1
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
2
|
Alsharairi NA. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:15208. [PMID: 37894889 PMCID: PMC10607898 DOI: 10.3390/ijms242015208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
3
|
Singh NK, Garabadu D. Quercetin Exhibits α7nAChR/Nrf2/HO-1-Mediated Neuroprotection Against STZ-Induced Mitochondrial Toxicity and Cognitive Impairments in Experimental Rodents. Neurotox Res 2021; 39:1859-1879. [PMID: 34554409 DOI: 10.1007/s12640-021-00410-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
The objective of the present study was to investigate the α7nAChR-mediated Nrf2-dependant protective activity against streptozotocin (STZ)-induced brain mitochondrial toxicity in Alzheimer's disease (AD)-like rats. STZ (3 mg/kg) was injected through an intracerebroventricular route to induce AD-like dementia. Repeated Quercetin (50 mg/kg, i.p.) administration attenuated cognitive impairments in the STZ-challenged animals during Morris water-maze and Y-maze tests. Quercetin significantly mitigated the STZ-induced increase in cholinergic dysfunction, such as the increase in acetylcholinesterase activity, decrease in acetylcholine level, and activity of choline acetyltransferase, and increase in amyloid-beta aggregation and mitochondrial toxicity in respect of mitochondrial bioenergetics, integrity, and oxidative stress in memory-challenged rat hippocampus, prefrontal cortex and, amygdala. Further, Quercetin significantly attenuated STZ-induced reduction in the α7nAChRs and HO-1 expression levels in the selected rat brain regions. On the contrary, trigonelline (10 mg/kg, i.p.) and methyllycaconitine (2 mg/kg; i.p.) abolished the neuroprotective effects of Quercetin against STZ-induced behavioral, molecular, and biochemical alterations in the AD-like animals. Hence, Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-challenged AD-like animals. Thus, Quercetin could be considered as a potential therapeutic option in the management of AD.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Shabbir W, Yang KHS, Sadek B, Oz M. Apigenin and Structurally Related Flavonoids Allosterically Potentiate the Function of Human α7-Nicotinic Acetylcholine Receptors Expressed in SH-EP1 Cells. Cells 2021; 10:cells10051110. [PMID: 34062982 PMCID: PMC8147998 DOI: 10.3390/cells10051110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Phytochemicals, such as monoterpenes, polyphenols, curcuminoids, and flavonoids, are known to have anti-inflammatory, antioxidant, neuroprotective, and procognitive effects. In this study, the effects of several polyhydroxy flavonoids, as derivatives of differently substituted 5,7-dihydroxy-4H-chromen-4-one including apigenin, genistein, luteolin, kaempferol, quercetin, gossypetin, and phloretin with different lipophilicities (cLogP), as well as topological polar surface area (TPSA), were tested for induction of Ca2+ transients by α7 human nicotinic acetylcholine (α7 nACh) receptors expressed in SH-EP1 cells. Apigenin (10 μM) caused a significant potentiation of ACh (30 μM)-induced Ca2+ transients, but did not affect Ca2+ transients induced by high K+ (60 mM) containing solutions. Co-application of apigenin with ACh was equally effective as apigenin preincubation. However, the effect of apigenin significantly diminished by increasing ACh concentrations. The flavonoids tested also potentiated α7 nACh mediated Ca2+ transients with descending potency (highest to lowest) by genistein, gossypetin, kaempferol, luteolin, phloretin, quercetin, and apigenin. The specific binding of α7 nACh receptor antagonist [125I]-bungarotoxin remained unchanged in the presence of any of the tested polyhydroxy flavonoids, suggesting that these compounds act as positive allosteric modulators of the α7-nACh receptor in SH-EP1 cells. These findings suggest a clinical potential for these phytochemicals in the treatment of various human diseases from pain to inflammation and neural disease.
