1
|
Govindarajulu M, Ramesh S, Beasley M, Lynn G, Wallace C, Labeau S, Pathak S, Nadar R, Moore T, Dhanasekaran M. Role of cGAS-Sting Signaling in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24098151. [PMID: 37175853 PMCID: PMC10179704 DOI: 10.3390/ijms24098151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
There is mounting evidence that the development of Alzheimer's disease (AD) interacts extensively with immunological processes in the brain and extends beyond the neuronal compartment. Accumulation of misfolded proteins can activate an innate immune response that releases inflammatory mediators and increases the severity and course of the disease. It is widely known that type-I interferon-driven neuroinflammation in the central nervous system (CNS) accelerates the development of numerous acute and chronic CNS diseases. It is becoming better understood how the cyclic GMP-AMP synthase (cGAS) and its adaptor protein Stimulator of Interferon Genes (STING) triggers type-I IFN-mediated neuroinflammation. We discuss the principal elements of the cGAS-STING signaling pathway and the mechanisms underlying the association between cGAS-STING activity and various AD pathologies. The current understanding of beneficial and harmful cGAS-STING activity in AD and the current treatment pathways being explored will be discussed in this review. The cGAS-STING regulation offers a novel therapeutic opportunity to modulate inflammation in the CNS because it is an upstream regulator of type-I IFNs.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - McNeil Beasley
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Graham Lynn
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Caleigh Wallace
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Sammie Labeau
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Timothy Moore
- Units Administration, Research Programs, Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 2316 Walker Building, Auburn, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Lysophosphatidylinositol Induced Morphological Changes and Stress Fiber Formation through the GPR55-RhoA-ROCK Pathway. Int J Mol Sci 2022; 23:ijms231810932. [PMID: 36142844 PMCID: PMC9504244 DOI: 10.3390/ijms231810932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
We previously reported that lysophosphatidylinositol (LPI) functions as an endogenous agonist of GPR55, a novel cannabinoid receptor. However, the physiological roles of LPI-GPR55 have not yet been elucidated in detail. In the present study, we found that LPI induced morphological changes in GPR55-expressing HEK293 cells. LPI induced the cell rounding of GPR55-expressing HEK293 cells but not of empty-vector-transfected cells. LPI also induced the activation of small GTP-binding protein RhoA and increased stress fiber formation in GPR55-expressing HEK293 cells. The inhibition of RhoA and Rho kinase ROCK by the C3 exoenzyme and the ROCK inhibitor reduced LPI-induced cell rounding and stress fiber formation. These results clearly indicated that the LPI-induced morphological changes and the assembly of the cytoskeletons were mediated through the GPR55-RhoA-ROCK pathway.
Collapse
|
3
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
4
|
Agbaegbu Iweka C, Hussein RK, Yu P, Katagiri Y, Geller HM. The lipid phosphatase-like protein PLPPR1 associates with RhoGDI1 to modulate RhoA activation in response to axon growth inhibitory molecules. J Neurochem 2021; 157:494-507. [PMID: 33320336 DOI: 10.1111/jnc.15271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a member of a family of lipid phosphatase related proteins, integral membrane proteins characterized by six transmembrane domains. This family of proteins is enriched in the brain and recent data indicate potential pleiotropic functions in several different contexts. An inherent ability of this family of proteins is to induce morphological changes, and we have previously reported that members of this family interact with each other and may function co-operatively. However, the function of PLPPR1 is not yet understood. Here we show that the expression of PLPPR1 reduces the inhibition of neurite outgrowth of cultured mouse hippocampal neurons by chondroitin sulfate proteoglycans and the retraction of neurites of Neuro-2a cells by lysophosphatidic acid (LPA). Further, we show that PLPPR1 reduces the activation of Ras homolog family member A (RhoA) by LPA in Neuro-2a cells, and that this is because of an association of PLPPR1with the Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI1). These results establish a novel signaling pathway for the PLPPR1 protein.
