1
|
Uthumange SS, Liew AJH, Chee XW, Yeong KY. Ringing medicinal chemistry: The importance of 3-membered rings in drug discovery. Bioorg Med Chem 2024; 116:117980. [PMID: 39536361 DOI: 10.1016/j.bmc.2024.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Scaffold-based drug design has become increasingly prominent in the pharmaceutical field due to the systematic and effective approach through which it facilitates the development of novel drugs. The identification of key scaffolds provides medicinal chemists with a fundamental framework for subsequent research. With mounting evidence suggesting that increased aromaticity could impede the chances of developmental success for oral drug candidates, there is an imperative need for a more thorough exploration of alternative ring systems to mitigate attrition risks. The unique characteristics exhibited by three-membered rings have led to their application in medicinal chemistry. This review explores the use of cyclopropane-, aziridine-, thiirane-, and epoxide-containing compounds in drug discovery, focusing on their roles in approved medicines and drug candidates. Specifically, the importance of the three-membered ring systems in rending biological activity for each drug molecule was highlighted. The undeniable therapeutic value and intriguing features presented by these compounds suggest significant pharmacological potential, providing justification for their incorporation into the design of novel drug candidates.
Collapse
Affiliation(s)
- Sahani Sandalima Uthumange
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Angie Jun Hui Liew
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Xavier Wezen Chee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
| |
Collapse
|
2
|
Fischer J, Erkner E, Radszuweit P, Hentrich T, Keppeler H, Korkmaz F, Schulze-Hentrich J, Fitzel R, Lengerke C, Schneidawind D, Schneidawind C. Only Infant MLL-Rearranged Leukemia Is Susceptible to an Inhibition of Polo-like Kinase 1 (PLK-1) by Volasertib. Int J Mol Sci 2024; 25:12760. [PMID: 39684470 DOI: 10.3390/ijms252312760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
MLL-rearranged (MLLr) leukemia is characterized by a poor prognosis. Depending on the cell of origin, it differs in the aggressiveness and therapy response. For instance, in adults, volasertib blocking Polo-like kinase 1 (PLK-1) exhibited limited success. Otherwise, PLK-1 characterizes an infant MLLr signature, indicating potential sensitivity. By using our CRISPR/Cas9 MLLr model in CD34+ cells from human cord blood (huCB) and bone marrow (huBM) mimicking the infant and adult patient diseases, we were able to shed light on this phenomenon. The PLK-1 mRNA level was significantly increased in our huCB compared to the huBM model, which was underpinned by analyzing infant and adult MLLr leukemia patients. Importantly, the expression levels correlated with a functional response. Volasertib induced a significant dose-dependent decrease in proliferation and cell cycle arrest, most pronounced in the infant model. Mechanistically, upon volasertib treatment, we uncovered negative feedback only in the huBM model by compensatory upregulation of PLK-1 and related genes like AURKA involved in mitosis. Importantly, the poor response could be overcome by a combinatorial strategy with alisertib, an Aurora kinase A inhibitor. Our study emphasizes the importance of considering the cell of origin in therapeutic decision-making and provides the rationale for evaluating volasertib and alisertib in MLLr leukemia.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Julia Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Herrera-Ochoa D, Bravo I, Garzón-Ruiz A. Monitoring cancer treatments in melanoma cells using a fluorescence lifetime nanoprobe based on a CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine. Colloids Surf B Biointerfaces 2024; 245:114265. [PMID: 39321721 DOI: 10.1016/j.colsurfb.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Anticancer therapies with cisplatin and volasertib (BI-6727) were monitored by fluorescence lifetime imaging microscopy (FLIM) in live SK-Mel-2 melanoma cells. A CdSe/ZnS quantum dot functionalized with a peptide containing D-penicillamine and histidine (CdSe/ZnS-PH) was used as intracellular pH fluorescent probe. A faster cytosol acidification was observed for cells treated with cisplatin when compared to volasertib. The first changes in the intracellular pH were found after 2 hours of treatment with cisplatin and 8 hours with volasertib. Additionally, the relationship between cytosol acidification and apoptosis was investigated using an innovative methodology based on time-resolved fluorescence measurements. Similar low percentages of apoptotic cells were observed after short incubation periods (2 - 8 hours) with both drugs. In contrast, late apoptosis and death were found for a large fraction of cells during 24-hour incubation with cisplatin but not volasertib. Thus, the early acidification observed in cisplatin treatment could accelerate apoptosis and cell death. Despite volasertib treatment shows slower mechanism of action than cisplatin, similar inhibitory effects were found for both drugs at longer incubation periods (72 hours). This study proves the potential of CdSe/ZnS-PH nanoparticle as a fluorescence lifetime probe in the study of the mechanism of action of antitumor drugs.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, Albacete 02008, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, Albacete 02071, Spain.
| |
Collapse
|
4
|
Khan A, Liu G, Zhang G, Li X. Radiation-resistant bacteria in desiccated soil and their potentiality in applied sciences. Front Microbiol 2024; 15:1348758. [PMID: 38894973 PMCID: PMC11184166 DOI: 10.3389/fmicb.2024.1348758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.
Collapse
Affiliation(s)
- Asaf Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Zhou N, Zheng C, Tan H, Luo L. Identification of PLK1-PBD Inhibitors from the Library of Marine Natural Products: 3D QSAR Pharmacophore, ADMET, Scaffold Hopping, Molecular Docking, and Molecular Dynamics Study. Mar Drugs 2024; 22:83. [PMID: 38393054 PMCID: PMC10890274 DOI: 10.3390/md22020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
PLK1 is found to be highly expressed in various types of cancers, but the development of inhibitors for it has been slow. Most inhibitors are still in clinical stages, and many lack the necessary selectivity and anti-tumor effects. This study aimed to create new inhibitors for the PLK1-PBD by focusing on the PBD binding domain, which has the potential for greater selectivity. A 3D QSAR model was developed using a dataset of 112 compounds to evaluate 500 molecules. ADMET prediction was then used to select three molecules with strong drug-like characteristics. Scaffold hopping was employed to reconstruct 98 new compounds with improved drug-like properties and increased activity. Molecular docking was used to compare the efficient compound abbapolin, confirming the high-activity status of [(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium,[(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium. Molecular dynamics simulations and MMPBSA were conducted to evaluate the stability of the compounds in the presence of proteins. An in-depth analysis of [(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium identified them as potential candidates for PLK1 inhibitors.
Collapse
Affiliation(s)
- Nan Zhou
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (N.Z.); (C.Z.); (H.T.)
| | - Chuangze Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (N.Z.); (C.Z.); (H.T.)
| | - Huiting Tan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (N.Z.); (C.Z.); (H.T.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
6
|
Liang K, Wang Q, Qiu L, Gong X, Chen Z, Zhang H, Ding K, Liu Y, Wei J, Lin S, Fu S, Du H. Combined Inhibition of UBE2C and PLK1 Reduce Cell Proliferation and Arrest Cell Cycle by Affecting ACLY in Pan-Cancer. Int J Mol Sci 2023; 24:15658. [PMID: 37958642 PMCID: PMC10650476 DOI: 10.3390/ijms242115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (K.L.); (Q.W.); (L.Q.); (X.G.); (Z.C.); (H.Z.); (K.D.); (Y.L.); (J.W.); (S.L.); (S.F.)
| |
Collapse
|
7
|
Riantana H, Waenphimai O, Mahalapbutr P, Karnchanapandh K, Vaeteewoottacharn K, Wongkham S, Sawanyawisuth K. BI6727 and GSK461364A, potent PLK1 inhibitors induce G2/M arrest and apoptosis against cholangiocarcinoma cell lines. Pathol Res Pract 2023; 248:154678. [PMID: 37454493 DOI: 10.1016/j.prp.2023.154678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential mitotic checkpoint protein that plays a key role in cell cycle division. Overexpression of PLK1 has been associated with poor prognosis in various cancers. Cholangiocarcinoma (CCA) is a lethal bile duct cancer and the current treatments in inoperable patients have not been satisfactory. In order to develop novel targeted therapies, we investigated the efficacy of BI6727 (volasertib) and GSK461364A, polo-like kinase 1 (PLK1) inhibitors in KKU-100 and KKU-213A CCA cell lines. PLK1 expression was significantly up-regulated in CCA cases compared with normal tissues based on the results derived from GEPIA. Western blot results exhibited PLK1 protein expression in both CCA cell lines. Molecular dynamics simulations and free energy calculations based on MM/GBSA method revealed that BI6727-PLK1 and GSK461364A-PLK1 complexes were stable in an aqueous environment, and their complexation was mainly driven by Van der Waals interaction. BI6727 and GSK461364A clearly suppressed CCA cell proliferation and induced G2/M arrest, accompanied with upregulation of cyclin B1 and phosphorylated Histone H3 at Ser10 (pS10H3), specific markers of mitosis. Furthermore, both compounds triggered mitotic catastrophe followed by cell apoptosis via activation of PARP and Caspase 3, as well as downregulation of Mcl-1 anti-apoptotic protein in both CCA cell lines. In conclusion, pharmacologic PLK1 inhibition by BI6727 and GSK461364A blocked survival of CCA cells by several mechanisms. Our study provides evidence that BI6727 and GSK461364A could be alternative drugs and have potential implications at the clinical level for CCA therapy.