Collapse
Affiliation(s)
- Waheed Shabbir
- Department of Medicine, Division of Nephrology and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2140, USA;
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA;
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain 17666, United Arab Emirates;
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
- Correspondence:
| |
Collapse
|
5
|
Nielsen BE, Stabile S, Vitale C, Bouzat C. Design, Synthesis, and Functional Evaluation of a Novel Series of Phosphonate-Functionalized 1,2,3-Triazoles as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2020; 11:2688-2704. [PMID: 32786318 DOI: 10.1021/acschemneuro.0c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel widely distributed in the central nervous system, mainly in the hippocampus and cortex. The enhancement of its activity by positive allosteric modulators (PAMs) is a promising therapeutic strategy for cognitive deficits and neurodegenerative disorders. With the aim of developing novel scaffolds with PAM activity, we designed and synthesized a series of phosphonate-functionalized 1,4-disubstituted 1,2,3-triazoles using supported copper nanoparticles as the cycloaddition reaction catalyst and evaluated their activity on α7 receptors by single-channel and whole-cell recordings. We identified several triazole derivatives that displayed PAM activity, with the compound functionalized with the methyl phosphonate group being the most efficacious one. At the macroscopic level, α7 potentiation was evidenced as an increase of the maximal currents elicited by acetylcholine with minimal effects on desensitization, recapitulating the actions of type I PAMs. At the single-channel level, the active compounds did not affect channel amplitude but significantly increased the duration of channel openings and activation episodes. By using chimeric and mutant α7 receptors, we demonstrated that the new α7 PAMs share transmembrane structural determinants of potentiation with other chemically nonrelated PAMs. To gain further insight into the chemical basis of potentiation, we applied structure-activity relationship strategies involving modification of the chain length, inversion of substituent positions in the triazole ring, and changes in the aromatic nucleus. Our findings revealed that the phosphonate-functionalized 1,4-disubstituted 1,2,3-triazole is a novel pharmacophore for the development of therapeutic agents for neurological and neurodegenerative disorders associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Departamento de Biologı́a, Bioquı́mica y Farmacia, Instituto de Investigaciones Bioquı́micas de Bahı́a Blanca (INIBIBB), Departamento de Biologı́a, Bioquı́mica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Santiago Stabile
- Instituto de Quı́mica del Sur (INQUISUR), Departamento de Quı́mica, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Cristian Vitale
- Instituto de Quı́mica del Sur (INQUISUR), Departamento de Quı́mica, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Cecilia Bouzat
- Departamento de Biologı́a, Bioquı́mica y Farmacia, Instituto de Investigaciones Bioquı́micas de Bahı́a Blanca (INIBIBB), Departamento de Biologı́a, Bioquı́mica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
6
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:molecules25061267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer’s pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
- Correspondence: or (M.S.U.); (P.J.); Tel.: +880-1710220110 (M.S.U.); +33-3-26913-341 (P.J.)
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
- Correspondence: or (M.S.U.); (P.J.); Tel.: +880-1710220110 (M.S.U.); +33-3-26913-341 (P.J.)
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
7
|
Potential Therapeutic Targets of Quercetin and Its Derivatives: Its Role in the Therapy of Cognitive Impairment. J Clin Med 2019; 8:jcm8111789. [PMID: 31717708 PMCID: PMC6912580 DOI: 10.3390/jcm8111789] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Quercetin (QC) is a flavonoid and crucial bioactive compound found in a variety of vegetables and fruits. In preclinical studies, QC has demonstrated broad activity against several diseases and disorders. According to recent investigations, QC is a potential therapeutic candidate for the treatment of nervous system illnesses because of its protective role against oxidative damage and neuroinflammation. QC acts on several molecular signals, including ion channels, neuroreceptors, and inflammatory receptor signaling, and it also regulates neurotrophic and anti-oxidative signaling molecules. While the study of QC in neurological disorders has focused on numerous target molecules, the role of QC on certain molecular targets such as G-protein coupled and nuclear receptors remains to be investigated. Our analysis presents several molecular targets of QC and its derivatives that demonstrate the pharmacological potential against cognitive impairment. Consequently, this article may guide future studies using QC and its analogs on specific signaling molecules. Finding new molecular targets of QC and its analogs may ultimately assist in the treatment of cognitive impairment.