Collapse
Affiliation(s)
- Chinyere Agbaegbu Iweka
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA.,Department of Neuroscience, Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg Med Chem 2021; 30:115940. [DOI: 10.1016/j.bmc.2020.115940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
|
6
|
Arun P, Rossetti F, DeMar JC, Wang Y, Batuure AB, Wilder DM, Gist ID, Morris AJ, Sabbadini RA, Long JB. Antibodies Against Lysophosphatidic Acid Protect Against Blast-Induced Ocular Injuries. Front Neurol 2020; 11:611816. [PMID: 33384658 PMCID: PMC7769950 DOI: 10.3389/fneur.2020.611816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to blast overpressure waves is implicated as the major cause of ocular injuries and resultant visual dysfunction in veterans involved in recent combat operations. No effective therapeutic strategies have been developed so far for blast-induced ocular dysfunction. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells, and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid have been reported to increase acutely in patients with traumatic brain injury (TBI) as well as in a controlled cortical impact (CCI) TBI model in mice. In the present study, we have evaluated the efficacy of a single intravenous administration of a monoclonal LPA antibody (25 mg/kg) given at 1 h post-blast for protection against injuries to the retina and associated ocular dysfunctions. Our results show that a single 19 psi blast exposure significantly increased the levels of several species of LPA in blood plasma at 1 and 4 h post-blast. The anti-LPA antibody treatment significantly decreased glial cell activation and preserved neuronal cell morphology in the retina on day 8 after blast exposure. Optokinetic measurements indicated that anti-LPA antibody treatment significantly improved visual acuity in both eyes on days 2 and 6 post-blast exposure. Anti-LPA antibody treatment significantly increased rod photoreceptor and bipolar neuronal cell signaling in both eyes on day 7 post-blast exposure. These results suggest that blast exposure triggers release of LPAs, which play a major role promoting blast-induced ocular injuries, and that a single early administration of anti-LPA antibodies provides significant protection.
Collapse
Affiliation(s)
- Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Franco Rossetti
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James C DeMar
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ying Wang
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew B Batuure
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Irene D Gist
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Lexington VA Medical Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Roger A Sabbadini
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
7
|
Toniolo S, Sen A, Husain M. Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer's Disease. Int J Mol Sci 2020; 21:E9318. [PMID: 33297460 PMCID: PMC7730926 DOI: 10.3390/ijms21239318] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
People with Alzheimer's disease (AD) have significantly higher rates of subclinical and overt epileptiform activity. In animal models, oligomeric Aβ amyloid is able to induce neuronal hyperexcitability even in the early phases of the disease. Such aberrant activity subsequently leads to downstream accumulation of toxic proteins, and ultimately to further neurodegeneration and neuronal silencing mediated by concomitant tau accumulation. Several neurotransmitters participate in the initial hyperexcitable state, with increased synaptic glutamatergic tone and decreased GABAergic inhibition. These changes appear to activate excitotoxic pathways and, ultimately, cause reduced long-term potentiation, increased long-term depression, and increased GABAergic inhibitory remodelling at the network level. Brain hyperexcitability has therefore been identified as a potential target for therapeutic interventions aimed at enhancing cognition, and, possibly, disease modification in the longer term. Clinical trials are ongoing to evaluate the potential efficacy in targeting hyperexcitability in AD, with levetiracetam showing some encouraging effects. Newer compounds and techniques, such as gene editing via viral vectors or brain stimulation, also show promise. Diagnostic challenges include identifying best biomarkers for measuring sub-clinical epileptiform discharges. Determining the timing of any intervention is critical and future trials will need to carefully stratify participants with respect to the phase of disease pathology.
Collapse
Affiliation(s)
- Sofia Toniolo
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Masud Husain
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| |
Collapse
|
8
|
Lysophosphatidic acid promotes survival of T lymphoma cells by altering apoptosis and glucose metabolism. Apoptosis 2020; 25:135-150. [PMID: 31867678 DOI: 10.1007/s10495-019-01585-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid, which plays an indispensable role in various physiological and pathological processes. Moreover, an elevated level of LPA has been observed in malignancies of different origins and implicated in their progression via modulation of proliferation, apoptosis, invasion and metastasis. Interestingly, few recent reports suggest a pivotal role of LPA-modulated metabolism in oncogenesis of ovarian cancer. However, little is understood regarding the role of LPA in the development and progression of T cell malignancies, which are considered as one of the most challenging neoplasms for clinical management. Additionally, mechanisms underlying the LPA-dependent modulation of glucose metabolism in T cell lymphoma are also not known. Therefore, the present study was undertaken to explore the role of LPA-altered apoptosis and glucose metabolism on the survival of T lymphoma cells. Observations of this investigation suggest that LPA supports survival of T lymphoma cells via altering apoptosis and glucose metabolism through changing the level of reactive species, namely nitric oxide and reactive oxygen species along with expression of various survival and glucose metabolism regulatory molecules, including hypoxia-inducible factor 1-alpha, p53, Bcl2, and glucose transporter 3, hexokinase II, pyruvate kinase muscle isozyme 2, monocarboxylate transporter 1, pyruvate dehydrogenase kinase 1. Taken together' the results of the present investigation decipher the novel mechanisms of LPA-mediated survival of T lymphoma cells via modulation of apoptosis and glucose metabolism.