Collapse
Affiliation(s)
- Handy Riantana
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Orawan Waenphimai
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kun Karnchanapandh
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
8
|
Fernández-Sainz J, Pacheco-Liñán PJ, Ripoll C, González-Fuentes J, Albaladejo J, Bravo I, Garzón-Ruiz A. Unusually High Affinity of the PLK Inhibitors RO3280 and GSK461364 to HSA and Its Possible Pharmacokinetic Implications. Mol Pharm 2023; 20:1631-1642. [PMID: 36812406 PMCID: PMC9997069 DOI: 10.1021/acs.molpharmaceut.2c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The binding processes of two Polo-like kinase inhibitors, RO3280 and GSK461364, to the human serum albumin (HSA) protein as well as the protonation equilibria of both compounds have been studied combining absorbance and fluorescence spectroscopy experiments together with density functional theory calculations. We found that the charge states of RO3280 and GSK461364 are +2 and +1, respectively, at the physiological pH. Nevertheless, RO3280 binds to HSA in the charge state +1 prior to a deprotonation pre-equilibrium. Binding constants to site I of HSA of 2.23 × 106 and 8.80 × 104 M-1 were determined for RO3280 and GSK461364, respectively, at 310 K. The binding processes of RO3280 and GSK461364 to HSA are entropy- and enthalpy-driven, respectively. The positive enthalpy found for the RO3280-HSA complex formation could be related to a proton pre-equilibrium of RO3280.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Consuelo Ripoll
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Joaquín González-Fuentes
- Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, 02008 Albacete, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, 02008 Albacete, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| |
Collapse
|
9
|
Fernández-Sainz J, Pacheco-Liñán PJ, Granadino-Roldán JM, Bravo I, Rubio-Martínez J, Albaladejo J, Garzón-Ruiz A. Shedding light on the binding mechanism of kinase inhibitors BI-2536, Volasetib and Ro-3280 with their pharmacological target PLK1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112477. [PMID: 35644070 DOI: 10.1016/j.jphotobiol.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In the present work, the interactions of the novel kinase inhibitors BI-2536, Volasetib (BI-6727) and Ro-3280 with the pharmacological target PLK1 have been studied by fluorescence spectroscopy and molecular dynamics calculations. High Stern-Volmer constants were found in fluorescence experiments suggesting the formation of stable protein-ligand complexes. In addition, it was observed that the binding constant between BI-2536 and PLK1 increases about 100-fold in presence of the phosphopeptide Cdc25C-p that docks to the polo box domain of the protein and releases the kinase domain. All the determined binding constants are higher for the kinase inhibitors than for their competitor for the active center (ATP) being BI-2536 and Volasertib the inhibitors that showed more affinity for PLK1. Calculated binding free energies confirmed the higher affinity of PLK1 for BI-2536 and Volasertib than for ATP. The higher affinity of the inhibitors to PLK1 compared to ATP was mainly attributed to stronger van der Waals interactions. Results may help with the challenge of designing and developing new kinase inhibitors more effective in clinical cancer therapy.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Jaime Rubio-Martínez
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB), Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain.
| |
Collapse
|
10
|
Patel JR, Thangavelu P, Terrell RM, Israel B, Sarkar AB, Davidson AM, Zhang K, Khupse R, Tilghman SL. A Novel Allosteric Inhibitor Targets PLK1 in Triple Negative Breast Cancer Cells. Biomolecules 2022; 12:531. [PMID: 35454120 PMCID: PMC9024838 DOI: 10.3390/biom12040531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
While Polo-like kinase 1 (PLK1) inhibitors have shown promise in clinical settings for treating triple-negative breast cancer tumors and other solid tumors, they are limited by their ability to bind non-selectively to the ATP kinase domain. Therefore, we sought to develop a PLK1 allosteric inhibitor targeting the PLK1 T-loop (a switch responsible for activation) and evaluate its effects in triple-negative breast cancer cells. A novel compound, RK-10, was developed based on an in silico model, and its effects on specificity, viability, migration, and cell cycle regulation in MCF-10A and MDA-MB 231 cells were evaluated. When MDA-MB 231 cells were treated with 0−50 µg/mL RK-10, phospho-PLK1 (Thr-210) was decreased in cells cultured adherently and cells cultured as mammospheres. RK-10 significantly inhibited viability after 24 h; however, by 48 h, 25−50 µM RK-10 caused >50% reduction. RK-10 attenuated wound healing by up to 99.7% and caused S and G2/M cell cycle arrest, which was associated with increased p21 expression. We developed a novel allosteric inhibitor which mediates anti-proliferative and anti-migratory properties through targeting phospho-PLK1 (Thr-210) in mammospheres and causing S phase and G2/M cell cycle arrest. Further development of PLK1 allosteric inhibitors may be a promising approach for TNBC treatment.
Collapse
Affiliation(s)
- Jankiben R. Patel
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institutes of Public Health, Florida A&M University, 1415 S. Martin L. King Jr. Blvd, Tallahassee, FL 32307, USA; (J.R.P.); (R.M.T.); (B.I.); (A.M.D.)
| | - Prasad Thangavelu
- College of Pharmacy, University of Findlay, 1000 N Main St., Findlay, OH 45840, USA; (P.T.); (A.B.S.)
| | - Renee M. Terrell
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institutes of Public Health, Florida A&M University, 1415 S. Martin L. King Jr. Blvd, Tallahassee, FL 32307, USA; (J.R.P.); (R.M.T.); (B.I.); (A.M.D.)
| | - Bridg’ette Israel
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institutes of Public Health, Florida A&M University, 1415 S. Martin L. King Jr. Blvd, Tallahassee, FL 32307, USA; (J.R.P.); (R.M.T.); (B.I.); (A.M.D.)
| | - Arindam Basu Sarkar
- College of Pharmacy, University of Findlay, 1000 N Main St., Findlay, OH 45840, USA; (P.T.); (A.B.S.)
| | - A. Michael Davidson
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institutes of Public Health, Florida A&M University, 1415 S. Martin L. King Jr. Blvd, Tallahassee, FL 32307, USA; (J.R.P.); (R.M.T.); (B.I.); (A.M.D.)
| | - Kun Zhang
- Department of Computer Science, Division of Mathematical and Physical Sciences, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, 1000 N Main St., Findlay, OH 45840, USA; (P.T.); (A.B.S.)
| | - Syreeta L. Tilghman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institutes of Public Health, Florida A&M University, 1415 S. Martin L. King Jr. Blvd, Tallahassee, FL 32307, USA; (J.R.P.); (R.M.T.); (B.I.); (A.M.D.)
| |
Collapse
|
11
|
Yim MS, Hwang YS, Bang JK, Jung DW, Kim JM, Yi GR, Lee G, Ryu EK. Morphologically homogeneous, pH-responsive gold nanoparticles for non-invasive imaging of HeLa cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102394. [PMID: 33857687 DOI: 10.1016/j.nano.2021.102394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/02/2023]
Abstract
Gold nanoparticles (AuNPs) have been widely used as nanocarriers in drug delivery to improve the efficiency of chemotherapy treatment and enhance early disease detection. The advantages of AuNPs include their excellent biocompatibility, easy modification and functionalization, facile synthesis, low toxicity, and controllable particle size. This study aimed to synthesize a conjugated citraconic anhydride link between morphologically homogeneous AuNPs and doxorubicin (DOX) (DOX-AuNP). The carrier was radiolabeled for tumor diagnosis using positron emission tomography (PET). The systemically designed DOX-AuNP was cleaved at the citraconic anhydride linker site under the mild acidic conditions of a cancer cell, thereby releasing DOX. Subsequently, the AuNPs aggregated via electrostatic attraction. HeLa cancer cells exhibited a high uptake of the radiolabeled DOX-AuNP. Moreover, PET tumor images were obtained using radiolabeled DOX-AuNP in cancer xenograft mouse models. Therefore, DOX-AuNP is expected to provide a valuable insight into the use of radioligands to detect tumors using PET.
