1
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Luo Y, Chatre L, Melhem S, Al-Dahmani ZM, Homer NZM, Miedema A, Deelman LE, Groves MR, Feelisch M, Morton NM, Dolga A, van Goor H. Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain. Redox Biol 2023; 68:102965. [PMID: 38000344 PMCID: PMC10701433 DOI: 10.1016/j.redox.2023.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1) was discovered as an enzyme that detoxifies cyanide by conversion to thiocyanate (rhodanide) using thiosulfate as substrate; this rhodanese activity was subsequently identified to be almost exclusively located in mitochondria. More recently, the emphasis regarding its function has shifted to hydrogen sulfide metabolism, antioxidant defense, and mitochondrial function in the context of protective biological processes against oxidative distress. While TST has been described to play an important role in liver and colon, its function in the brain remains obscure. In the present study, we therefore sought to address its potential involvement in maintaining cerebral redox balance in a murine model of global TST deficiency (Tst-/- mice), primarily focusing on characterizing the biochemical phenotype of TST loss in relation to neuronal activity and sensitivity to oxidative stress under basal conditions. Here, we show that TST deficiency is associated with a perturbation of the reactive species interactome in the brain cortex secondary to altered ROS and RSS (specifically, polysulfide) generation as well as mitochondrial OXPHOS remodeling. These changes were accompanied by aberrant Nrf2-Keap1 expression and thiol-dependent antioxidant function. Upon challenging mice with the redox-active herbicide paraquat (25 mg/kg i.p. for 24 h), Tst-/- mice displayed a lower antioxidant capacity compared to wildtype controls (C57BL/6J mice). These results provide a first glimpse into the molecular and metabolic changes of TST deficiency in the brain and suggest that pathophysiological conditions associated with aberrant TST expression and/or activity renders neurons more susceptible to oxidative stress-related malfunction.
Collapse
Affiliation(s)
- Yang Luo
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands; University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Laurent Chatre
- Université de Caen Normandie, CNRS, Normandie University, ISTCT UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Shaden Melhem
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Zayana M Al-Dahmani
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburghh, United Kingdom
| | - Anneke Miedema
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Leo E Deelman
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Matthew R Groves
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Amalia Dolga
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Harry van Goor
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| |
Collapse
|
3
|
Dos Santos RAL, de Lima Reis SR, Gibbert PC, de Arruda CM, Doneda DL, de Matos YAV, Viola GG, Rios Santos F, de Lima E, da Silva Buss Z, Vandresen-Filho S. Guanosine treatment prevents lipopolysaccharide-induced depressive-like behavior in mice. J Psychiatr Res 2023; 164:296-303. [PMID: 37392719 DOI: 10.1016/j.jpsychires.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.
Collapse
Affiliation(s)
- Rozielly Aparecida Lemes Dos Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Silvia Regina de Lima Reis
- Laboratório de Investigação, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Patrícia Cristiane Gibbert
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Cristina Maria de Arruda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Diego Luiz Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Yohan Alves Victor de Matos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | | | - Fabrício Rios Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Eliângela de Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Ziliani da Silva Buss
- Laboratório de Pesquisa em Imunologia, Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Samuel Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
4
|
de Arruda CM, Doneda DL, de Oliveira VV, da Silva RAL, de Matos YAV, Fernandes IL, Rohden CAH, Viola GG, Rios-Santos F, de Lima E, da Silva Buss Z, Vandresen-Filho S. Involvement of kynurenine pathway and N-methyl-d-aspartate receptors in the antidepressant-like effect of vilazodone in the tail suspension test in mice. Pharmacol Biochem Behav 2022; 218:173433. [PMID: 35901966 DOI: 10.1016/j.pbb.2022.173433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
The present study evaluated the antidepressant-like effects of vilazodone using the tail suspension test in mice. We also investigated the contribution of kynurenine pathway and N-methyl-d-aspartate receptors to this effect. For this purpose, we pretreated animals with sub-effective doses of L-kynurenine, 3-hydroxykynurenine, or quinolinic acid. We then assessed the immobility time, an indicative measure of depressive-like behavior, in the tail suspension test. We also evaluated the possible effects of sub-effective doses of vilazodone combined with sub-effective doses of ketamine (N-methyl-d-aspartate receptor antagonist) in a separate group. Vilazodone (3mg/kg, intraperitoneal) significantly reduced immobility time in the tail suspension test. L-kynurenine (1.7 mg/kg, intraperitoneal), 3-hydroxykynurenine (10 mg/kg, intraperitoneal), and quinolinic acid (3 nmol/site, intracerebroventricular) significantly increased the immobility time in the tail suspension test. The antidepressant-like effects of vilazodone (3mg/kg, intraperitoneal) were inhibited by pre-treatment with non-effective doses of L-kynurenine (0.83 mg/kg, intraperitoneal), 3-hydroxykynurenine (3.33 mg/kg, intraperitoneal), or quinolinic acid (1 nmol/site, intracerebroventricular). Pretreatment of mice with sub-effective doses of ketamine (1 mg/kg, intraperitoneal) optimized the action of a sub-effective dose of vilazodone (0.3mg/kg, intraperitoneal) and reduced the immobility time in the tail suspension test. None of the drugs used in this study induced any changes in locomotor activity in the open field test. The results showed that vilazodone induced an antidepressant-like effect in the tail suspension test, which may be mediated through an interaction with the kynurenine pathway and N-methyl-d-aspartate receptors.