Collapse
|
9
|
Santerre M, Bagashev A, Gorecki L, Lysek KZ, Wang Y, Shrestha J, Del Carpio-Cano F, Mukerjee R, Sawaya BE. HIV-1 Tat protein promotes neuronal dysregulation by inhibiting E2F transcription factor 3 (E2F3). J Biol Chem 2018; 294:3618-3633. [PMID: 30591585 DOI: 10.1074/jbc.ra118.003744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Individuals who are infected with HIV-1 accumulate damage to cells and tissues (e.g. neurons) that are not directly infected by the virus. These include changes known as HIV-associated neurodegenerative disorder (HAND), leading to the loss of neuronal functions, including synaptic long-term potentiation (LTP). Several mechanisms have been proposed for HAND, including direct effects of viral proteins such as the Tat protein. Searching for the mechanisms involved, we found here that HIV-1 Tat inhibits E2F transcription factor 3 (E2F3), CAMP-responsive element-binding protein (CREB), and brain-derived neurotropic factor (BDNF) by up-regulating the microRNA miR-34a. These changes rendered murine neurons dysfunctional by promoting neurite retraction, and we also demonstrate that E2F3 is a specific target of miR-34a. Interestingly, bioinformatics analysis revealed the presence of an E2F3-binding site within the CREB promoter, which we validated with ChIP and transient transfection assays. Of note, luciferase reporter assays revealed that E2F3 up-regulates CREB expression and that Tat interferes with this up-regulation. Further, we show that miR-34a inhibition or E2F3 overexpression neutralizes Tat's effects and restores normal distribution of the synaptic protein synaptophysin, confirming that Tat alters these factors, leading to neurite retraction inhibition. Our results suggest that E2F3 is a key player in neuronal functions and may represent a good target for preventing the development of HAND.
Collapse
Affiliation(s)
- Maryline Santerre
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Asen Bagashev
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology.,the Department of Anatomy and Cell Biology, and
| | - Laura Gorecki
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Kyle Z Lysek
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Ying Wang
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Jenny Shrestha
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Fabiola Del Carpio-Cano
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Ruma Mukerjee
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Bassel E Sawaya
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology, .,the Department of Anatomy and Cell Biology, and.,the Department of Neurology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
10
|
Ramesh S, Govindarajulu M, Suppiramaniam V, Moore T, Dhanasekaran M. Autotaxin⁻Lysophosphatidic Acid Signaling in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071827. [PMID: 29933579 PMCID: PMC6073975 DOI: 10.3390/ijms19071827] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
The brain contains various forms of lipids that are important for maintaining its structural integrity and regulating various signaling cascades. Autotaxin (ATX) is an ecto-nucleotide pyrophosphatase/phosphodiesterase-2 enzyme that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA). LPA is a major bioactive lipid which acts through G protein-coupled receptors (GPCRs) and plays an important role in mediating cellular signaling processes. The majority of synthesized LPA is derived from membrane phospholipids through the action of the secreted enzyme ATX. Both ATX and LPA are highly expressed in the central nervous system. Dysfunctional expression and activity of ATX with associated changes in LPA signaling have recently been implicated in the pathogenesis of Alzheimer’s disease (AD). This review focuses on the current understanding of LPA signaling, with emphasis on the importance of the autotaxin–lysophosphatidic acid (ATX–LPA) pathway and its alterations in AD and a brief note on future therapeutic applications based on ATX–LPA signaling.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
McLimans KE, Willette AA. Autotaxin is Related to Metabolic Dysfunction and Predicts Alzheimer's Disease Outcomes. J Alzheimers Dis 2018; 56:403-413. [PMID: 27911319 DOI: 10.3233/jad-160891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity and insulin resistance are associated with neuropathology and cognitive decline in Alzheimer's disease (AD). OBJECTIVE Ecto-nucleotide pyrophosphatase/phosphodiesterase 2, also called autotaxin, is produced by beige adipose tissue, regulates metabolism, and is higher in AD prefrontal cortex (PFC). Autotaxin may be a novel biomarker of dysmetabolism and AD. METHODS We studied Alzheimer's Disease Neuroimaging Initiative participants who were cognitively normal (CN; n = 86) or had mild cognitive impairment (MCI; n = 135) or AD (n = 66). Statistical analyses were conducted using SPSS software. Multinomial regression analyses tested if higher autotaxin was associated with higher relative risk for MCI or AD diagnosis, compared to the CN group. Linear mixed model analyses were used to regress autotaxin against MRI, FDG-PET, and cognitive outcomes. Spearman correlations were used to associate autotaxin and CSF biomarkers due to non-normality. FreeSurfer 4.3 derived mean cortical thickness in medial temporal lobe and prefrontal regions of interest. RESULTS Autotaxin levels were significantly higher in MCI and AD. Each point increase in log-based autotaxin corresponded to a 3.5 to 5 times higher likelihood of having MCI and AD, respectively. Higher autotaxin in AD predicted hypometabolism in the medial temporal lobe [R2 = 0.343, p < 0.001] and PFC [R2 = 0.294, p < 0.001], and worse performance on executive function and memory factors. Autotaxin was associated with less cortical thickness in PFC areas like orbitofrontal cortex [R2 = 0.272, p < 0.001], as well as levels of total tau, p-tau181, and total tau/Aβ1-42. CONCLUSIONS These results are comparable to previous reports using insulin resistance. CSF autotaxin may be a useful dysmetabolism biomarker for examining AD outcomes and risk.