Collapse
Affiliation(s)
- Min Su Yim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Yeon Sil Hwang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeong Kyu Bang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea; Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Dae-Woong Jung
- Korea Basic Science Institute, Daejeon, Republic of Korea; Department of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jun Min Kim
- Korea Basic Science Institute, Daejeon, Republic of Korea; Department of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gaehang Lee
- Korea Basic Science Institute, Daejeon, Republic of Korea.
| | - Eun Kyoung Ryu
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea; Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Xu D, Li C. Regulation of the SIAH2-HIF-1 Axis by Protein Kinases and Its Implication in Cancer Therapy. Front Cell Dev Biol 2021; 9:646687. [PMID: 33842469 PMCID: PMC8027324 DOI: 10.3389/fcell.2021.646687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The cellular response to hypoxia is a key biological process that facilitates adaptation of cells to oxygen deprivation (hypoxia). This process is critical for cancer cells to adapt to the hypoxic tumor microenvironment resulting from rapid tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor and a master regulator of the cellular response to hypoxia. The activity of HIF-1 is dictated primarily by its alpha subunit (HIF-1α), whose level and/or activity are largely regulated by an oxygen-dependent and ubiquitin/proteasome-mediated process. Prolyl hydroxylases (PHDs) and the E3 ubiquitin ligase Von Hippel-Lindau factor (VHL) catalyze hydroxylation and subsequent ubiquitin-dependent degradation of HIF-1α by the proteasome. Seven in Absentia Homolog 2 (SIAH2), a RING finger-containing E3 ubiquitin ligase, stabilizes HIF-1α by targeting PHDs for ubiquitin-mediated degradation by the proteasome. This SIAH2-HIF-1 signaling axis is important for maintaining the level of HIF-1α under both normoxic and hypoxic conditions. A number of protein kinases have been shown to phosphorylate SIAH2, thereby regulating its stability, activity, or substrate binding. In this review, we will discuss the regulation of the SIAH2-HIF-1 axis via phosphorylation of SIAH2 by these kinases and the potential implication of this regulation in cancer biology and cancer therapy.
Collapse
Affiliation(s)
- Dazhong Xu
- Department of Pathology, Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Cen Li
- Department of Pathology, Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
13
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Shakeel I, Basheer N, Hasan GM, Afzal M, Hassan MI. Polo-like Kinase 1 as an emerging drug target: structure, function and therapeutic implications. J Drug Target 2021; 29:168-184. [PMID: 32886539 DOI: 10.1080/1061186x.2020.1818760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 1 (PLK1) is a conserved mitotic serine-threonine protein kinase, functions as a regulatory protein, and is involved in the progression of the mitotic cycle. It plays important roles in the regulation of cell division, maintenance of genome stability, in spindle assembly, mitosis, and DNA-damage response. PLK1 is consist of a N-terminal serine-threonine kinase domain, and a C-terminal Polo-box domain (regulatory site). The expression of PLK1 is controlled by transcription repressor in the G1 stage and transcription activators in the G2 stage of the cell cycle. Overexpression of PLK1 results in undermining of checkpoints causes excessive cellular division resulting in abnormal cell growth, leading to the development of cancer. Blocking the expression of PLK1 by an antibody, RNA interference, or kinase inhibitors, causes a subsequent reduction in the proliferation of tumour cells and induction of apoptosis in tumour cells without affecting the healthy cells, suggesting an attractive target for drug development. In this review, we discuss detailed information on expression, gene and protein structures, role in different diseases, and progress in the design and development of PLK1 inhibitors. We have performed an in-depth analysis of the PLK1 inhibitors and their therapeutic implications with special focus to the cancer therapeutics.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Neha Basheer
- Institute of Neuroimmunology, Slovak Republic Bratislava, Bratislava, Slovakia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Yan F, Liu G, Chen T, Fu X, Niu MM. Structure-Based Virtual Screening and Biological Evaluation of Peptide Inhibitors for Polo-Box Domain. Molecules 2019; 25:E107. [PMID: 31892137 PMCID: PMC6982974 DOI: 10.3390/molecules25010107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022] Open
Abstract
The polo-box domain of polo-like kinase 1 (PLK1-PBD) is proved to have crucial roles in cell proliferation. Designing PLK1-PBD inhibitors is challenging due to their poor cellular penetration. In this study, we applied a virtual screening workflow based on a combination of structure-based pharmacophore modeling with molecular docking screening techniques, so as to discover potent PLK1-PBD peptide inhibitors. The resulting 9 virtual screening peptides showed affinities for PLK1-PBD in a competitive binding assay. In particular, peptide 5 exhibited an approximately 100-fold increase in inhibitory activity (IC50 = 70 nM), as compared with the control poloboxtide. Moreover, cell cycle experiments indicated that peptide 5 effectively inhibited the expression of p-Cdc25C and cell cycle regulatory proteins by affecting the function of PLK1-PBD, thereby inducing mitotic arrest at the G2/M phase. Overall, peptide 5 can serve as a potent lead for further investigation as PLK1-PBD inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (F.Y.); (G.L.); (T.C.); (X.F.)
| |
Collapse
|
16
|
Zhang X, Yue D, Wang Y, Zhou Y, Liu Y, Qiu Y, Tian F, Yu Y, Zhou Z, Wei W. PASTMUS: mapping functional elements at single amino acid resolution in human cells. Genome Biol 2019; 20:279. [PMID: 31842968 PMCID: PMC6913009 DOI: 10.1186/s13059-019-1897-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
Identification of functional elements for a protein of interest is important for achieving a mechanistic understanding. However, it remains cumbersome to assess each and every amino acid of a given protein in relevance to its functional significance. Here, we report a strategy, PArsing fragmented DNA Sequences from CRISPR Tiling MUtagenesis Screening (PASTMUS), which provides a streamlined workflow and a bioinformatics pipeline to identify critical amino acids of proteins in their native biological contexts. Using this approach, we map six proteins-three bacterial toxin receptors and three cancer drug targets, and acquire their corresponding functional maps at amino acid resolution.
Collapse
Affiliation(s)
- Xinyi Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Di Yue
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yinan Wang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yuexin Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yeting Qiu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Feng Tian
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Li Z, Zhang Z, Sun H, Xu L, Jiang C. Identification of novel peptidomimetics targeting the polo-box domain of polo-like kinase 1. Bioorg Chem 2019; 91:103148. [PMID: 31376784 DOI: 10.1016/j.bioorg.2019.103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
A series of new peptidomimetics targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was identified based on the potent and selective pentapeptide Plk1 PBD inhibitor PLHSpT. Unnatural amino acid residues were introduced to the newly designed compound and the N-terminal substituent of the peptidomimetic was investigated. The optimized compound 9 inhibited the Plk1 PBD with IC50 of 0.267 μM and showed almost no inhibition to Plk2 PBD or Plk3 PBD at 100 μM. Biolayer interferometry studies demonstrated that compound 9 showed potent binding affinity to Plk1 with a Kd value of 0.164 μM, while no Kd were detected against Plk2 and Plk3. Compound 9 showed improved stability in rat plasma compared to PLHSpT. Binding mode analysis was performed and in agreement with the observed experimental results. There are only two natural amino acids remained in the chemical structure of 9. This study may provide new information for further research on Plk1 PBD inhibitors.
Collapse
Affiliation(s)
- Zhiyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenguo Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China.
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Li Z, Zhang Z, Chen Y, Tang S, Lin T, Huang J, Li B, Jiang C. Design, synthesis and evaluation of d-amino acid-containing peptidomimetics targeting the polo-box domain of polo-like kinase 1. Bioorg Chem 2019; 85:534-540. [PMID: 30807896 DOI: 10.1016/j.bioorg.2019.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
A series of d-amino acid-containing peptidomimetics were designed, synthesized as novel polo-like kinase 1 (Plk1) polo-box domain (PBD) inhibitors based on the reported peptide Plk1 PBD inhibitor. Their inhibitory activity to Plk1, Plk2, and Plk3 PBD were evaluated using our fluorescence polarization (FP) assay. Compound 18 bound to Plk1 PBD with IC50 of 0.80 μM and showed nearly no inhibition to Plk2 PBD or Plk3 PBD at 100 μM. Compound 18 induced Hela cells to undergo apoptosis by increasing the ratio of the cells at the G2/M phase by decreasing the neosynthesized proteins in a dose-dependent manner from 50 to 150 μM. Compound 18 showed improved stability in rat plasma compared to l-peptide inhibitor LHSpTA. These novel d-amino acid modified selective Plk1 PBD inhibitors may provide new lead compounds for further optimization.
