1
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
2
|
Wang L, Song J, Han X, Yu Y, Wu Q, Qi S, Xu Z. Functional Divergence Analysis of AGL6 Genes in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2022; 12:158. [PMID: 36616287 PMCID: PMC9824310 DOI: 10.3390/plants12010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The AGAMOUS-LIKE6 (AGL6) lineage is an important clade of MADS-box transcription factors that play essential roles in floral organ development. The genome of Prunus mume contains two homoeologous AGL6 genes that are replicated as gene fragments. In this study, two AGL6 homologs, PmAGL6-1 and PmAGL6-2, were cloned from P. mume and then functionally characterized. Sequence alignment and phylogenetic analyses grouped both genes into the AGL6 lineage. The expression patterns and protein-protein interaction patterns showed significant differences between the two genes. However, the ectopic expression of the two genes in Arabidopsis thaliana resulted in similar phenotypes, including the promotion of flowering, alteration of floral organ structure, participation in the formation of the floral meristem and promotion of pod bending. Therefore, gene duplication has led to some functional divergence of PmAGL6-1 and PmAGL6-2 but their functions are similar. We thus speculated that AGL6 genes play a crucial role in flower development in P. mume.
Collapse
|
3
|
Su Y, Liu J, Liang W, Dou Y, Fu R, Li W, Feng C, Gao C, Zhang D, Kang Z, Li H. Wheat AGAMOUS LIKE 6 transcription factors function in stamen development by regulating the expression of Ta APETALA3. Development 2019; 146:dev.177527. [PMID: 31540915 DOI: 10.1242/dev.177527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Previous studies have revealed the functions of rice and maize AGAMOUS LIKE 6 (AGL6) genes OsMADS6 and ZAG3, respectively, in floral development; however, the functions of three wheat (Triticum aestivum) AGL6 genes are still unclear. Here, we report the main functions of wheat AGL6 homoeologous genes in stamen development. In RNAi plants, stamens showed abnormality in number and morphology, and a tendency to transform into carpels. Consistently, the expression of the B-class gene TaAPETALA3 (AP3) and the auxin-responsive gene TaMGH3 was downregulated, whereas the wheat ortholog of the rice carpel identity gene DROOPING LEAF was ectopically expressed in RNAi stamens. TaAGL6 proteins bind to the promoter of TaAP3 directly. Yeast one-hybrid and transient expression assays further showed that TaAGL6 positively regulates the expression of TaAP3 in vivo. Wheat AGL6 transcription factors interact with TaAP3, TaAGAMOUS and TaMADS13. Our findings indicate that TaAGL6 transcription factors play an essential role in stamen development through transcriptional regulation of TaAP3 and other related genes. We propose a model to illustrate the function and probable mechanism of this regulation. This study extends our understanding of AGL6 genes.
Collapse
Affiliation(s)
- Yali Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jinxing Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Dou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ruifeng Fu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Cuizhu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Caixia Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Bernotas G, Scorza LCT, Hansen MF, Hales IJ, Halliday KJ, Smith LN, Smith ML, McCormick AJ. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. Gigascience 2019; 8:giz056. [PMID: 31127811 PMCID: PMC6534809 DOI: 10.1093/gigascience/giz056] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tracking and predicting the growth performance of plants in different environments is critical for predicting the impact of global climate change. Automated approaches for image capture and analysis have allowed for substantial increases in the throughput of quantitative growth trait measurements compared with manual assessments. Recent work has focused on adopting computer vision and machine learning approaches to improve the accuracy of automated plant phenotyping. Here we present PS-Plant, a low-cost and portable 3D plant phenotyping platform based on an imaging technique novel to plant phenotyping called photometric stereo (PS). RESULTS We calibrated PS-Plant to track the model plant Arabidopsis thaliana throughout the day-night (diel) cycle and investigated growth architecture under a variety of conditions to illustrate the dramatic effect of the environment on plant phenotype. We developed bespoke computer vision algorithms and assessed available deep neural network architectures to automate the segmentation of rosettes and individual leaves, and extract basic and more advanced traits from PS-derived data, including the tracking of 3D plant growth and diel leaf hyponastic movement. Furthermore, we have produced the first PS training data set, which includes 221 manually annotated Arabidopsis rosettes that were used for training and data analysis (1,768 images in total). A full protocol is provided, including all software components and an additional test data set. CONCLUSIONS PS-Plant is a powerful new phenotyping tool for plant research that provides robust data at high temporal and spatial resolutions. The system is well-suited for small- and large-scale research and will help to accelerate bridging of the phenotype-to-genotype gap.