Collapse
Affiliation(s)
- Kelsey E McLimans
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Department of Psychology, Iowa State University, Ames, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA.,Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
12
|
Scherer SL, Cain MD, Kanai SM, Kaltenbronn KM, Blumer KJ. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα 13. J Biol Chem 2017; 292:9906-9918. [PMID: 28432124 DOI: 10.1074/jbc.m116.771923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of Gi/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated Gi/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα13·R7-RGS complexes. Because Gα13/R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ5 with or without R7BP. We found that neurite retraction evoked by Gα12/13-dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα12/13 but not Gαi/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function.
Collapse
Affiliation(s)
- Stephanie L Scherer
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Matthew D Cain
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stanley M Kanai
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kevin M Kaltenbronn
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kendall J Blumer
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
13
|
González de San Román E, Manuel I, Giralt MT, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Ferrer I, Rodríguez-Puertas R. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain. J Neurochem 2015; 134:471-85. [PMID: 25857358 DOI: 10.1111/jnc.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors.
Collapse
Affiliation(s)
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Guillermo Estivill-Torrús
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Luis Javier Santín
- Departmento de Psicobiología y Metodología de las Ciencias del Comportamiento. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad of Málaga, Málaga, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, University Hospital Bellvitge, University of Barcelona, Ciberned, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
14
|
Mirendil H, Thomas EA, De Loera C, Okada K, Inomata Y, Chun J. LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Transl Psychiatry 2015; 5:e541. [PMID: 25849980 PMCID: PMC4462599 DOI: 10.1038/tp.2015.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022] Open
Abstract
Genetic, environmental and neurodevelopmental factors are thought to underlie the onset of neuropsychiatric disorders such as schizophrenia. How these risk factors collectively contribute to pathology is unclear. Here, we present a mouse model of prenatal intracerebral hemorrhage--an identified risk factor for schizophrenia--using a serum-exposure paradigm. This model exhibits behavioral, neurochemical and schizophrenia-related gene expression alterations in adult females. Behavioral alterations in amphetamine-induced locomotion, prepulse inhibition, thigmotaxis and social interaction--in addition to increases in tyrosine hydroxylase-positive dopaminergic cells in the substantia nigra and ventral tegmental area and decreases in parvalbumin-positive cells in the prefrontal cortex--were induced upon prenatal serum exposure. Lysophosphatidic acid (LPA), a lipid component of serum, was identified as a key molecular initiator of schizophrenia-like sequelae induced by serum. Prenatal exposure to LPA alone phenocopied many of the schizophrenia-like alterations seen in the serum model, whereas pretreatment with an antagonist against the LPA receptor subtype LPA1 prevented many of the behavioral and neurochemical alterations. In addition, both prenatal serum and LPA exposure altered the expression of many genes and pathways related to schizophrenia, including the expression of Grin2b, Slc17a7 and Grid1. These findings demonstrate that aberrant LPA receptor signaling associated with fetal brain hemorrhage may contribute to the development of some neuropsychiatric disorders.
Collapse
Affiliation(s)
- H Mirendil
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - E A Thomas
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - C De Loera
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - K Okada
- Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda-shi, Saitama, Japan
| | - Y Inomata
- Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - J Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
15
|
Abstract
Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine kinase. It is particularly abundant in the developing central nervous system (CNS). Since GSK3β has diverse substrates ranging from metabolic/signaling proteins and structural proteins to transcription factors, it is involved in many developmental events in the immature brain, such as neurogenesis, neuronal migration, differentiation and survival. The activity of GSK3β is developmentally regulated and is affected by various environmental/cellular insults, such as deprivation of nutrients/trophic factors, oxidative stress and endoplasmic reticulum stress. Abnormalities in GSK3β activity may disrupt CNS development. Therefore, GSK3β is a critical signaling protein that regulates brain development. It may also determine neuronal susceptibility to damages caused by various environmental insults.
Collapse
|
16
|
Frisca F, Sabbadini RA, Goldshmit Y, Pébay A. Biological Effects of Lysophosphatidic Acid in the Nervous System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 296 2012; 296:273-322. [DOI: 10.1016/b978-0-12-394307-1.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|