Collapse
Affiliation(s)
- Zhiyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenguo Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhong Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shijun Tang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Tongyuan Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Jingfang Huang
- Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Chen Y, Li Z, Liu Y, Lin T, Sun H, Yang D, Jiang C. Identification of novel and selective non-peptide inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg Chem 2018; 81:278-288. [PMID: 30170276 DOI: 10.1016/j.bioorg.2018.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 01/05/2023]
Abstract
A series of non-peptide inhibitors targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was designed based on the potent and selective minimal tripeptide Plk1 PBD inhibitor. Seven compounds were designed, synthesized and evaluated for fluorescence polarization (FP) assay. The most promising compound 10 bound to Plk1 PBD with IC50 of 3.37 μM and had no binding to Plk2 PBD or Plk3 PBD at 100 μM. Molecular docking study was performed and possible binding mode was proposed. MM/GBSA binding free energy calculation were in agreement with the observed experimental results. These novel non-peptide selective Plk1 PBD inhibitors provided new lead compounds for further optimization.
Collapse
Affiliation(s)
- Yanhong Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Tongyuan Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Dasong Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
21
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
22
|
Liu K, Fang L, Sun H, Pan Z, Zhang J, Chen J, Shao X, Wang W, Tan Y, Ding Z, Ao L, Wu C, Liu X, Li H, Wang R, Su W, Li H. Targeting Polo-like Kinase 1 by a Novel Pyrrole-Imidazole Polyamide-Hoechst Conjugate Suppresses Tumor Growth In Vivo. Mol Cancer Ther 2018; 17:988-1002. [PMID: 29483218 DOI: 10.1158/1535-7163.mct-17-0747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/13/2017] [Accepted: 02/19/2018] [Indexed: 11/16/2022]
Abstract
The serine/threonine kinase Polo-like kinase 1 (Plk1) plays a pivotal role in cell proliferation and has been validated as a promising anticancer drug target. However, very limited success has been achieved in clinical applications using existing Plk1 inhibitors, due to lack of sufficient specificity toward Plk1. To develop a novel Plk1 inhibitor with high selectivity and efficacy, we designed and synthesized a pyrrole-imidazole polyamide-Hoechst conjugate, PIP3, targeted to specific DNA sequence in the PLK1 promoter. PIP3 could specifically inhibit the cell cycle-regulated Plk1 expression and consequently retard tumor cell growth. Cancer cells treated with PIP3 exhibited severe mitotic defects and increased apoptosis, whereas normal cells were not affected by PIP3 treatment. Furthermore, subcutaneous injection of PIP3 into mice bearing human cancer xenografts induced significant tumor growth suppression with low host toxicity. Therefore, PIP3 exhibits the potential as an effective agent for targeted cancer therapy. Mol Cancer Ther; 17(5); 988-1002. ©2018 AACR.
Collapse
Affiliation(s)
- Ke Liu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lijing Fang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Haiyan Sun
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyin Pan
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jianchao Zhang
- Cancer Research Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Juntao Chen
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Ximing Shao
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wei Wang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yuanyan Tan
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhihao Ding
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lijiao Ao
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chunlei Wu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Huashun Li
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine & Advanced Institute of Translational Medicine, Shanghai, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Wu Su
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Sun J, Liu HY, Xu RF, Zhu HL. Identification of nitroimidazole-oxime derivatives targeting the polo-box domain of polo-like kinase 1. Bioorg Med Chem 2017; 25:6581-6588. [PMID: 29100732 DOI: 10.1016/j.bmc.2017.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/15/2017] [Accepted: 10/25/2017] [Indexed: 11/23/2022]
Abstract
Recent progress in the development of small molecular skeleton-derived polo-like kinase (PLK1) catalytic domain (KD) inhibitors has led to the synthesis of multiple ligands with high binding affinity. However, few systematic analyses have been conducted to identify key PLK1-PBD domain and characterize their interactions with potent PLK1 inhibitors. Therefore, we designed a series of PLK1-PBD inhibitors with an in silico scaffold modification strategy. A docking simulation combined with a primary screen in vitro were performed to filter for the lead compound, which was then substituted, synthesized and evaluated by a variety of bioassays. The biological profile of 4v suggests that this compound may be developed as a potential anticancer agent.
Collapse
Affiliation(s)
- Juan Sun
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China; Elion Nature Biological Technology Co., Ltd, Nanjing 210046, PR China.
| | - Han-Yu Liu
- School of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Ruo-Fei Xu
- Shandong Experimental High School, Jinan 250001, PR China
| | - Hai-Liang Zhu
- Elion Nature Biological Technology Co., Ltd, Nanjing 210046, PR China
| |
Collapse
|
24
|
Kiryanov A, Natala S, Jones B, McBride C, Feher V, Lam B, Liu Y, Honda K, Uchiyama N, Kawamoto T, Hikichi Y, Zhang L, Hosfield D, Skene R, Zou H, Stafford J, Cao X, Ichikawa T. Structure-based design and SAR development of 5,6-dihydroimidazolo[1,5-f]pteridine derivatives as novel Polo-like kinase-1 inhibitors. Bioorg Med Chem Lett 2017; 27:1311-1315. [PMID: 28169164 DOI: 10.1016/j.bmcl.2016.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022]
Abstract
Using structure-based drug design, we identified a novel series of 5,6-dihydroimidazolo[1,5-f]pteridine PLK1 inhibitors. Rational improvements to compounds of this class resulted in single-digit nanomolar enzyme and cellular activity against PLK1, and oral bioavailability. Compound 1 exhibits >7 fold induction of phosphorylated Histone H3 and is efficacious in an in vivo HT-29 tumor xenograft model.
Collapse
Affiliation(s)
- Andre Kiryanov
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA.
| | - Srinivasa Natala
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Benjamin Jones
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | | | - Victoria Feher
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Betty Lam
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Yan Liu
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Kouhei Honda
- Takeda Pharmaceutical Company, Ltd, 2-26-1, Muraokahigashi, Fujisawa, Kanagawa 251-855, Japan
| | - Noriko Uchiyama
- Takeda Pharmaceutical Company, Ltd, 2-26-1, Muraokahigashi, Fujisawa, Kanagawa 251-855, Japan
| | - Tomohiro Kawamoto
- Takeda Pharmaceutical Company, Ltd, 2-26-1, Muraokahigashi, Fujisawa, Kanagawa 251-855, Japan
| | - Yuichi Hikichi
- Takeda Pharmaceutical Company, Ltd, 2-26-1, Muraokahigashi, Fujisawa, Kanagawa 251-855, Japan
| | - Lilly Zhang
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - David Hosfield
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Robert Skene
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Hua Zou
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Jeffrey Stafford
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Xiaodong Cao
- Takeda California, 10410 Science Center Drive, San Diego 92121, USA
| | - Takashi Ichikawa
- Takeda Pharmaceutical Company, Ltd, 2-26-1, Muraokahigashi, Fujisawa, Kanagawa 251-855, Japan
| |
Collapse
|
25
|
RNAi-mediated knockdown of MCM7 gene on CML cells and its therapeutic potential for leukemia. Med Oncol 2017; 34:21. [PMID: 28058629 DOI: 10.1007/s12032-016-0878-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
Abstract
MCM7 is one of the subunits of MCM2-7 complex, which is essential to DNA replication licensing and the control of cell cycle progression. It has been demonstrated that MCM7 participates in mRNA transcription and DNA damage regulation as well. MCM7 gene is found to be over-expressed in multiple cancers, but there are few reports about its effect in leukemia. Recent studies have proven that MCM7 expression has a relationship with diagnosis and prognosis, which has led to their potential clinical application as a marker for cancer screening. RNA interference (RNAi) is a biological process in which RNA molecules inhibit gene expression, typically by causing the destruction of specific mRNA molecules. It is a valuable research tool, which is widely used in cell culture and living organisms as well as in medicine recent years. It is indicated that RNAi application for targeting functional carcinogenic molecules, tumor resistance to chemotherapy and radiotherapy is required in cancer treatment. Gene products knockdown by RNAi technology exerts anti-proliferative and pro-apoptotic effects upon cell culture systems, animal models and in clinical trials in the most studies. In the present study, we found that MCM7 highly expressed in K562 cells rather than that in normal neutrophils. Thus, lentivirus-mediated shRNA targeting MCM7 was used to suppress its endogenous expression in K562 cells and develop a novel therapeutic strategy for leukemia.