Collapse
|
8
|
Nielsen BE, Bermudez I, Bouzat C. Flavonoids as positive allosteric modulators of α7 nicotinic receptors. Neuropharmacology 2019; 160:107794. [PMID: 31560909 DOI: 10.1016/j.neuropharm.2019.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/09/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The use of positive allosteric modulators (PAM) of α7 nicotinic receptors is a promising therapy for neurodegenerative, inflammatory and cognitive disorders. Flavonoids are polyphenolic compounds showing neuroprotective, anti-inflammatory and pro-cognitive actions. Besides their well-known antioxidant activity, flavonoids trigger intracellular pathways and interact with receptors, including α7. To reveal how the beneficial actions of flavonoids are linked to α7 function, we evaluated the effects of three representative flavonoids -genistein, quercetin and the neoflavonoid 5,7-dihydroxy-4-phenylcoumarin- on whole-cell and single-channel currents. All flavonoids increase the maximal currents elicited by acetylcholine with minimal effects on desensitization and do not reactivate desensitized receptors, a behaviour consistent with type I PAMs. At the single-channel level, they increase the duration of the open state and produce activation in long-duration episodes with a rank order of efficacy of genistein > quercetin ≥ neoflavonoid. By using mutant and chimeric α7 receptors, we demonstrated that flavonoids share transmembrane structural determinants with other PAMs. The α7-PAM activity of flavonoids results in decreased cell levels of reactive oxygen species. Thus, allosteric potentiation of α7 may be an additional mechanism underlying neuroprotective actions of flavonoids, which may be used as scaffolds for designing new therapeutic agents.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Isabel Bermudez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
9
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
10
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
11
|
Lee BH, Choi SH, Kim HJ, Jung SW, Hwang SH, Pyo MK, Rhim H, Kim HC, Kim HK, Lee SM, Nah SY. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents. Biomol Ther (Seoul) 2016; 24:410-7. [PMID: 27098860 PMCID: PMC4930285 DOI: 10.4062/biomolther.2015.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/28/2015] [Accepted: 01/22/2016] [Indexed: 01/16/2023] Open
Abstract
Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun-Hye Choi
- Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyeon-Joong Kim
- Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Seok-Won Jung
- Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Mi-Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan 32724, Republic of Korea
| | - Hyewhon Rhim
- Life Science Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sang-Mok Lee
- Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Yeol Nah
- Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Zhi K, Li M, Bai J, Wu Y, Zhou S, Zhang X, Qu L. Quercitrin treatment protects endothelial progenitor cells from oxidative damage via inducing autophagy through extracellular signal-regulated kinase. Angiogenesis 2016; 19:311-24. [DOI: 10.1007/s10456-016-9504-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
|
13
|
Nichols M, Zhang J, Polster BM, Elustondo PA, Thirumaran A, Pavlov EV, Robertson GS. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience 2015; 308:75-94. [PMID: 26363153 DOI: 10.1016/j.neuroscience.2015.09.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
Abstract
In view of evidence that increased consumption of epicatechin (E) and quercetin (Q) may reduce the risk of stroke, we have measured the effects of combining E and Q on mitochondrial function and neuronal survival following oxygen-glucose deprivation (OGD). Relative to mouse cortical neuron cultures pretreated (24h) with either E or Q (0.1-10μM), E+Q synergistically attenuated OGD-induced neuronal cell death. E, Q and E+Q (0.3μM) increased spare respiratory capacity but only E+Q (0.3μM) preserved this crucial parameter of neuronal mitochondrial function after OGD. These improvements were accompanied by corresponding increases in cyclic AMP response element binding protein (CREB) phosphorylation and the expression of CREB-target genes that promote neuronal survival (Bcl-2) and mitochondrial biogenesis (PGC-1α). Consistent with these findings, E+Q (0.1 and 1.0μM) elevated mitochondrial gene expression (MT-ND2 and MT-ATP6) to a greater extent than E or Q after OGD. Q (0.3-3.0μM), but not E (3.0μM), elevated cytosolic calcium (Ca(2+)) spikes and the mitochondrial membrane potential. Conversely, E and E+Q (0.1 and 0.3μM), but not Q (0.1 and 0.3μM), activated protein kinase B (Akt). Nitric oxide synthase (NOS) inhibition with L-N(G)-nitroarginine methyl ester (1.0μM) blocked neuroprotection by E (0.3μM) or Q (1.0μM). Oral administration of E+Q (75mg/kg; once daily for 5days) reduced hypoxic-ischemic brain injury. These findings suggest E and Q activate Akt- and Ca(2+)-mediated signaling pathways that converge on NOS and CREB resulting in synergistic improvements in neuronal mitochondrial performance which confer profound protection against ischemic injury.