Collapse
Affiliation(s)
- Cristina Maria de Arruda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Diego Luiz Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Vinícius Vezzi de Oliveira
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Rozielly Aparecida Lemes da Silva
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Yohan Alves Victor de Matos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Isadora Luiza Fernandes
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Christopher Alecsander Herane Rohden
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Giordano Gubert Viola
- Grupo de Pesquisa em Biodiversidade, Meio Ambiente e Educação, Instituto Federal de Educação, Ciência e Tecnologia do Ceará-Campus Acopiara, Vila Martins, 63560000 Acopiara, Ceará, Brazil
| | - Fabrício Rios-Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Eliângela de Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Ziliani da Silva Buss
- Laboratório de Pesquisa em Imunologia, Departamento de Análises Clínicas, Curso de Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040900, Florianópolis, SC, Brasil
| | - Samuel Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil.
| |
Collapse
|
5
|
Kaviannejad R, Karimian SM, Riahi E, Ashabi G. Using dual polarities of transcranial direct current stimulation in global cerebral ischemia and its following reperfusion period attenuates neuronal injury. Metab Brain Dis 2022; 37:1503-1516. [PMID: 35499797 DOI: 10.1007/s11011-022-00985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Multiple neuronal injury pathways are activated during cerebral ischemia and reperfusion (I/R). This study was designed to decrease potential neuronal injuries by using both transcranial direct current stimulation (tDCS) polarities in cerebral ischemia and its following reperfusion period. Ninety rats were randomly divided into six groups. In the sham group, rats were intact. In the I/R group, global cerebral I/R was only induced. In the I/R + c-tDCS and I/R + a-tDCS groups, cathodal and anodal currents were applied, respectively. In the I/R + c/a-tDCS, cathodal current was used in the cerebral ischemia and anodal in the reperfusion. In the I/R + a/c-tDCS group, cathodal and anodal currents were applied in the I/R, respectively. Hippocampal tissue was used to determine the levels of IL-1β, TNF-α, NOS, SOD, MDA, and NMDAR. Hot plate and open field tests evaluated sensory and locomotor performances. The cerebral edema was also measured. Histological assessment was assessed by H/E and Nissl staining of the hippocampal CA1 region. All tDCS modes significantly decreased IL-1β and TNF-α levels, especially in the c/a-tDCS. All tDCS caused a significant decrease in MDA and NOS levels while increasing SOD activity compared to the I/R group, especially in the c/a-tDCS mode. In the c-tDCS and a/c-tDCS groups, the NMDAR level was significantly decreased. The c/a-tDCS group improved sensory and locomotor performances more than other groups receiving tDCS. Furthermore, the least neuronal death was observed in the c/a-tDCS mode. Using two different polarities of tDCS could induce more neuroprotective versus pathophysiological pathways in cerebral I/R, especially in c/a-tDCS mode. HIGHLIGHTS: Multiple pathways of neuronal injury are activated in cerebral ischemia and reperfusion (I/R). Using tDCS could modulate neuroinflammation and oxidative stress pathways in global cerebral I/R. Using c/a-tDCS mode during cerebral I/R causes more neuroprotective effects against neuronal injuries of cerebral I/R.