Collapse
|
26
|
Chen Y, Zhang J, Li D, Jiang J, Wang Y, Si S. Identification of a novel Polo-like kinase 1 inhibitor that specifically blocks the functions of Polo-Box domain. Oncotarget 2017; 8:1234-1246. [PMID: 27902479 PMCID: PMC5352051 DOI: 10.18632/oncotarget.13603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a promising target for cancer therapy due to its essential role in cell division. In addition to a highly conserved kinase domain, Plk1 also contains a Polo-Box domain (PBD), which is essential for Plk1's subcellular localization and mitotic functions. We adopted a fluorescence polarization assay and identified a new Plk1 PBD inhibitor T521 from a small-molecule compound library. T521 specifically inhibits the PBD of Plk1, but not those of Plk2-3. T521 exhibits covalent binding to some lysine residues of Plk1 PBD, which causes significant changes in the secondary structure of Plk1 PBD. Using a cell-based assay, we showed that T521 impedes the interaction between Plk1 and Bub1, a mitotic checkpoint protein. Moreover, HeLa cells treated with T521 exhibited dramatic mitotic defects. Importantly, T521 suppresses the growth of A549 cells in xenograft nude mice. Taken together, we have identified a novel Plk1 inhibitor that specifically disrupts the functions of Plk1 PBD and shows anticancer activity.
Collapse
Affiliation(s)
- Yunyu Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Dongsheng Li
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yanchang Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
27
|
Dube D, Tiwari P, Kaur P. The hunt for antimitotic agents: an overview of structure-based design strategies. Expert Opin Drug Discov 2016; 11:579-97. [PMID: 27077683 DOI: 10.1080/17460441.2016.1174689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Structure-based drug discovery offers a rational approach for the design and development of novel anti-mitotic agents which target specific proteins involved in mitosis. This strategy has paved the way for development of a new generation of chemotypes which selectively interfere with the target proteins. The interference of these anti-mitotic targets implicated in diverse stages of mitotic cell cycle progression culminates in cancer cell apoptosis. AREAS COVERED This review covers the various mitotic inhibitors developed against validated mitotic checkpoint protein targets using structure-based design and optimization strategies. The protein-ligand interactions and the insights gained from these studies, culminating in the development of more potent and selective inhibitors, have been presented. EXPERT OPINION The advent of structure-based drug design coupled with advances in X-ray crystallography has revolutionized the discovery of candidate lead molecules. The structural insights gleaned from the co-complex protein-drug interactions have provided a new dimension in the design of anti-mitotic molecules to develop drugs with a higher selectivity and specificity profile. Targeting non-catalytic domains has provided an alternate approach to address cross-reactivity and broad selectivity among kinase inhibitors. The elucidation of structures of emerging mitotic drug targets has opened avenues for the design of inhibitors that target cancer.
Collapse
Affiliation(s)
- D Dube
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Tiwari
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Kaur
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
28
|
Watanabe N, Osada H. Small molecules that target phosphorylation dependent protein-protein interaction. Bioorg Med Chem 2016; 24:3246-54. [PMID: 27017542 DOI: 10.1016/j.bmc.2016.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/12/2022]
Abstract
Protein-protein interaction is one of the key events in the signal transduction pathway. The interaction changes the conformations, activities, localization and stabilities of the proteins, and transduces the signal to the next step. Frequently, this interaction occurs upon the protein phosphorylation. When upstream signals are stimulated, protein kinase(s) is/are activated and phosphorylate(s) their substrates, and induce the phosphorylation dependent protein-protein interaction. For this interaction, several domains in proteins are known to specifically recognize the phosphorylated residues of target proteins. These specific domains for interaction are important in the progression of the diseases caused by disordered signal transduction such as cancer. Thus small molecules that modulate this interaction are attractive lead compounds for the treatment of such diseases. In this review, we focused on three examples of phosphorylation dependent protein-protein interaction modules (14-3-3, polo box domain of Plk1 and F-box proteins in SCF ubiquitin ligases) and summarize small molecules that modulate their interaction. We also introduce our original screening system to identify such small molecules.
Collapse
Affiliation(s)
- Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Bio-Probe Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Wako, Saitama 351-0198, Japan.
| | - Hiroyuki Osada
- Bio-Probe Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Wako, Saitama 351-0198, Japan; Chemical Biology Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
29
|
Talati C, Griffiths EA, Wetzler M, Wang ES. Polo-like kinase inhibitors in hematologic malignancies. Crit Rev Oncol Hematol 2016; 98:200-10. [PMID: 26597019 DOI: 10.1016/j.critrevonc.2015.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Polo-like kinases (Plk) are key regulators of the cell cycle and multiple aspects of mitosis. Two agents that inhibit the Plk signaling pathway have shown promising activity in patients with hematologic malignancies and are currently in phase III trials. Volasertib is a Plk inhibitor under evaluation combined with low-dose cytarabine in older patients with acute myeloid leukemia (AML) ineligible for intensive induction therapy. Rigosertib, a dual inhibitor of the Plk and phosphatidylinositol 3-kinase pathways, is under investigation in patients with myelodysplastic syndrome (MDS) who have failed azacitidine or decitabine treatment. The prognosis for patients with AML, who are ineligible for intensive induction therapy, and for those with MDS refractory/relapsed after a hypomethylating agent, remains poor. Novel approaches, such as Plk inhibitors, are urgently needed for these patients. Here, we provide a comprehensive overview of the current state of development of Plk inhibitors for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Chetasi Talati
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Elizabeth A Griffiths
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Eunice S Wang
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
30
|
Kumar S, Kim J. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:705745. [PMID: 26557691 PMCID: PMC4628734 DOI: 10.1155/2015/705745] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022]
Abstract
Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinases in vivo and in vitro to enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, Republic of Korea
| |
Collapse
|
31
|
Archambault V, Lépine G, Kachaner D. Understanding the Polo Kinase machine. Oncogene 2015; 34:4799-807. [PMID: 25619835 DOI: 10.1038/onc.2014.451] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/26/2022]
Abstract
The Polo Kinase is a central regulator of cell division required for several events of mitosis and cytokinesis. In addition to a kinase domain (KD), Polo-like kinases (Plks) comprise a Polo-Box domain (PBD), which mediates protein interactions with targets and regulators of Plks. In all organisms that contain Plks, one Plk family member fulfills several essential functions in the regulation of cell division, and here we refer to this conserved protein as Polo Kinase (Plk1 in humans). The PBD and the KD are capable of both cooperation and mutual inhibition in their functions. Crystal structures of the PBD, the KD and, recently, a PBD-KD complex have helped understanding the inner workings of the Polo Kinase. In parallel, an impressive array of molecular mechanisms has been found to mediate the regulation of the protein. Moreover, the targeting of Polo Kinase in the development of anti-cancer drugs has yielded several molecules with which to chemically modulate Polo Kinase to study its biological functions. Here we review our current understanding of the protein function and regulation of Polo Kinase as a fascinating molecular device in control of cell division.
Collapse
Affiliation(s)
- V Archambault
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - G Lépine
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - D Kachaner
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
32
|
McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, Perry JA, Crickley R, Mercadante CJ, Vaughan S, de Graffenried CL. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol Biol Cell 2015; 26:3013-29. [PMID: 26133384 PMCID: PMC4551316 DOI: 10.1091/mbc.e15-04-0219] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness, a devastating disease endemic to sub-Saharan Africa with few effective treatment options. The parasite is highly polarized, including a single flagellum that is nucleated at the posterior of the cell and adhered along the cell surface. These features are essential and must be transmitted to the daughter cells during division. Recently we identified the T. brucei homologue of polo-like kinase (TbPLK) as an essential morphogenic regulator. In the present work, we conduct proteomic screens to identify potential TbPLK binding partners and substrates to better understand the molecular mechanisms of kinase function. These screens identify a cohort of proteins, most of which are completely uncharacterized, which localize to key cytoskeletal organelles involved in establishing cell morphology, including the flagella connector, flagellum attachment zone, and bilobe structure. Depletion of these proteins causes substantial changes in cell division, including mispositioning of the kinetoplast, loss of flagellar connection, and prevention of cytokinesis. The proteins identified in these screens provide the foundation for establishing the molecular networks through which TbPLK directs cell morphogenesis in T. brucei.
Collapse
Affiliation(s)
- Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Kyojiro N Ikeda
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - Ana Lozano-Núñez
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Dorothea Anrather
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Verena Unterwurzacher
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Thomas Gossenreiter
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Jenna A Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Robbie Crickley
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Courtney J Mercadante
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | |
Collapse
|
33
|
Ahn M, Han YH, Park JE, Kim S, Lee WC, Lee SJ, Gunasekaran P, Cheong C, Shin SY, Kim HY, Ryu EK, Murugan RN, Kim NH, Bang JK. A new class of peptidomimetics targeting the polo-box domain of Polo-like kinase 1. J Med Chem 2015; 58:294-304. [PMID: 25347203 DOI: 10.1021/jm501147g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent progress in the development of peptide-derived Polo-like kinase (Plk1) polo-box domain (PBD) inhibitors has led to the synthesis of multiple peptide ligands with high binding affinity and selectivity. However, few systematic analyses have been conducted to identify key Plk1 residues and characterize their interactions with potent Plk1 peptide inhibitors. We performed systematic deletion analysis using the most potent 4j peptide and studied N-terminal capping of the minimal peptide with diverse organic moieties, leading to the identification of the peptidomimetic 8 (AB-103) series with high binding affinity and selectivity. To evaluate the bioavailability of short peptidomimetic ligands, PEGylated 8 series were synthesized and incubated with HeLa cells to test for cellular uptake, antiproliferative activity, and Plk1 kinase inhibition. Finally, crystallographic studies of the Plk1 PBD in complex with peptidomimetics 8 and 22 (AB-103-5) revealed the presence of two hydrogen bond interactions responsible for their high binding affinity and selectivity.