Collapse
Affiliation(s)
- M Nichols
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - J Zhang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - B M Polster
- Department of Anesthesiology, Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - P A Elustondo
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - A Thirumaran
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - E V Pavlov
- Department of Basic Sciences, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA.
| | - G S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th Floor Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, Nova Scotia B3H 2E2, Canada.
| |
Collapse
|
14
|
The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int 2015; 89:126-39. [PMID: 26260546 DOI: 10.1016/j.neuint.2015.08.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023]
Abstract
The projected increase in the incidence of dementia in the population highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular exercise and diet, may affect neural function and consequent cognitive performance throughout the life course. In this regard, flavonoids, found in a variety of fruits, vegetables and derived beverages, have been identified as a group of promising bioactive compounds capable of influencing different aspects of brain function, including cerebrovascular blood flow and synaptic plasticity, both resulting in improvements in learning and memory in mammalian species. However, the precise mechanisms by which flavonoids exert these actions are yet to be fully established, although accumulating data indicate an ability to interact with neuronal receptors and kinase signaling pathways which are key to neuronal activation and communication and synaptic strengthening. Alternatively or concurrently, there is also compelling evidence derived from human clinical studies suggesting that flavonoids can positively affect peripheral and cerebrovascular blood flow, which may be an indirect effective mechanism by which dietary flavonoids can impact on brain health and cognition. The current review examines the beneficial effects of flavonoids on both human and animal brain function and attempts to address and link direct and indirect actions of flavonoids and their derivatives within the central nervous system (CNS).
Collapse
|
15
|
The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl) 2015; 232:3227-34. [PMID: 26047963 PMCID: PMC4534492 DOI: 10.1007/s00213-015-3972-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
RATIONALE There has recently been increasing interest in the potential of flavanols, plant-derived compounds found in foods such as fruit and vegetables, to ameliorate age-related cognitive decline. Research suggests that cocoa flavanols improve memory and learning, possibly as a result of their anti-inflammatory and neuroprotective effects. These effects may be mediated by increased cerebral blood flow (CBF), thus, stimulating neuronal function. OBJECTIVES The present study employed arterial spin labelling functional magnetic resonance imaging to explore the effect of a single acute dose of cocoa flavanols on regional CBF. METHODS CBF was measured pre- and post-consumption of low (23 mg) or high (494 mg) 330 ml equicaloric flavanol drinks matched for caffeine, theobromine, taste and appearance according to a randomized counterbalanced crossover double-blind design in eight males and ten females, aged 50-65 years. Changes in perfusion from pre- to post-consumption were calculated as a function of each drink. RESULTS Significant increases in regional perfusion across the brain were observed following consumption of the high flavanol drink relative to the low flavanol drink, particularly in the anterior cingulate cortex and the central opercular cortex of the parietal lobe. CONCLUSIONS Consumption of cocoa flavanol improves regional cerebral perfusion in older adults. This provides evidence for a possible acute mechanism by which cocoa flavanols are associated with benefits for cognitive performance.