Collapse
Affiliation(s)
- Gytis Bernotas
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Livia C T Scorza
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Mark F Hansen
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Ian J Hales
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Karen J Halliday
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Lyndon N Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Melvyn L Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
5
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Bencke-Malato M, De Souza AP, Ribeiro-Alves M, Schmitz JF, Buckeridge MS, Alves-Ferreira M. Short-term responses of soybean roots to individual and combinatorial effects of elevated [CO 2] and water deficit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:283-296. [PMID: 30824006 DOI: 10.1016/j.plantsci.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 12/18/2018] [Indexed: 05/15/2023]
Abstract
Climate change increasingly threatens plant growth and productivity. Soybean (Glycine max) is one of the most important crops in the world. Although its responses to increased atmospheric carbon dioxide concentration ([CO2]) have been previously studied, root molecular responses to elevated [CO2] (E[CO2]) or the combination/interaction of E[CO2] and water deficit remain unexamined. In this study, we evaluated the individual and combinatory effects of E[CO2] and water deficit on the physiology and root molecular responses in soybean. Plants growing under E[CO2] exhibited increased photosynthesis that resulted in a higher biomass, plant height, and leaf area. E[CO2] decreased the transcripts levels of genes involved in iron uptake and transport, antioxidant activity, secondary metabolism and defense, and stress responses in roots. When plants grown under E[CO2] are treated with instantaneous water deficit, E[CO2] reverted the expression of water deficit-induced genes related to stress, defense, transport and nutrient deficiency. Furthermore, the interaction of both treatments uniquely affected the expression of genes. Both physiological and transcriptomic analyses demonstrated that E[CO2] may mitigate the negative effects of water deficit on the soybean roots. In addition, the identification of genes that are modulated by the interaction of E[CO2] and water deficit suggests an emergent response that is triggered only under this specific condition.
Collapse
Affiliation(s)
- Marta Bencke-Malato
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| | - Amanda Pereira De Souza
- Departamento de Botânica, Universidade de São Paulo (USP), Instituto de Biociências, Rua do Matão, 277, sala 122, Cidade Universitária - Butantã, São Paulo, SP, 05508-090, Brazil.
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz -(FIOCRUZ) Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Jacqueline Flores Schmitz
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Universidade de São Paulo (USP), Instituto de Biociências, Rua do Matão, 277, sala 122, Cidade Universitária - Butantã, São Paulo, SP, 05508-090, Brazil.
