites. Finally, we demonstrate that the LAVA 3'-L1ME5 fragment attenuates mobilization capacity.
Collapse
Affiliation(s)
- Bianca Ianc
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania
| | - Cornelia Ochis
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania
| | | | - Octavian Popescu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Annette Damert
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Rhyu DW, Kang YJ, Ock MS, Eo JW, Choi YH, Kim WJ, Leem SH, Yi JM, Kim HS, Cha HJ. Expression of human endogenous retrovirus env genes in the blood of breast cancer patients. Int J Mol Sci 2014; 15:9173-83. [PMID: 24964007 PMCID: PMC4100088 DOI: 10.3390/ijms15069173] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERV) env proteins have been recently reported to be significantly up-regulated in certain cancers. Specifically, mRNA and protein levels of HERV-K (HML-2) are up-regulated in the blood plasma or serum of breast cancer patients. Here, we collected blood samples of 49 breast cancer patients and analyzed mRNA expressions of various HERVs env genes including HERV-R, HERV-H, HERV-K, and HERV-P by real-time PCR. The expression of env genes were significantly increased in the blood of primary breast cancer patients but were decreased in patients undergoing chemotherapy to a similar level with benign patients. When we compared the group currently undergoing chemotherapy and those patients undergoing chemotherapy simultaneously with radiotherapy, HERVs env genes were reduced more in the chemotherapy only group, suggesting that chemotherapy is more effective in reducing HERV env gene expression than is radiotherapy. Among chemotherapy groups, HERV env gene expression was the lowest in the taxotere- or taxol-treated group, suggesting that taxotere and taxol can reduce HERVs env expression. These data suggest the potential to use HERVs env genes as a diagnosis marker for primary breast cancer, and further studies are needed to identify the mechanism and physiological significance of the reduction of HERV env gene expression during chemotherapy.
Collapse
Affiliation(s)
- Dong-Won Rhyu
- Department of Surgery, Kosin University College of Medicine, Busan 602-072, Korea.
| | - Yun-Jeong Kang
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-072, Korea.
| | - Mee-Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-072, Korea.
| | - Jung-Woo Eo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea.
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-052, Korea.
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea.
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 604-714, Korea.
| | - Joo-Mi Yi
- Dongnam Institute of Radiological & Medicine Sciences, Busan 619-953, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-072, Korea.
| |
Collapse
|
25
|
Douville RN, Nath A. Human endogenous retroviruses and the nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:465-85. [PMID: 25015500 DOI: 10.1016/b978-0-444-53488-0.00022-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Renée N Douville
- Department of Microbiology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Kang YJ, Jo JO, Ock MS, Chang HK, Baek KW, Lee JR, Choi YH, Kim WJ, Leem SH, Kim HS, Cha HJ. Human ERV3-1 env protein expression in various human tissues and tumours. J Clin Pathol 2013; 67:86-90. [PMID: 24043713 DOI: 10.1136/jclinpath-2013-201841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yun-Jeong Kang
- Departments of Parasitology and Genetics, Kosin University College of Medicine, , Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mutations in 3'-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb. Oncogene 2013; 33:3947-58. [PMID: 24013223 DOI: 10.1038/onc.2013.366] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
Human endogenous retrovirus (HERV) accounts for ∼8% of the human genome. Recent studies have reported that multiple HERV genes and long terminal repeats (LTRs) are involved in human tumorigenesis. Here we demonstrated that HERV-W env (syncytin-1) was overexpressed in 75.6% (62/82) of urothelial cell carcinoma (UCC) tissues of the bladder compared with only 6.1% (5/82) of matched tumor-adjacent tissues (P<0.001). Syncytin-1 overexpression increased proliferation and viability of immortalized human uroepithelial cells. Colony-formation experiments and in-vivo tumor xenografts suggested that syncytin-1 overexpression had oncogenic potential. Syncytin-1 3'-LTR mutations (142T>C and 277A>G) were present in 87.8% (72/82) of UCC tissues. Normal 3'-LTR was found in 12.2% (10/82) of UCC tissues compared with 95.1% (78/82) of matched tumor-adjacent tissues (P<0.001). Interestingly, 3'-LTR mutations were significantly associated with syncytin-1 overexpression. Luciferase assay and expression analysis revealed that 3'-LTR mutations, especially the 142T>C mutation, enhanced the syncytin-1 promoter activity and expression. In-silico analysis, electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated the binding of c-Myb to 3'-LTRs when the mutations occurred. This alternative interaction was found to be dependent on 142T>C mutation. C-Myb activated syncytin-1 promoter activity and expression by binding to mutant 3'-LTRs. Taken together, these data indicate that syncytin-1 overexpression may be an indicator of UCC risk. The 3'-LTR mutations may upregulate syncytin-1 expression, enabling it to participate in UCC tumorigenesis and development by interacting with c-Myb.