Collapse
|
16
|
Lutz JA, Kulshrestha M, Rogers DT, Littleton JM. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia 2014; 98:11-21. [PMID: 24972350 PMCID: PMC4171190 DOI: 10.1016/j.fitote.2014.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is a potential target in neuroinflammation. Screening a plant extract library identified Solidago nemoralis as containing methyl-quercetin derivatives that are relatively selective ligands for the alpha7 nAChR. Flavonoids are not known for this activity, so we screened a small library of pure flavonoids to confirm our findings. Some flavonoids, e.g. rhamnetin, displaced a selective alpha7 nAChR radioligand from rat brain membranes whereas similar structures e.g. sakuranetin, did not. To evaluate the contribution of this putative nAChR activity to the known anti-inflammatory properties of these flavonoids, we compared their effects on lipopolysaccharide induced release of inflammatory mediators from BV2 microglia. Both rhamnetin and sakuranetin reduced mediator release, but differed in potency (rhamnetin>sakuranetin) and the Hill slope of their concentration-response curves. For rhamnetin the Hill coefficient was >3.0 whereas for sakuranetin the coefficient was 1.0, suggesting that effects of rhamnetin are mediated through more than one mechanism, whereas sakuranetin has a single mechanism. nAChR antagonists decreased the Hill coefficient for rhamnetin toward unity, which suggests that a nAChR-mediated mechanism contributes cooperatively to its overall anti-inflammatory effect. In contrast nAChR antagonists had no effect on the potency or Hill coefficient for sakuranetin, but a concentration of nicotine (1μM) that had no effect alone, significantly increased the Hill coefficient of this flavonoid. In conclusion, the anti-inflammatory effects of rhamnetin benefit cooperatively from a nAChR-mediated mechanism. This action, together with potent free radical scavenging activity, suggests that flavonoids with alpha7 nAChR activity have therapeutic potential in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Joseph A Lutz
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 S. Limestone, Lexington, KY 40506-0596, USA
| | - Manish Kulshrestha
- College of Agriculture, Department of Biosystems & Agricultural Engineering, University of Kentucky, 1100 S. Limestone, Lexington, KY 40546-0091, USA
| | - Dennis T Rogers
- Naprogenix™, UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506-0286, USA
| | - John M Littleton
- College of Arts and Sciences, Department of Psychology, University of Kentucky, Kastle Hall, Lexington, KY 40506-0044, USA.
| |
Collapse
|
17
|
Anti-inflammatory effects of the nicotinergic peptides SLURP-1 and SLURP-2 on human intestinal epithelial cells and immunocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:609086. [PMID: 24877120 PMCID: PMC4024406 DOI: 10.1155/2014/609086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022]
Abstract
A search for novel and more efficient therapeutic modalities of inflammatory bowel disease (IBD) is one of the most important tasks of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs. We tested the hypothesis that SLURP-1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC) and immunocytes—can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFNγ-induced upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1β-induced secretion of IL-6 and TLR4- and TLR9-dependent induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNFα by T-cells, downregulated IL-1β and IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2 downregulated TNFα and IFNγR in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and macrophages may help develop novel effective treatments of IBD.
Collapse
|
18
|
Baptista FI, Henriques AG, Silva AMS, Wiltfang J, da Cruz e Silva OAB. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease. ACS Chem Neurosci 2014; 5:83-92. [PMID: 24328060 DOI: 10.1021/cn400213r] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease is characterized by pathological aggregation of protein tau and amyloid-β peptides, both of which are considered to be toxic to neurons. Naturally occurring dietary flavonoids have received considerable attention as alternative candidates for Alzheimer's therapy taking into account their antiamyloidogenic, antioxidative, and anti-inflammatory properties. Experimental evidence supports the hypothesis that certain flavonoids may protect against Alzheimer's disease in part by interfering with the generation and assembly of amyloid-β peptides into neurotoxic oligomeric aggregates and also by reducing tau aggregation. Several mechanisms have been proposed for the ability of flavonoids to prevent the onset or to slow the progression of the disease. Some mechanisms include their interaction with important signaling pathways in the brain like the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate prosurvival transcription factors and gene expression. Other processes include the disruption of amyloid-β aggregation and alterations in amyloid precursor protein processing through the inhibition of β-secretase and/or activation of α-secretase, and inhibiting cyclin-dependent kinase-5 and glycogen synthase kinase-3β activation, preventing abnormal tau phosphorylation. The interaction of flavonoids with different signaling pathways put forward their therapeutic potential to prevent the onset and progression of Alzheimer's disease and to promote cognitive performance. Nevertheless, further studies are needed to give additional insight into the specific mechanisms by which flavonoids exert their potential neuroprotective actions in the brain of Alzheimer's disease patients.