| | - Marcio Alves-Ferreira
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| |
Collapse
|
7
|
Lee HG, Hong C, Seo PJ. The Arabidopsis Sin3-HDAC Complex Facilitates Temporal Histone Deacetylation at the CCA1 and PRR9 Loci for Robust Circadian Oscillation. FRONTIERS IN PLANT SCIENCE 2019; 10:171. [PMID: 30833956 PMCID: PMC6387943 DOI: 10.3389/fpls.2019.00171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
The circadian clock synchronizes endogenous rhythmic processes with environmental cycles and maximizes plant fitness. Multiple regulatory layers shape circadian oscillation, and chromatin modification is emerging as an important scheme for precise circadian waveforms. Here, we report the role of an evolutionarily conserved Sin3-histone deacetylase complex (HDAC) in circadian oscillation in Arabidopsis. SAP30 FUNCTION-RELATED 1 (AFR1) and AFR2, which are key components of Sin3-HDAC complex, are circadianly-regulated and possibly facilitate the temporal formation of the Arabidopsis Sin3-HDAC complex at dusk. The evening-expressed AFR proteins bind directly to the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) promoters and catalyze histone 3 (H3) deacetylation at the cognate regions to repress expression, allowing the declining phase of their expression at dusk. In support, the CCA1 and PRR9 genes were de-repressed around dusk in the afr1-1afr2-1 double mutant. These findings indicate that periodic histone deacetylation at the morning genes by the Sin3-HDAC complex contributes to robust circadian maintenance in higher plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Cheljong Hong
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Yu X, Chen G, Guo X, Lu Y, Zhang J, Hu J, Tian S, Hu Z. Silencing SlAGL6, a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal. PLANT CELL REPORTS 2017; 36:959-969. [PMID: 28352968 DOI: 10.1007/s00299-017-2129-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/10/2017] [Indexed: 05/21/2023]
Abstract
Silencing SlAGL6 in tomato leads to fused sepal and green petal by influencing the expression of A-, B-class genes. AGAMOUS-LIKE6 (AGL6) lineage is an important clade MADS-box transcription factor and plays essential roles in various developmental programs especially in flower meristem and floral organ development. Here, we isolated a tomato AGL6 lineage gene SlAGL6 and successfully obtained several RNA interference (RNAi) lines. Silencing SlAGL6 led to abnormal fused sepals and light green petals with smaller size. The total chlorophyll content in transgenic petals increased and the morphology of epidermis cells altered. Further analysis showed that A-class gene MACROCALYX (MC) participating in sepal development and a NAC-domain gene GOBLET involving in boundary establishment were down-regulated in transgenic lines. In transgenic petals, two chlorophyll synthesis genes, Golden2-like1 (SlGLK1) and Golden2-like2 (SlGLK2), two photosystem-related genes, ribulose bisphosphate carboxylase small chain 3B (SlrbcS3B) and chlorophyll a/b-binding protein 7 (SlCab-7) were induced and three B-class genes TM6, TAP3 and SlGLO1 were repressed. These results suggest that SlAGL6 involves in tomato sepal and petal development.
Collapse
Affiliation(s)
- Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Room 515, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, 400044, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Room 515, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, 400044, Chongqing, People's Republic of China
| | - Xuhu Guo
- Laboratory of Molecular Biology of Tomato, Room 515, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, 400044, Chongqing, People's Republic of China
| | - Yu Lu
- Laboratory of Molecular Biology of Tomato, Room 515, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, 400044, Chongqing, People's Republic of China
| | - Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Room 515, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, 400044, Chongqing, People's Republic of China
| | - Jingtao Hu
- Laboratory of Molecular Biology of Tomato, Room 515, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, 400044, Chongqing, People's Republic of China
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, 401329, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Room 515, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, 400044, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Pfannebecker KC, Lange M, Rupp O, Becker A. An Evolutionary Framework for Carpel Developmental Control Genes. Mol Biol Evol 2017; 34:330-348. [PMID: 28049761 DOI: 10.1093/molbev/msw229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carpels are the female reproductive organs of flowering plants (angiosperms), enclose the ovules, and develop into fruits. The presence of carpels unites angiosperms, and they are suggested to be the most important autapomorphy of the angiosperms, e.g., they prevent inbreeding and allow efficient seed dispersal. Many transcriptional regulators and coregulators essential for carpel development are encoded by diverse gene families and well characterized in Arabidopsis thaliana. Among these regulators are AGAMOUS (AG), ETTIN (ETT), LEUNIG (LUG), SEUSS (SEU), SHORT INTERNODE/STYLISH (SHI/STY), and SEPALLATA1, 2, 3, 4 (SEP1, 2, 3, 4). However, the timing of the origin and their subsequent molecular evolution of these carpel developmental regulators are largely unknown. Here, we have sampled homologs of these carpel developmental regulators from the sequenced genomes of a wide taxonomic sampling of the land plants, such as Physcomitrella patens, Selaginella moellendorfii, Picea abies, and several angiosperms. Careful phylogenetic analyses were carried out that provide a phylogenetic background for the different gene families and provide minimal estimates for the ages of these developmental regulators. Our analyses and published work show that LUG-, SEU-, and SHI/STY-like genes were already present in the Most Recent Common Ancestor (MRCA) of all land plants, AG- and SEP-like genes were present in the MRCA of seed plants and their origin may coincide with the ξ Whole Genome Duplication. Our work shows that the carpel development regulatory network was, in part, recruited from preexisting network components that were present in the MRCA of angiosperms and modified to regulate gynoecium development.