Collapse
|
28
|
Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, Kim HS. Retroelements: molecular features and implications for disease. Genes Genet Syst 2013; 88:31-43. [PMID: 23676708 DOI: 10.1266/ggs.88.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic genomes comprise numerous retroelements that have a major impact on the structure and regulation of gene function. Retroelements are regulated by epigenetic controls, and they generate multiple miRNAs that are involved in the induction and progression of genomic instability. Elucidation of the biological roles of retroelements deserves continuous investigation to better understand their evolutionary features and implications for disease.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Huang G, Li Z, Wan X, Wang Y, Dong J. Human endogenous retroviral K element encodes fusogenic activity in melanoma cells. J Carcinog 2013; 12:5. [PMID: 23599687 PMCID: PMC3622401 DOI: 10.4103/1477-3163.109032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/01/2013] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION AND HYPOTHESIS Nuclear atypia with features of multi nuclei have been detected in human melanoma specimens. We found that the K type human endogenous retroviral element (HERV K) is expressed in such cells. Since cellular syncytia can form when cells are infected with retroviruses, we hypothesized that HERV K expressed in melanoma cells may contribute to the formation of multinuclear atypia cells in melanoma. EXPERIMENTS AND RESULTS We specifically inhibited HERV K expression using RNA interference (RNAi) and monoclonal antibodies and observed dramatic reduction of intercellular fusion of cultured melanoma cells. Importantly, we identified loss of heterozygosity (LOH)of D19S433 in a cell clone that survived and proliferated after cell fusion. CONCLUSION Our results support the notion that proteins encoded by HERV K can mediate intercellular fusion of melanoma cells, which may generate multinuclear cells and drive the evolution of genetic changes that provide growth and survival advantages.
Collapse
Affiliation(s)
- Gengming Huang
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA ; Sealy Center for Cancer Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
30
|
Januszkiewicz-Lewandowska D, Nowicka K, Rembowska J, Fichna M, Żurawek M, Derwich K, Nowak J. Env gene expression of human endogenous retrovirus-k and human endogenous retrovirus-w in childhood acute leukemia cells. Acta Haematol 2013; 129:232-7. [PMID: 23328642 DOI: 10.1159/000345407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/18/2012] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The etiopathogenesis of childhood leukemia is not fully understood. It is suggested that endogenous viral sequences may play a role in leukemogenesis. Human endogenous retroviruses (HERVs) constitute about 8% of the human genome. Most HERVs are dysfunctional because of numerous mutations and deletions. Some HERVs, however, contain sequences capable of transcription. In patients with leukemia, the presence of antibodies against HERV-K has been identified, which could suggest increased expression of HERV-K in leukemic cells. To elucidate the role of endogenous retroviruses in leukemogenesis, studies were undertaken to assess env gene expression of HERV-K and HERV-W in childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). RESULTS This study was performed in 170 children with ALL, 38 subjects with AML, and 30 healthy subjects. Expression of the env gene of HERV-K and HERV-W and the control gene ACTB was studied by real-time PCR using specific oligonucleotide primers and SYBR Green marker. Env gene expression was assessed on the basis of the absolute threshold-Ct, as well as normalized against ACTB expression and double normalized expression relative to ACTB and reference cells - normal peripheral blood lymphocytes (PBL). Env gene expression of HERV-K normalized against ACTB, as well as double normalized expression relative to ACTB and normal PBL, was significantly higher only in AML. There were no statistically significant differences in env gene expression of HERV-W normalized to ACTB in ALL and AML as compared to normal PBL. CONCLUSION High normalized expression of the env gene of HERV-K in AML strongly suggests a possible contribution of this gene in the pathogenesis of AML.