Collapse
Affiliation(s)
- Filipa I. Baptista
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana G. Henriques
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jens Wiltfang
- Department
of Psychiatry and Psychotherapy, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Odete A. B. da Cruz e Silva
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Kim BH, Choi JS, Yi EH, Lee JK, Won C, Ye SK, Kim MH. Relative antioxidant activities of quercetin and its structurally related substances and their effects on NF-κB/CRE/AP-1 signaling in murine macrophages. Mol Cells 2013; 35:410-20. [PMID: 23649461 PMCID: PMC3887868 DOI: 10.1007/s10059-013-0031-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced by the oxidative burst in activated macrophages and neutrophils cause oxidative stressimplicated diseases. Quercetin is flavonoid that occurs naturally in plants and is widely used as a nutritional supplement due to its antioxidant and anti-inflammatory properties. In this study, we investigated antioxidant activities and mechanisms of action in zymosan-induced macrophages of quercetin and quercetin-related flavonoids such as quercitrin, isoquercitrin, quercetin 3-O-β-(2″-galloyl)-rhamnopyranoside (QGR) and quercetin 3-O-β-(2″-galloyl)-glucopyranoside (QGG) as well as gallic acid, a building moiety of QGR and QGG. QGR and QGG exhibited stronger antioxidant activities compared with quercetin, whereas quercitrin, isoquercitrin and gallic acid exhibited weak-tono antioxidant activities, assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, superoxide production, superoxide scavenging, nitric oxide (NO) production, peroxynitrite (ONOO(-)) scavenging and myeloperoxidase (MPO) activity. Regarding mechanisms, the quercetincontaining flavonoids QGR and QGG differentially targeted compared with quercetin in the NF-κB signaling pathway that inhibited the DNA binding activity of the NF-κB complex without affecting the degradation and phosphorylation of IκBα and NF-κB phosphorylation. In addition, QGR and QGG inhibited CRE and activator protein (AP-1) transcriptional activity and JNK phosphorylation by inhibiting the cAMP/protein kinase A (PKA) and protein kinase C (PKC) signaling in a different manner than quercetin. Our results showed that although QGR and QGG exhibited stronger antioxidant activities than querce-tin in macrophages, their mechanisms of action in terms of the NF-κB, PKA and PKC signaling pathways were different.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jung Sook Choi
- Department of Beauty and Aesthetic Sciences, Gyeongdo Provincial College, Yecheon 757-807,
Korea
| | - Eun Hee Yi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jin-Ku Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Cheolhee Won
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Myoung-Hwan Kim
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Seoul National University Bundang Hospital, Seongnam 463-707,
Korea
| |
Collapse
|
20
|
Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012; 52:35-45. [PMID: 21982844 DOI: 10.1016/j.freeradbiomed.2011.09.010] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023]
Abstract
There is increasing evidence that the consumption of flavonoid-rich foods can beneficially influence normal cognitive function. In addition, a growing number of flavonoids have been shown to inhibit the development of Alzheimer disease (AD)-like pathology and to reverse deficits in cognition in rodent models, suggestive of potential therapeutic utility in dementia. The actions of flavonoid-rich foods (e.g., green tea, blueberry, and cocoa) seem to be mediated by the direct interactions of absorbed flavonoids and their metabolites with a number of cellular and molecular targets. For example, their specific interactions within the ERK and PI3-kinase/Akt signaling pathways, at the level of receptors or kinases, have been shown to increase the expression of neuroprotective and neuromodulatory proteins and increase the number of, and strength of, connections between neurons. Concurrently, their effects on the vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Additional mechanisms have been suggested for the ability of flavonoids to delay the initiation of and/or slow the progression of AD-like pathology and related neurodegenerative disorders, including a potential to inhibit neuronal apoptosis triggered by neurotoxic species (e.g., oxidative stress and neuroinflammation) or disrupt amyloid β aggregation and effects on amyloid precursor protein processing through the inhibition of β-secretase (BACE-1) and/or activation of α-secretase (ADAM10). Together, these processes act to maintain the number and quality of synaptic connections in key brain regions and thus flavonoids have the potential to prevent the progression of neurodegenerative pathologies and to promote cognitive performance.