Collapse
Affiliation(s)
- Kai C Pfannebecker
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| | - Matthias Lange
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| | - Oliver Rupp
- Department of Biology and Chemistry, Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Annette Becker
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| |
Collapse
|
10
|
Dreni L, Zhang D. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1625-1638. [PMID: 26956504 DOI: 10.1093/jxb/erw046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future.
Collapse
Affiliation(s)
- Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia
| |
Collapse
|
11
|
Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G, Shan H. Prevalent Exon-Intron Structural Changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-Box Gene Subfamilies Provide New Insights into Their Evolution. FRONTIERS IN PLANT SCIENCE 2016; 7:598. [PMID: 27200066 PMCID: PMC4852290 DOI: 10.3389/fpls.2016.00598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/18/2016] [Indexed: 05/19/2023]
Abstract
AP1/FUL, SEP, AGL6, and FLC subfamily genes play important roles in flower development. The phylogenetic relationships among them, however, have been controversial, which impedes our understanding of the origin and functional divergence of these genes. One possible reason for the controversy may be the problems caused by changes in the exon-intron structure of genes, which, according to recent studies, may generate non-homologous sites and hamper the homology-based sequence alignment. In this study, we first performed exon-by-exon alignments of these and three outgroup subfamilies (SOC1, AG, and STK). Phylogenetic trees reconstructed based on these matrices show improved resolution and better congruence with species phylogeny. In the context of these phylogenies, we traced evolutionary changes of exon-intron structures in each subfamily. We found that structural changes have occurred frequently following gene duplication and speciation events. Notably, exons 7 and 8 (if present) suffered more structural changes than others. With the knowledge of exon-intron structural changes, we generated more reasonable alignments containing all the focal subfamilies. The resulting trees showed that the SEP subfamily is sister to the monophyletic group formed by AP1/FUL and FLC subfamily genes and that the AGL6 subfamily forms a sister group to the three abovementioned subfamilies. Based on this topology, we inferred the evolutionary history of exon-intron structural changes among different subfamilies. Particularly, we found that the eighth exon originated before the divergence of AP1/FUL, FLC, SEP, and AGL6 subfamilies and degenerated in the ancestral FLC-like gene. These results provide new insights into the origin and evolution of the AP1/FUL, FLC, SEP, and AGL6 subfamilies.