Collapse
Affiliation(s)
- Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute , 804-1, Yangcheong Ri, Ochang, Chungbuk, Cheongwon 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen DX, Huang J, Liu M, Xu YG, Jiang C. Design, synthesis, and evaluation of non-ATP-competitive small-molecule Polo-like kinase 1 (Plk1) inhibitors. Arch Pharm (Weinheim) 2015; 348:2-9. [PMID: 25430493 DOI: 10.1002/ardp.201400294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 02/04/2023]
Abstract
A series of small-molecule Plk1 inhibitors targeting the substrate-binding pocket were designed through rational drug design for the first time. The designed compounds were synthesized and their activities were evaluated in vitro. Some of the targeted compounds showed potent Plk1 inhibitory activities and anti-proliferative characters. Particularly, 5i showed Plk1 inhibitory activity with an IC50 value of 0.68 µM. Compound 5i also showed cell growth inhibitory activity on HeLa cells with an IC50 value of 0.51 µM, which is about four times more potent compared to thymoquinone. The mechanism of action suggested that 5i was an ATP-independent and substrate-dependent Plk1 inhibitor. Compound 5i demonstrated excellent Plk1 inhibitory selectivity against Plk2, Plk3, and five serine/threonine and tyrosine kinases. Our discovery and structure-activity relationship study may provide useful lead compounds for further optimization of non-ATP-competitive Plk1 inhibitors.
Collapse
Affiliation(s)
- Dong-Xing Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
35
|
Shan HM, Shi Y, Quan J. Identification of green tea catechins as potent inhibitors of the polo-box domain of polo-like kinase 1. ChemMedChem 2015; 10:158-63. [PMID: 25196850 DOI: 10.1002/cmdc.201402284] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 12/21/2022]
Abstract
Polo-like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N-terminal kinase domain and C-terminal polo-box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (-)-epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein-labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose-dependent inhibition of the PBD and preliminary structure-activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell-cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.
Collapse
Affiliation(s)
- Hong-Mei Shan
- Key Laboratory of Chemical Genomics, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055 (China)
| | | | | |
Collapse
|
36
|
Wang WJ, Huang Q, Zou J, Li LL, Yang SY. TS-Chemscore, a Target-Specific Scoring Function, Significantly Improves the Performance of Scoring in Virtual Screening. Chem Biol Drug Des 2014; 86:1-8. [PMID: 25358259 DOI: 10.1111/cbdd.12470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Wen-Jing Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan 610041 China
| | - Qi Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan 610041 China
| | - Jun Zou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan 610041 China
| | - Lin-Li Li
- West China School of Pharmacy; Sichuan University; Chengdu Sichuan 610041 China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; West China Medical School; Sichuan University; Chengdu Sichuan 610041 China
| |
Collapse
|
37
|
Comelli NC, Duchowicz PR, Castro EA. QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1. Eur J Pharm Sci 2014; 62:171-9. [PMID: 24909730 DOI: 10.1016/j.ejps.2014.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/01/2023]
Abstract
The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (-logIC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure D-optimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (Rtest2). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method.
Collapse
Affiliation(s)
- Nieves C Comelli
- Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Av. Belgrano y Maestro Quiroga, 4700 Catamarca, Argentina.
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Sucursal 4, 1900 La Plata, Argentina
| | - Eduardo A Castro
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Sucursal 4, 1900 La Plata, Argentina
| |
Collapse
|
38
|
Srinivasrao G, Park JE, Kim S, Ahn M, Cheong C, Nam KY, Gunasekaran P, Hwang E, Kim NH, Shin SY, Lee KS, Ryu E, Bang JK. Design and synthesis of a cell-permeable, drug-like small molecule inhibitor targeting the polo-box domain of polo-like kinase 1. PLoS One 2014; 9:e107432. [PMID: 25211362 PMCID: PMC4161390 DOI: 10.1371/journal.pone.0107432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polo-like kinase-1 (Plk1) plays a crucial role in cell proliferation and the inhibition of Plk1 has been considered as a potential target for specific inhibitory drugs in anti-cancer therapy. Several research groups have identified peptide-based inhibitors that target the polo-box domain (PBD) of Plk1 and bind to the protein with high affinity in in vitro assays. However, inadequate proteolytic resistance and cell permeability of the peptides hinder the development of these peptide-based inhibitors into novel therapeutic compounds. METHODOLOGY/PRINCIPAL FINDINGS In order to overcome the shortcomings of peptide-based inhibitors, we designed and synthesized small molecule inhibitors. Among these molecules, bg-34 exhibited a high binding affinity for Plk1-PBD and it could cross the cell membrane in its unmodified form. Furthermore, bg-34-dependent inhibition of Plk1-PBD was sufficient for inducing apoptosis in HeLa cells. Moreover, modeling studies performed on Plk1-PBD in complex with bg-34 revealed that bg-34 can interact effectively with Plk1-PBD. CONCLUSION/SIGNIFICANCE We demonstrated that the molecule bg-34 is a potential drug candidate that exhibits anti-Plk1-PBD activity and possesses the favorable characteristics of high cell permeability and stability. We also determined that bg-34 induced apoptotic cell death by inhibiting Plk1-PBD in HeLa cells at the same concentration as PEGylated 4j peptide, which can inhibit Plk1-PBD activity 1000 times more effectively than bg-34 can in in vitro assays. This study may help to design and develop drug-like small molecule as Plk1-PBD inhibitor for better therapeutic activity.
Collapse
Affiliation(s)
- Ganipisetti Srinivasrao
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sungmin Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Chaejoon Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Ky-Youb Nam
- Institute for Innovative Cancer Research and Department of Convergence Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Pethaiah Gunasekaran
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Cheongju, Chung-Buk, Republic of Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Nam-Hyung Kim
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Cheongju, Chung-Buk, Republic of Korea
| | - Song Yub Shin
- Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eunkyung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| |
Collapse
|
39
|
Nam KY, Kang JH, No KT, Ahn SK. Identification of Polo-Like Kinase 1 Inhibitors Using Structure-Based Molecular Design. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.7.1929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Sakkiah S, Senese S, Yang Q, Lee KW, Torres JZ. Dynamic and multi-pharmacophore modeling for designing polo-box domain inhibitors. PLoS One 2014; 9:e101405. [PMID: 25036740 PMCID: PMC4103762 DOI: 10.1371/journal.pone.0101405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/06/2014] [Indexed: 02/04/2023] Open
Abstract
The polo-like kinase 1 (Plk1) is a critical regulator of cell division that is overexpressed in many types of tumors. Thus, a strategy in the treatment of cancer has been to target the kinase activity (ATPase domain) or substrate-binding domain (Polo-box Domain, PBD) of Plk1. However, only few synthetic small molecules have been identified that target the Plk1-PBD. Here, we have applied an integrative approach that combines pharmacophore modeling, molecular docking, virtual screening, and in vitro testing to discover novel Plk1-PBD inhibitors. Nine Plk1-PBD crystal structures were used to generate structure-based hypotheses. A common pharmacophore model (Hypo1) composed of five chemical features was selected from the 9 structure-based hypotheses and used for virtual screening of a drug-like database consisting of 159,757 compounds to identify novel Plk1-PBD inhibitors. The virtual screening technique revealed 9,327 compounds with a maximum fit value of 3 or greater, which were selected and subjected to molecular docking analyses. This approach yielded 93 compounds that made good interactions with critical residues within the Plk1-PBD active site. The testing of these 93 compounds in vitro for their ability to inhibit the Plk1-PBD, showed that many of these compounds had Plk1-PBD inhibitory activity and that compound Chemistry_28272 was the most potent Plk1-PBD inhibitor. Thus Chemistry_28272 and the other top compounds are novel Plk1-PBD inhibitors and could be used for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Qianfan Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Sun J, Lv PC, Guo FJ, Wang XY, Xiao-Han, Zhang Y, Sheng GH, Qian SS, Zhu HL. Aromatic diacylhydrazine derivatives as a new class of polo-like kinase 1 (PLK1) inhibitors. Eur J Med Chem 2014; 81:420-6. [PMID: 24859762 DOI: 10.1016/j.ejmech.2014.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/08/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022]
Abstract
A novel class of aromatic diacylhydrazine derivatives was designed as PLK1 inhibitors. All the 19 new synthesized compounds were assayed for antitumor activity against the respective cervical cancer cells. In which, nine compounds with better antitumor activities were further tested for their PLK1 inhibitory activity. Last, we have successfully found that compound 7k showed both the promising antitumor activity with IC50 of 0.17 μM against the cervical cancer cells, and also processed the most potent PLK1 inhibitory activity with IC50 of 0.03 μM. In addition, docking simulation also carried out in this study to give a potent prediction binding mode between the small molecule and PKL1 (PDB code: 1umw) protein.