Collapse
Affiliation(s)
- Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
21
|
Lee BH, Shin TJ, Hwang SH, Choi SH, Kang J, Kim HJ, Park CW, Lee SH, Nah SY. Inhibitory Effects of Quercetin on Muscle-type of Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:195-201. [PMID: 21994477 DOI: 10.4196/kjpp.2011.15.4.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/20/2011] [Accepted: 08/02/2011] [Indexed: 11/15/2022]
Abstract
The flavonoid quercetin is a low molecular weight compound generally found in apple, gingko, tomato, onion and other red-colored fruits and vegetables. Like other flavonoids, quercetin has diverse pharmacological actions. However, relatively little is known about the influence of quercetin effects in the regulation of ligand-gated ion channels. Previously, we reported that quercetin regulates subsets of nicotinic acetylcholine receptors such as α3β4, α7 and α9α10. Presently, we investigated the effects of quercetin on muscle-type of nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding human fetal or adult muscle-type of nicotinic acetylcholine receptor subunits. Acetylcholine treatment elicited an inward peak current (I(ACh)) in oocytes expressing both muscle-type of nicotinic acetylcholine receptors and co-treatment of quercetin with acetylcholine inhibited I(ACh). Pre-treatment of quercetin further inhibited I(ACh) in oocytes expressing adult and fetal muscle-type nicotinic acetylcholine receptors. The inhibition of I(ACh) by quercetin was reversible and concentration-dependent. The IC(50) of quercetin was 18.9±1.2 µM in oocytes expressing adult muscle-type nicotinic acetylcholine receptor. The inhibition of I(ACh) by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate human muscle-type nicotinic acetylcholine receptor channel activity and that quercetin-mediated regulation of muscle-type nicotinic acetylcholine receptor might be coupled to regulation of neuromuscular junction activity.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee BH, Hwang SH, Choi SH, Shin TJ, Kang J, Lee SM, Nah SY. Quercetin Inhibits α3β4 Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:17-22. [PMID: 21461236 DOI: 10.4196/kjpp.2011.15.1.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/15/2022]
Abstract
Quercetin mainly exists in the skin of colored fruits and vegetables as one of flavonoids. Recent studies show that quercetin, like other flavonoids, has diverse pharmacological actions. However, relatively little is known about quercetin effects in the regulations of ligand-gated ion channels. In the previous reports, we have shown that quercetin regulates subsets of homomeric ligand-gated ion channels such as glycine, 5-HT(3A) and α7 nicotinic acetylcholine receptors. In the present study, we examined quercetin effects on heteromeric neuronal α3β4 nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding bovine neuronal α3 and β4 subunits. Treatment with acetylcholine elicited an inward peak current (I(ACh)) in oocytes expressing α3β4 nicotinic acetylcholine receptor. Co-treatment with quercetin and acetylcholine inhibited I(ACh) in oocytes expressing α3β4 nicotinic acetylcholine receptors. The inhibition of I(ACh) by quercetin was reversible and concentration-dependent. The half-inhibitory concentration (IC(50)) of quercetin was 14.9±0.8 µM in oocytes expressing α3β4 nicotinic acetylcholine receptor. The inhibition of I(ACh) by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate α3β4 nicotinic acetylcholine receptor and this regulation might be one of the pharmacological actions of quercetin in nervous systems.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | |
Collapse
|