Collapse
Affiliation(s)
- Xianxian Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lingling Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guixia Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Guixia Xu
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Hongyan Shan
| |
Collapse
|
12
|
Lee HG, Lee K, Jang K, Seo PJ. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis. JOURNAL OF PLANT RESEARCH 2015; 128:187-99. [PMID: 25315904 DOI: 10.1007/s10265-014-0665-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/25/2014] [Indexed: 05/13/2023]
Abstract
The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 561-756, Korea
| | | | | | | |
Collapse
|
13
|
Sun W, Huang W, Li Z, Song C, Liu D, Liu Y, Hayward A, Liu Y, Huang H, Wang Y. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. ANNALS OF BOTANY 2014; 113:653-68. [PMID: 24532606 PMCID: PMC3936592 DOI: 10.1093/aob/mct301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS MADS-box transcriptional regulators play important roles during plant development. Based on phylogenetic reconstruction, the AP1/SEP/AGL6 superclade of floral MADS-box genes underwent one or two duplication events in the common ancestor of the core eudicots. However, the functional evolution of the AP1/SEP/AGL6 superclade in basal eudicots remains uncharacterized. Epimedium sagittatum is a basal eudicot species valued for its medicinal properties and showing unique floral morphology. In this study, structural and functional variation of FUL-like (AP1 subfamily), SEP-like and AGL6-like genes in this species was investigated to further our understanding of flower evolution in angiosperms. Detailed investigations into the microsynteny and evolutionary history of the floral A and E class MADS-box genes in eudicots were undertaken and used to trace their genomic rearrangements. METHODS One AP1-like gene, two SEP-like genes and one AGL6-like gene were cloned from E. sagittatum. Their expression patterns were examined using quantitative RT-PCR in different vegetative and reproductive organs at two developmental stages. Yeast two-hybrid assays were carried out among AP1/SEP/AGL6 superclade, AP3/PI and AGAMOUS subfamily members for elucidation of dimerization patterns. In addition, possible formation of a ternary complex involving B class proteins with the A class protein EsFUL-like, the E class SEP-like protein EsAGL2-1 or the AGL6-class protein EsAGL6 were detected using yeast three-hybrid assays. Transgenic Arabidopsis or tobacco plants expressing EsFUL-like, EsAGL2-1 and EsAGL6-like under the cauliflower mosaic virus (CaMV) 35S promoter were generated and analysed. Genomic studies of AP1 syntenic regions in arabidopsis, columbine, strawberry, papaya, peach, grapevine and tomato were conducted for microsyntenic analyses. KEY RESULTS Sequence and phylogenetic analyses showed that EsFUL-like is a member of the AP1 (A class) subfamily, EsAGL2-1 and EsAGL2-2 belong to the SEP-like (E class) subfamily, and EsAGL6-like belongs to the AGL6 (AGL6 class) subfamily. Quantitative RT-PCR analyses revealed that the transcripts of the four genes are absent, or minimal, in vegetative tissues and are most highly expressed in floral organs. Yeast two-hybrid results revealed that of the eight MADS-box proteins tested, only EsAGL6-like, EsAGL2-1 and EsAGL2 were able to form strong homo- and heterodimers, with EsAGL6-like and EsAGL2-1 showing similar interaction patterns. Yeast three-hybrid analysis revealed that EsFUL1-like, EsAGL6-like and EsAGL2-1 (representing the three major lineages of the Epimedium AGL/SEP/ALG6 superclade) could act as bridging proteins in ternary complexes with both EsAP3-2 (B class) and EsPI (B class), which do not heterodimerize themselves. Syntenic analyses of sequenced basal eudicots, rosids and asterids showed that most AP1-like and SEP-like genes have been tightly associated as neighbours since the origin of basal eudicots. Ectopic expression of EsFUL-like in arabidopsis caused early flowering through endogenous high-level expression of AP1 and formation of secondary flowers between the first and second whorls. Tobacco plants with ectopic expression of EsAGL2-1 showed shortened pistils and styles, as well as axillary and extra petals in the initial flower. CONCLUSIONS This study provides a description of EsFUL-like, EsAGL2-1, EsAGL2-2 and EsAGL6-like function divergence and conservation in comparison with a selection of model core eudicots. The study also highlights how organization in genomic segments containing A and E class genes in sequenced model species has resulted in similar topologies of AP1 and SEP-like gene trees.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing, 100700, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Zhineng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Chi Song
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing, 100700, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Di Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yongliang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Alice Hayward
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Yifei Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Hongwen Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- For correspondence. E-mail or
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- For correspondence. E-mail or
| |
Collapse
|
14
|
Chung KS, Lee JH, Lee JS, Ahn JH. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Mol Cells 2013; 35:519-25. [PMID: 23515580 PMCID: PMC3887870 DOI: 10.1007/s10059-013-0030-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/02/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022] Open
Abstract
In flowering plants, fruit dehiscence enables seed dispersal. Here we report that ntt-3D, an activation tagged allele of NO TRANSMITTING TRACT (NTT), caused a failure of fruit dehiscence in Arabidopsis. We identified ntt-3D, in which the 35S enhancer was inserted adjacent to AT3G-57670, from our activation tagged mutant library. ntt-3D mutants showed serrated leaves, short siliques, and indehiscence phenotypes. NTT-overexpressing plants largely phenocopied the ntt-3D plants. As the proximate cause of the indehiscence, ntt-3D plants exhibited a near absence of valve margin and lignified endocarp b layer in the carpel. In addition, the replum was enlarged in ntt-3D mutants. NTT expression reached a peak in flowers at stage 11 and gradually decreased thereafter and pNTT::GUS expression was mainly observed in the replum, indicating a potential role in fruit patterning. NTT:GFP localized in the nucleus and cytoplasm. FRUITFULL (FUL) expression was downregulated in ntt-3D mutants and ntt-3D suppressed upregulation of FUL in replumless mutants. These results indicate that NTT suppresses FUL, indicating a potential role in patterning of the silique. In seed crops, a reduction in pod dehiscence can increase yield by decreasing seed dispersal; therefore, our results may prove useful as a basis to improve crop yield.