Collapse
Affiliation(s)
- Rasoul Kaviannejad
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran.
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| |
Collapse
|
6
|
Suzen S, Tucci P, Profumo E, Buttari B, Saso L. A Pivotal Role of Nrf2 in Neurodegenerative Disorders: A New Way for Therapeutic Strategies. Pharmaceuticals (Basel) 2022; 15:ph15060692. [PMID: 35745610 PMCID: PMC9227112 DOI: 10.3390/ph15060692] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Clinical and preclinical research indicates that neurodegenerative diseases are characterized by excess levels of oxidative stress (OS) biomarkers and by lower levels of antioxidant protection in the brain and peripheral tissues. Dysregulations in the oxidant/antioxidant balance are known to be a major factor in the pathogenesis of neurodegenerative diseases and involve mitochondrial dysfunction, protein misfolding, and neuroinflammation, all events that lead to the proteostatic collapse of neuronal cells and their loss. Nuclear factor-E2-related factor 2 (Nrf2) is a short-lived protein that works as a transcription factor and is related to the expression of many cytoprotective genes involved in xenobiotic metabolism and antioxidant responses. A major emerging function of Nrf2 from studies over the past decade is its role in resistance to OS. Nrf2 is a key regulator of OS defense and research supports a protective and defending role of Nrf2 against neurodegenerative conditions. This review describes the influence of Nrf2 on OS and in what way Nrf2 regulates antioxidant defense for neurodegenerative conditions. Furthermore, we evaluate recent research and evidence for a beneficial and potential role of specific Nrf2 activator compounds as therapeutic agents.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, 06100 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-391-5844
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
7
|
Jiang Y, Qin L, Lu A, Chen J, Wang J, Zhang Q, Lu Y, Gong Q, Gao J, Ma H, Tan D, He Y. CYP3A1 metabolism-based neurotoxicity of strychnine in rat. Toxicology 2022; 471:153156. [PMID: 35358606 DOI: 10.1016/j.tox.2022.153156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Strychnine is one of the main bioactive and toxic constituents of Semen Strychni. In the present study, the neurotoxic effects of strychnine, and the role of individual differences in metabolism on susceptibility to neurotoxicity of strychnine were investigated. The acute toxicity was observed by a single dose of strychnine (2.92 mg/kg, i.g.) in rats, the epileptic stages of rats were scored according to Racine's scale. The neurotoxicity of strychnine was evaluated by the levels of ROS, MDA, SOD and GSH in hippocampus, striatum, and cortex tissues measurements and histopathological analysis. The concentrations of strychnine in the plasma, hippocampus, striatum, and cortex tissues were determined using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The expressions of the cytochrome P450, which is the most critical protein family involved in drugs metabolism, were detected by proteomics. The mechanism of susceptibility to neurotoxicity of strychnine was elucidated by correlation analysis among above indicators. The results indicated that striatum and cortex were the main toxic targets of strychnine, and the CYP3A1 might be a susceptible biomarker to neurotoxicity of strychnine. These results provide valuable insights into the neurotoxic susceptibility of strychnine that will aid in the rational clinical use of strychnine (possibly including Semen Strychni).