Collapse
Affiliation(s)
- Juan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Feng-Jiao Guo
- School of Life Sciences, Shandong University of Technology, Shandong 255049, People's Republic of China
| | - Xin-Yi Wang
- School of Life Sciences, Shandong University of Technology, Shandong 255049, People's Republic of China
| | - Xiao-Han
- School of Life Sciences, Shandong University of Technology, Shandong 255049, People's Republic of China
| | - Yang Zhang
- School of Life Sciences, Shandong University of Technology, Shandong 255049, People's Republic of China
| | - Gui-Hua Sheng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shao-Song Qian
- School of Life Sciences, Shandong University of Technology, Shandong 255049, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China; School of Life Sciences, Shandong University of Technology, Shandong 255049, People's Republic of China.
| |
Collapse
|
42
|
van der Meer R, Song HY, Park SH, Abdulkadir SA, Roh M. RNAi screen identifies a synthetic lethal interaction between PIM1 overexpression and PLK1 inhibition. Clin Cancer Res 2014; 20:3211-21. [PMID: 24771642 PMCID: PMC4086184 DOI: 10.1158/1078-0432.ccr-13-3116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To identify genes whose depletion is detrimental to Pim1-overexpressing prostate cancer cells and to validate this finding in vitro and in vivo. EXPERIMENTAL DESIGN RNAi screening was used to identify genes whose depletion is detrimental to Pim1-overexpressing cells. Our finding was validated using shRNA or PLK1-specific inhibitor BI 2536. Xenograft studies were performed using both PLK1-knockdown cells and BI 2536 to investigate the effects of PLK1 inhibition on tumorigenesis in Pim1-overexpressing cells. Finally, PLK1 and PIM1 expression patterns in human prostate tumors were examined by immunohistochemistry using tissue microarrays. RESULTS We identified the mitotic regulator polo-like kinase (PLK1) as a gene whose depletion is particularly detrimental to the viability of Pim1-overexpressing prostate cancer. Inhibition of PLK1 by shRNA or BI 2536 in Pim1-overexpressing prostate cancer xenograft models resulted in a dramatic inhibition of tumor progression. Notably, Pim1-overexpressing cells were more prone to mitotic arrest followed by apoptosis due to PLK1 inhibition than control cells. Furthermore, inhibition of PLK1 led to the reduction of MYC protein levels both in vitro and in vivo. Our data also suggest that PIM1 and PLK1 physically interact and PIM1 might phosphorylate PLK1. Finally, PLK1 and PIM1 are frequently co-expressed in human prostate tumors, and co-expression of PLK1 and PIM1 was significantly correlated to higher Gleason grades. CONCLUSIONS Our findings demonstrate that PIM1-overexpressing cancer cells are particularly sensitive to PLK1 inhibition, suggesting that PIM1 might be used as a marker for identifying patients who will benefit from PLK1 inhibitor treatment.
Collapse
Affiliation(s)
- Riet van der Meer
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Ha Yong Song
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Seong-Hoon Park
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Sarki A Abdulkadir
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Meejeon Roh
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
43
|
Shi Z, An N, Lu BM, Zhou N, Yang SL, Zhang B, Li CY, Wang ZJ, Wang F, Wu CF, Bao JK. Identification of novel kinase inhibitors by targeting a kinase-related apoptotic protein-protein interaction network in HeLa cells. Cell Prolif 2014; 47:219-30. [PMID: 24645986 PMCID: PMC6496802 DOI: 10.1111/cpr.12098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/28/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Protein kinases orchestrate activation of signalling cascades in response to extra- and intracellular stimuli for regulation of cell proliferation. They are directly involved in a variety of diseases, particularly cancers. Systems biology approaches have become increasingly important in understanding regulatory frameworks in cancer, and thus may facilitate future anti-cancer discoveries. Moreover, it has been suggested and confirmed that high-throughput virtual screening provides a novel, effective way to reveal small molecule protein kinase inhibitors. Accordingly, we aimed to identify kinase targets and novel kinase inhibitors. MATERIALS AND METHODS A series of bioinformatics methods, such as network construction, molecular docking and microarray analyses were performed. RESULTS In this study, we computationally constructed the appropriate global human protein-protein interaction network with data from online databases, and then modified it into a kinase-related apoptotic protein-protein interaction network. Subsequently, we identified several kinases as potential drug targets according to their differential expression observed by microarray analyses. Then, we predicted relevant microRNAs, which could target the above-mentioned kinases. Ultimately, we virtually screened a number of small molecule natural products from Traditional Chinese Medicine (TCM)@Taiwan database and identified a number of compounds that are able to target polo-like kinase 1, cyclin-dependent kinase 1 and cyclin-dependent kinase 2 in HeLa cervical carcinoma cells. CONCLUSIONS Taken together, all these findings might hopefully facilitate discovery of new kinase inhibitors that could be promising candidates for anti-cancer drug development.
Collapse
Affiliation(s)
- Z. Shi
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
- School of Life SciencesGuizhou Normal UniversityGuiyang550001China
| | - N. An
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| | - B. M. Lu
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| | - N. Zhou
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| | - S. L. Yang
- School of Life SciencesGuizhou Normal UniversityGuiyang550001China
| | - B. Zhang
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| | - C. Y. Li
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| | - Z. J. Wang
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| | - F. Wang
- China National Biotec Group Company LimitedBeijing100029China
| | - C. F. Wu
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| | - J. K. Bao
- School of Life Sciences & Key Laboratory of Bio‐resourcesMinistry of EducationSichuan UniversityChengdu610064China
| |
Collapse
|
44
|
Ward A, Hudson JW. p53-Dependent and cell specific epigenetic regulation of the polo-like kinases under oxidative stress. PLoS One 2014; 9:e87918. [PMID: 24498222 PMCID: PMC3909268 DOI: 10.1371/journal.pone.0087918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/01/2014] [Indexed: 12/27/2022] Open
Abstract
The polo-like kinase (PLKs) family, consisting of five known members, are key regulators of important cell cycle processes, which include mitotic entry, centrosome duplication, spindle assembly, and cytokinesis. The PLKs have been implicated in a variety of cancers, such as hepatocellular carcinoma (HCC), with PLK1 typically overexpressed and PLKs 2-5 often downregulated. Altered expression of the PLKs in malignancy is often correlated with aberrant promoter methylation. Epigenetic marks are dynamic and can be modified in response to external environmental stimuli. The aim of our study was to determine if oxidative stress, a common feature of solid tumours, would induce changes to the promoter methylation of the PLKs resulting in changes in expression. We examined the promoter methylation status via MSP and subsequent expression levels of the PLK family members under exposure to hypoxic conditions or reactive oxygen species (ROS). Interestingly, murine embryonic fibroblasts exposed to hypoxia and ROS displayed significant hypermethylation of Plk1 and Plk4 promoter regions post treatment. Corresponding proteins were also depleted by 40% after treatment. We also examined the HCC-derived cell lines HepG2 and Hep3B and found that for PLK1 and PLK4, the increase in hypermethylation was correlated with the presence of functional p53. In p53 wild-type cells, HepG2, both PLK1 and PLK4 were repressed with treatment, while in the p53 null cell line, Hep3B, PLK4 protein was elevated in the presence of hypoxia and ROS. This was also the case for ROS-treated, p53 null, osteosarcoma cells, Saos-2, where the PLK4 promoter became hypomethylated and protein levels were elevated. Our data supports a model in which the PLKs are susceptible to epigenetic changes induced by microenvironmental cues and these modifications may be p53-dependent. This has important implications in HCC and other cancers, where epigenetic alterations of the PLKs could contribute to tumourigenesis and disease progression.