Collapse
Affiliation(s)
- Kyung Sook Chung
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136–701,
Korea
| | - Jeong Hwan Lee
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136–701,
Korea
| | | | - Ji Hoon Ahn
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136–701,
Korea
| |
Collapse
|
15
|
Hong SY, Seo PJ, Ryu JY, Cho SH, Woo JC, Park CM. A competitive peptide inhibitor KIDARI negatively regulates HFR1 by forming nonfunctional heterodimers in Arabidopsis photomorphogenesis. Mol Cells 2013; 35:25-31. [PMID: 23224238 PMCID: PMC3887847 DOI: 10.1007/s10059-013-2159-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/06/2012] [Accepted: 11/14/2012] [Indexed: 01/09/2023] Open
Abstract
Dynamic dimer formation is an elaborate means of modulating transcription factor activities in diverse cellular processes. The basic helix-loop-helix (bHLH) transcription factor LONG HYPOCOTYL IN FAR-RED 1 (HFR1), for example, plays a role in plant photomorphogenesis by forming non-DNA binding heterodimers with PHYTOCHROMEINTERACTING FACTORS (PIFs). Recent studies have shown that a small HLH protein KIDARI (KDR) negatively regulates the HFR1 activity in the process. However, molecular mechanisms underlying the KDR control of the HFR1 activity are unknown. Here, we demonstrate that KDR attenuates the HFR1 activity by competitively forming nonfunctional heterodimers, causing liberation of PIF4 from the transcriptionally inactive HFR1-PIF4 complex. Accordingly, the photomorphogenic hypocotyl growth of the HFR1-overexpressing plants can be suppressed by KDR coexpression, as observed in the HFR1-deficient hfr1-201 mutant. These results indicate that the PIF4 activity is modulated through a double layer of competitive inhibition by HFR1 and KDR, which could in turn ensure fine-tuning of the PIF4 activity under fluctuating light conditions.
Collapse
Affiliation(s)
- Shin-Young Hong
- Department of Chemistry, Seoul National University, Seoul 151-742,
Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 151-742,
Korea
- Department of Chemistry, Chonbuk National University, Jeonju 561-756,
Korea
| | - Jae Yong Ryu
- Department of Chemistry, Seoul National University, Seoul 151-742,
Korea
| | - Shin-Hae Cho
- Department of Chemistry, Seoul National University, Seoul 151-742,
Korea
| | - Je-Chang Woo
- Department of Biological Science, Mokpo National University, Muan 534-729,
Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742,
Korea
| |
Collapse
|
16
|
Huang X, Effgen S, Meyer RC, Theres K, Koornneef M. Epistatic natural allelic variation reveals a function of AGAMOUS-LIKE6 in axillary bud formation in Arabidopsis. THE PLANT CELL 2012; 24:2364-79. [PMID: 22730404 PMCID: PMC3406895 DOI: 10.1105/tpc.112.099168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/22/2012] [Accepted: 06/06/2012] [Indexed: 05/18/2023]
Abstract
In the Arabidopsis multiparent recombinant inbred line mapping population, a limited number of plants were detected that lacked axillary buds in most of the axils of the cauline (stem) leaves, but formed such buds in almost all rosette axils. Genetic analysis showed that polymorphisms in at least three loci together constitute this phenotype, which only occurs in late-flowering plants. Early flowering is epistatic to two of these loci, called REDUCED SHOOT BRANCHING1 (RSB1) and RSB2, which themselves do not affect flowering time. Map-based cloning and confirmation by transformation with genes from the region where RSB1 was identified by fine-mapping showed that a specific allele of AGAMOUS-Like6 from accession C24 conferred reduced branching in the cauline leaves. Site-directed mutagenesis in the Columbia allele revealed the causal amino acid substitution, which behaved as dominant negative, as was concluded from a loss-of-function mutation that showed the same phenotype in the late-flowering genetic background. This causal allele occurs at a frequency of 15% in the resequenced Arabidopsis thaliana accessions and correlated with reduced stem branching only in late-flowering accessions. The data show the importance of natural variation and epistatic interactions in revealing gene function.