Collapse
|
31
|
Cegolon L, Salata C, Weiderpass E, Vineis P, Palù G, Mastrangelo G. Human endogenous retroviruses and cancer prevention: evidence and prospects. BMC Cancer 2013; 13:4. [PMID: 23282240 PMCID: PMC3557136 DOI: 10.1186/1471-2407-13-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 12/02/2012] [Indexed: 12/05/2022] Open
Abstract
Background Cancer is a significant and growing problem worldwide. While this increase may, in part, be attributed to increasing longevity, improved case notifications and risk-enhancing lifestyle (such as smoking, diet and obesity), hygiene-related factors resulting in immuno-regulatory failure may also play a major role and call for a revision of vaccination strategies to protect against a range of cancers in addition to infections. Discussion Human endogenous retroviruses (HERVs) are a significant component of a wider family of retroelements that constitutes part of the human genome. They were originated by the integration of exogenous retroviruses into the human genome millions of years ago. HERVs are estimated to comprise about 8% of human DNA and are ubiquitous in somatic and germinal tissues. Physiologic and pathologic processes are influenced by some biologically active HERV families. HERV antigens are only expressed at low levels by the host, but in circumstances of inappropriate control their genes may initiate or maintain pathological processes. Although the precise mechanism leading to abnormal HERVs gene expression has yet to be clearly elucidated, environmental factors seem to be involved by influencing the human immune system. HERV-K expression has been detected in different types of tumors. Among the various human endogenous retroviral families, the K series was the latest acquired by the human species. Probably because of its relatively recent origin, the HERV-K is the most complete and biologically active family. The abnormal expression of HERV-K seemingly triggers pathological processes leading to melanoma onset, but also contributes to the morphological and functional cellular modifications implicated in melanoma maintenance and progression. The HERV-K-MEL antigen is encoded by a pseudo-gene incorporated in the HERV-K env-gene. HERV-K-MEL is significantly expressed in the majority of dysplastic and normal naevi, as well as other tumors like sarcoma, lymphoma, bladder and breast cancer. An amino acid sequence similar to HERV-K-MEL, recognized to cause a significant protective effect against melanoma, is shared by the antigenic determinants expressed by some vaccines such as BCG, vaccinia virus and the yellow fever virus. HERV-K are also reactivated in the majority of human breast cancers. Monoclonal and single-chain antibodies against the HERV-K Env protein recently proved capable of blocking the proliferation of human breast cancer cells in vitro, inhibiting tumor growth in mice bearing xenograft tumors. Summary A recent epidemiological study provided provisional evidence of how melanoma risk could possibly be reduced if the yellow fever virus vaccine (YFV) were received at least 10 years before, possibly preventing tumor initiation rather than culling melanoma cells already compromised. Further research is recommended to confirm the temporal pattern of this protection and eliminate/attenuate the potential role of relevant confounders as socio-economic status and other vaccinations. It appears also appropriate to examine the potential protective effect of YFV against other malignancies expressing high levels of HERV-K antigens, namely breast cancer, sarcoma, lymphoma and bladder cancer. Tumor immune-therapy, as described for the monoclonal antibodies against breast cancer, is indeed considered more complex and less advantageous than immune-prevention. Cellular immunity possibly triggered by vaccines as for YFV might also be involved in anti-cancer response, in addition to humoral immunity.