Collapse
Affiliation(s)
- Alejandra Ward
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - John W. Hudson
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
45
|
Murugan RN, Ahn M, Lee WC, Kim HY, Song JH, Cheong C, Hwang E, Seo JH, Shin SY, Choi SH, Park JE, Bang JK. Exploring the binding nature of pyrrolidine pocket-dependent interactions in the polo-box domain of polo-like kinase 1. PLoS One 2013; 8:e80043. [PMID: 24223211 PMCID: PMC3819306 DOI: 10.1371/journal.pone.0080043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Over the years, a great deal of effort has been focused on the design and synthesis of potent, linear peptide inhibitors targeting the polo-like kinase 1 (Plk1), which is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its intracellular anchoring sites via its polo-box domain, and inhibiting the Plk1 polo-box domain has been considered as an approach to circumvent the specificity problems associated with inhibiting the conserved adenosine triphosphate-binding pocket. The polo-box domain consists of two different binding regions, such as the unique, broader pyrrolidine-binding pocket and the conserved, narrow, Tyr-rich hydrophobic channel, among the three Plk polo-box domains (Plks 1-3), respectively. Therefore, the studies that provide insights into the binding nature of the unique, broader pyrrolidine-binding pocket might lead to the development of selective Plk1-inhibitory compounds. METHODOLOGY/PRINCIPAL FINDINGS In an attempt to retain the monospecificity by targeting the unique, broader pyrrolidine-binding pocket, here, for the first time, a systematic approach was undertaken to examine the structure-activity relationship of N-terminal-truncated PLHSpTM derivatives, to apply a site-directed ligand approach using bulky aromatic and non-aromatic systems, and to characterize the binding nature of these analogues using X-ray crystallographic studies. We have identified a new mode of binding interactions, having improved binding affinity and retaining the Plk1 polo-box domain specificity, at the pyrrolidine-binding pocket. Furthermore, our data revealed that the pyrrolidine-binding pocket was very specific to recognize a short and bulky hydrophobic ligand like adamantane, whereas the Tyr-rich hydrophobic channel was specific with lengthy and small hydrophobic groups. CONCLUSION/SIGNIFICANCE The progress made using our site-directed ligands validated this approach to specifically direct the ligand into the unique pyrrolidine-binding region, and it extends the applicability of the strategy for discovering selective protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Woo Cheol Lee
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Hye-Yeon Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Jung Hyun Song
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Chaejoon Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Ji-Hyung Seo
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Song Yub Shin
- Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Sun Ho Choi
- Dong-A ST, Research Laboratories, YongIn, Gyeonggi-do, Republic of Korea
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| |
Collapse
|
46
|
Pezuk JA, Brassesco MS, Morales AG, de Oliveira JC, de Paula Queiroz RG, Machado HR, Carlotti CG, Neder L, Scrideli CA, Tone LG. Polo-like kinase 1 inhibition causes decreased proliferation by cell cycle arrest, leading to cell death in glioblastoma. Cancer Gene Ther 2013; 20:499-506. [PMID: 23887645 DOI: 10.1038/cgt.2013.46] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 02/02/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive central nervous system tumors with a patient's median survival of <1 year. Polo-like kinases (PLKs) are a family of serine/threonine kinases that have key roles in cell cycle control and DNA-damage response. We evaluated PLK1, 2, 3 and 4 gene expression in 8 GBM cell lines and 17 tumor samples, and analyzed the effect of the PLK1 inhibition on SF188 and T98G GBM cell lines and 13 primary cultures. Our data showed PLK1 overexpression and a variable altered expression of PLK2, 3 and 4 genes in GBM tumor samples and cell lines. Treatments with nanomolar concentrations of BI 2536, BI 6727, GW843682X or GSK461364 caused a significant decrease in GBM cells proliferation. Colony formation was also found to be inhibited (P<0.05), whereas apoptosis rate and mitotic index were significantly increased (P<0.05) after PLK1 inhibition in both GBM cell lines. Cell cycle analysis showed an arrest at G2 (P<0.05) and cell invasion was also decreased after PLK1 inhibition. Furthermore, simultaneous combinations of BI 2536 and temozolomide produced synergistic effects for both the cell lines after 48 h of treatment. Our findings suggest that PLK1 might be a promising target for the treatment of GBMs.
Collapse
Affiliation(s)
- J A Pezuk
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nie Z, Feher V, Natala S, McBride C, Kiryanov A, Jones B, Lam B, Liu Y, Kaldor S, Stafford J, Hikami K, Uchiyama N, Kawamoto T, Hikichi Y, Matsumoto SI, Amano N, Zhang L, Hosfield D, Skene R, Zou H, Cao X, Ichikawa T. Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1). Bioorg Med Chem Lett 2013; 23:3662-6. [PMID: 23664874 DOI: 10.1016/j.bmcl.2013.02.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
Using structure-based drug design, we identified and optimized a novel series of pyrimidodiazepinone PLK1 inhibitors resulting in the selection of the development candidate TAK-960. TAK-960 is currently undergoing Phase I evaluation in adult patients with advanced solid malignancies.
Collapse
Affiliation(s)
- Zhe Nie
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Murugan RN, Park JE, Lim D, Ahn M, Cheong C, Kwon T, Nam KY, Choi SH, Kim BY, Yoon DY, Yaffe MB, Yu DY, Lee KS, Bang JK. Development of cyclic peptomer inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg Med Chem 2013; 21:2623-34. [PMID: 23498919 PMCID: PMC7561269 DOI: 10.1016/j.bmc.2013.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
The polo-box domain (PBD) of polo-like kinase 1 (Plk1) is essentially required for the function of Plk1 in cell proliferation. The availability of the phosphopeptide-binding pocket on PBD provides a unique opportunity to develop novel protein-protein interaction inhibitors. Recent identification of a minimal 5-residue-long phosphopeptide, PLHSpT, as a Plk1 PBD-specific ligand has led to the development of several peptide-based inhibitors, but none of them is cyclic peptide. Through the combination of single-peptoid mimics and thio-ether bridged cyclization, we successfully demonstrated for the first time two cyclic peptomers, PL-116 and PL-120, dramatically improved the binding affinity without losing mono-specificity against Plk1 PBD in comparison with the linear parental peptide, PLHSpT. These cyclic peptomers could serve as promising templates for future drug designs to inhibit Plk1 PBD.
Collapse
Affiliation(s)
- Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
| | - Dan Lim
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| | - Chaejoon Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| | - Taeho Kwon
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Ky-Youb Nam
- Bioinformatics and Molecular Design Research Center, B128A Yonsei University Research Complex, Shinchon-dong, Seoul 120-749, Republic of Korea
| | - Sun Ho Choi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
- Dong-A Pharmaceutical Co., Ltd., Research Laboratories, Yongin 449-905, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Michael B. Yaffe
- Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Dae-Yeul Yu
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 3118, Bethesda, MD 20892, United States
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Cheongwon, Republic of Korea
| |
Collapse
|
49
|
Mita Y, Noguchi-Yachide T, Ishikawa M, Hashimoto Y. Small-molecular, non-peptide, non-ATP-competitive polo-like kinase 1 (Plk1) inhibitors with a terphenyl skeleton. Bioorg Med Chem 2013; 21:608-17. [PMID: 23276450 DOI: 10.1016/j.bmc.2012.11.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 01/13/2023]
Abstract
Polo-like kinase (Plk) 1 is a serine-threonine protein kinase that plays a role in cell division, and its overexpression is highly correlated with aggressiveness and prognosis of many cancers. We have designed, synthesized and evaluated a series of terphenyl compounds as inhibitors of the kinase activity of Plk1. Some of them act as non-ATP-competitive Plk1 inhibitors.
Collapse
Affiliation(s)
- Yusuke Mita
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
50
|
Zhang C, Sun X, Ren Y, Lou Y, Zhou J, Liu M, Li D. Validation of Polo-like kinase 1 as a therapeutic target in pancreatic cancer cells. Cancer Biol Ther 2012; 13:1214-20. [PMID: 22892842 PMCID: PMC3469479 DOI: 10.4161/cbt.21412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase and plays a critical role in mitosis. PLK1 has also been regarded as a valuable target for cancer treatment, and several PLK1 inhibitors are currently undergoing clinical investigations. In this study, our data show that the expression level of PLK1 is upregulated in human pancreatic cancer cells. Molecular modeling studies indicate that DMTC inhibits PLK1 activity through competitive displacement of ATP from its binding pocket. Our data further show that DMTC suppresses the proliferation of pancreatic cancer cells and induces the formation of multinucleated cells, ultimately resulting in apoptosis. In addition, combination index analysis demonstrates that DMTC acts synergistically with the chemotherapeutic drug gemcitabine in inhibiting the proliferation of pancreatic cancer cells. These results thus suggest a potential of using PLK1 inhibitors for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Xiaodong Sun
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yuan Ren
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yunbo Lou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Min Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education; Basic Medical College; Tianjin Medical University; Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| |
Collapse
|