Collapse
Affiliation(s)
- Xueqing Huang
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Sigi Effgen
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Laboratory of Genetics, Wageningen University, NL-6708 PE Wageningen, The Netherlands
- Address correspondence to
| |
Collapse
|
17
|
Troncoso-Ponce MA, Mas P. Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:545-553. [PMID: 22230762 DOI: 10.1093/mp/ssr117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The circadian clock temporally coordinates plant growth and metabolism in close synchronization with the diurnal and seasonal environmental changes. Research over the last decade has identified a number of clock components and a variety of regulatory mechanisms responsible for the rhythmic oscillations in metabolic and physiological activities. At the core of the clock, transcriptional/translational feedback loops modulate the expression of a significant proportion of the genome. In this article, we briefly describe some of the very recent advances that have improved our understanding of clock organization and function in Arabidopsis thaliana. The new studies illustrate the role of clock protein complex formation on circadian gating of plant growth and identify alternative splicing as a new regulatory mechanism for clock function. Examination of key clock properties such as temperature compensation has also opened new avenues for functional research within the plant clockwork. The emerging connections between the circadian clock and metabolism, hormone signaling and response to biotic and abiotic stress also add new layers of complexity to the clock network and underscore the significance of the circadian clock regulating the daily life of plants.
Collapse
|
18
|
Kim W, Ahn HJ, Chiou TJ, Ahn JH. The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol Cells 2011; 32:83-8. [PMID: 21533549 PMCID: PMC3887651 DOI: 10.1007/s10059-011-1043-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/26/2022] Open
Abstract
A moderate change in ambient temperature significantly affects plant physiology including flowering time. MiR399 and its target gene PHOSPHATE 2 (PHO2) are known to play a role in the maintenance of phosphate homeostasis. However, the regulation of flowering time by the miR399-PHO2 module has not been investigated. As we have previously identified miR399 as an ambient temperature-responsive miRNA, we further investigated whether a change in expression of the miR399-PHO2 module affects flowering time in response to ambient temperature changes. Here, we showed that miR399b-overexpressing plants and a loss-of-function allele of PHO2 (pho2) exhibited an early flowering phenotype only at normal temperature (23°C). Interestingly, their flowering time at lower temperature (16°C) was similar to that of wild-type plants, suggesting that alteration in flowering time by miR399 and its target PHO2 was seen only at normal temperature (23°C). Flowering time ratio (16°C/23°C) revealed that miR399b-overexpressing plants and pho2 mutants showed increased sensitivity to ambient temperature changes. Expression analysis indicated that expression of TWIN SISTER OF FT (TSF) was increased in miR399b-overexpressing plants and pho2 mutants at 23°C, suggesting that their early flowering phenotype is associated with TSF upregulation. Taken together, our results suggest that miR399, an ambient temperature-responsive miRNA, plays a role in ambient temperature-responsive flowering in Arabidopsis.
Collapse
Affiliation(s)
| | | | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taiwan, ROC
| | | |
Collapse
|