Collapse
Affiliation(s)
- Luca Cegolon
- Department of Molecular Medicine, Padua University, Padua, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Pačes J, Huang YT, Pačes V, Rídl J, Chang CM. New insight into transcription of human endogenous retroviral elements. N Biotechnol 2012. [PMID: 23201072 DOI: 10.1016/j.nbt.2012.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is generally assumed that human endogenous retroviral elements (HERVs) belong to the class of genomic repetitive nucleotide sequences often called 'junk DNA'. These elements were categorized to families, and members of some of these families (e.g. HERV-H, HERV-W and HERV-K) were shown to be transcribed. These transcriptions were associated with several severe diseases such as mental disorders, AIDS, autoimmune diseases and cancer. In this review we discuss several bioinformatics strategies for genome-wide scan of HERVs transcription using high-throughput RNA sequencing on several platforms. We show that many more HERVs than previously described are transcribed to various levels and we discuss possible implications of these transcriptions.
Collapse
Affiliation(s)
- Jan Pačes
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
33
|
Lee JR, Ahn K, Kim YJ, Jung YD, Kim HS. Radiation-induced human endogenous retrovirus (HERV)-R env gene expression by epigenetic control. Radiat Res 2012; 178:379-84. [PMID: 23004920 DOI: 10.1667/rr2888.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is commonly accepted that ionizing radiation induces genomic instability by changes in genomic structure, epigenetic regulation and gene expression. Human endogenous retroviruses (HERV)-R also are often differentially expressed between normal and disease tissues under unstable genomic conditions and are implicated in the pathogenesis of several human diseases. To understand the influence of ionizing radiation on HERV-R expression, we performed quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses using γ-irradiated normal human cells. Compared to nonirradiated cells, HERV-R expression was up-regulated in γ-irradiated cells. The regulatory mechanism of HERV-R expression in irradiated cells was investigated by methylation analyses of HERV-R 5'LTRs and treatment with garcinol. These data indicated that the up-regulated transcription of HERV-R may be regulated by radiation-induced epigenetic changes induced by histone modification, and thus could be of great importance for understanding the relationship between radiation-induced biological effects and transposable elements.
Collapse
Affiliation(s)
- Ja-Rang Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Mullins CS, Linnebacher M. Endogenous retrovirus sequences as a novel class of tumor-specific antigens: an example of HERV-H env encoding strong CTL epitopes. Cancer Immunol Immunother 2012; 61:1093-100. [PMID: 22187063 PMCID: PMC11029769 DOI: 10.1007/s00262-011-1183-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Our genome consists to about 8% of human endogenous retroviral (HERV) sequences. These HERVs have been discussed to be linked to human diseases for decades. Recently, a detailed analysis of a HERV-H sequence located on chromosome Xp22.3 revealed a strong expression in a subset of gastrointestinal cancers whereas expression in normal tissues and in other cancer entities was low. In the present study, we used the reverse immunology approach to test the immunological potential of this HERV-H ORF on Xp22.3. A total of ten peptides displaying HLA-A2.1-binding motifs were selected from the predicted env protein sequence. Stimulation of peripheral T cells with retroviral peptides (RVPs) presented by autologous antigen-presenting cells clearly resulted in sustained proliferation of predominantly CD8(+) T cells. High numbers of IFN-γ-secreting T cells were detectable after several weekly stimulations with RVP mixes. Reactivity observed in RVP-Mix-stimulated cultures was attributable to RVP03, RVP09 and to a lower extend to RVP08, suggesting those to be highly immunogenic epitopes. Besides killing of RVP-loaded target cells, up to 40% specific lysis of colorectal carcinoma cell lines endogenously expressing this HERV-H Xp22.3 ORF was achieved. These data demonstrate that human T cells can be sensitized toward HERV peptides and moreover posses a high lytic potential toward HERV-H expressing CRC cells. Additionally, these data hint toward endogenous ENV protein expression followed by proteasomal degradation and presentation in the context of HLA molecules. Finally, our data strengthen the view that HERV-encoded sequences should be considered as a new class of tumor-specific antigens.
Collapse
Affiliation(s)
- Christina S. Mullins
- Department of General, Thoracic, Vascular and Transplantation Surgery, Section Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Michael Linnebacher
- Department of General, Thoracic, Vascular and Transplantation Surgery, Section Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
35
|
Lee JR, Kim HS. Radiation-induced retroelement-mediated genomic instability. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Kines KJ, Belancio VP. Expressing genes do not forget their LINEs: transposable elements and gene expression. FRONT BIOSCI-LANDMRK 2012; 17:1329-44. [PMID: 22201807 DOI: 10.2741/3990] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane University Cancer Center and Tulane Center for Aging
| | | |
Collapse
|
37
|
Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2:180. [PMID: 21285958 DOI: 10.1038/ncomms1180] [Citation(s) in RCA: 874] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022] Open
Abstract
Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer.
Collapse
|
38
|
Li Z, Sheng T, Wan X, Liu T, Wu H, Dong J. Expression of HERV-K correlates with status of MEK-ERK and p16INK4A-CDK4 pathways in melanoma cells. Cancer Invest 2010; 28:1031-7. [PMID: 20874005 DOI: 10.3109/07357907.2010.512604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dysregulated ERK and RB pathways often coexist in melanoma cells. The K-type human endogenous retrovirus (HERV-K) is implicated in melanomagenesis. Some of the phenotypes that are modified by HERV-K (e.g., changes in cell shape, melanin production, and anchorage-dependent growth) overlap with those that are regulated by ERK and RB pathways. As ERK signaling can regulate retroviruses, we hypothesized that HERV-K expression is controlled by ERK-RB pathways. We found that the levels of HERV-K GAG and EVE correlated with the activation of ERK and loss of p16INK4A and that inhibition of MEK or CDK4, especially in combination, reduced HERV-K EVE in melanoma cells.
Collapse
Affiliation(s)
- Zhongwu Li
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0743, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kim DS, Huh JW, Kim YH, Park SJ, Chang KT. Functional impact of transposable elements using bioinformatic analysis and a comparative genomic approach. Mol Cells 2010; 30:77-87. [PMID: 20652499 DOI: 10.1007/s10059-010-0091-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 11/26/2022] Open
Abstract
A dual coding event, which is the translation of different isoforms from a single gene, is one of the special patterns among the alternative splicing events. This is an important mechanism for the regulation of protein diversity in human and mouse genomes. Although the regulation for dual coding events has been characterized in a few genes, the individual mechanism remains unclear. Numerous studies have described the exonization of transposable elements, which is the splicing mediated insertion of transposable element sequence fragments into mature mRNAs. Therefore, in this study, we investigated the number of transposable element (TE)-derived dual coding genes in human, chimpanzee and mouse genomes. TE fusion exons appeared in the dual coding regions of 309 human genes. Functional protein domain alterations by TE-derived dual coding events were observed in 129 human genes. Comparative TE-derived dual coding events were also analyzed in chimpanzee and mouse orthologs. Seventy chimpanzee orthologs had TE-derived dual coding events, but mouse orthologs did not have any TE-derived dual coding events. Taken together, our analyses listed the number of TE-derived dual coding genes which could be investigated by experimental analysis and suggested that TE-derived dual coding events were major sources for the functional diversity of human genes, but not mouse genes.
Collapse
Affiliation(s)
- Dae-Soo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
| | | | | | | | | |
Collapse
|
40
|
Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 2010; 20:246-53. [PMID: 20685251 DOI: 10.1016/j.semcancer.2010.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 01/13/2023]
Abstract
Malignancy results from a complex combination of genetic and epigenetic changes, the full effects of which are still largely unknown. Here we summarize current knowledge of the origin, retrotranspositional activity, epigenetic state, and transcription of human endogenous retroviruses (HERVs), and then discuss the potential effects of their deregulation in cancer. Evidence suggests that cancer-associated epigenetic changes most likely underlie potential HERV-mediated effects on genome and transcriptome instability and may play a role in malignancy. Despite our currently limited understanding of the importance of HERVs or other transposable elements in cancer development, we believe that the emerging era of high-throughput sequencing of cancer genomes, epigenomes, and transcriptomes will provide unprecedented opportunities to investigate these roles in the future.
Collapse
Affiliation(s)
- M T Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | |
Collapse
|