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Anjing Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juan Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jianmei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qianru Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yanliu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hong Ma
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Daopeng Tan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuqi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
8
|
A Single Immediate Use of the Cathodal Transcranial Direct Current Stimulation Induces Neuroprotection of Hippocampal Region Against Global Cerebral Ischemia. J Stroke Cerebrovasc Dis 2022; 31:106241. [PMID: 34983004 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Global cerebral ischemia (CI) causes severe neuronal injury, mainly in the hippocampal CA1 region. This study aimed to investigate an immediate using transcranial direct current stimulation (tDCS) in reducing neuronal injury induced by CI. MATERIALS AND METHODS The 32 Wistar male rats were randomly divided into four groups (n=8 per group). In the ischemia group (I), CI was induced via the 4-vessel occlusion model. In the sham group (Sh), rats did not receive any intervention. In the ischemia+cathodal group (I+c/tDCS), the cathodal current was applied during CI. In the ischemia+anodal group (I+a/tDCS), the anodal current was applied. The current intensity of 400 μA was applied for 15-min during the ischemia. Hippocampal tissue was used to assess levels of NMDAR, IL-1β, TNF-α, MDA, SOD, NOS, and apoptosis markers. Histological assessment and TUNEL staining were performed in CA1 hippocampal region. RESULTS The c/tDCS significantly decreased the levels of IL-1β and TNF-α than the I and a/tDCS groups. The c/tDCS significantly reduced MDA and NOS levels, while increasing the level of SOD than the I and a/tDCS. The c/tDCS caused a significant decrease in NMDAR level than the a/tDCS. Using c/tDCS significantly reduced the Bax and Caspase-3 expressions, while increasing the Bcl-2 expression than the I group. In the c/tDCS group, DNA fragmentation and neuronal death were significantly lower than the I and a/tDCS groups. CONCLUSION Using cathodal a direct current could attenuate primary pathophysiological pathways induced by CI, and it eventually reduced neurons death and apoptosis in the CA1 hippocampal region.
Collapse
|
9
|
Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. The Reactive Species Interactome in the Brain. Antioxid Redox Signal 2021; 35:1176-1206. [PMID: 34498917 DOI: 10.1089/ars.2020.8238] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Redox pioneer Helmut Sies attempted to explain reactive species' challenges faced by organelles, cells, tissues, and organs via three complementary definitions: (i) oxidative stress, that is, the disturbance in the prooxidant-antioxidant defense balance in favor of the prooxidants; (ii) oxidative eustress, the low physiological exposure to prooxidants; and (iii) oxidative distress, the supraphysiological exposure to prooxidants. Recent Advances: Identification, concentration, and interactions are the most important elements to improve our understanding of reactive species in physiology and pathology. In this context, the reactive species interactome (RSI) is a new multilevel redox regulatory system that identifies reactive species families, reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species, and it integrates their interactions with their downstream biological targets. Critical Issues: We propose a united view to fully combine reactive species identification, oxidative eustress and distress, and the RSI system. In this view, we also propose including the forgotten reactive carbonyl species, an increasingly rediscovered reactive species family related to the other reactive families, and key enzymes within the RSI. We focus on brain physiology and pathology to demonstrate why this united view should be considered. Future Directions: More studies are needed for an improved understanding of the contributions of reactive species through their identification, concentration, and interactions, including in the brain. Appreciating the RSI in its entirety should unveil new molecular players and mechanisms in physiology and pathology in the brain and elsewhere.
Collapse
Affiliation(s)
- Elise Malard
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Elodie Pérès
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Laurent Chatre
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| |
Collapse
|
10
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bumbu AG, Andronie-Cioara FL, Nechifor AC, Gitea D, Bungau AF, Toma MM, Bungau SG. The Footprint of Kynurenine Pathway in Neurodegeneration: Janus-Faced Role in Parkinson's Disorder and Therapeutic Implications. Int J Mol Sci 2021; 22:6737. [PMID: 34201647 PMCID: PMC8268239 DOI: 10.3390/ijms22136737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson's disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA-which antagonizes QUIN actions-primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122412, India;
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
| | | | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
11
|
Bayliak MM, Mosiichuk NM, Sorochynska OM, Kuzniak OV, Sishchuk LO, Hrushchenko AO, Semchuk AO, Pryimak TV, Vasylyk YV, Gospodaryov DV, Storey KB, Garaschuk O, Lushchak VI. Middle aged turn point in parameters of oxidative stress and glucose catabolism in mouse cerebellum during lifespan: minor effects of every-other-day fasting. Biogerontology 2021; 22:315-328. [PMID: 33786674 DOI: 10.1007/s10522-021-09918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
The cerebellum is considered to develop aging markers more slowly than other parts of the brain. Intensification of free radical processes and compromised bioenergetics, critical hallmarks of normal brain aging, may be slowed down by caloric restriction. This study aimed to evaluate the intensity of oxidative stress and the enzymatic potential to utilize glucose via glycolysis or the pentose phosphate pathway (PPP) in the cerebellum of mice under ad libitum versus every-other-day fasting (EODF) feeding regimens. Levels of lipid peroxides, activities of antioxidant and key glycolytic and PPP enzymes were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice. The cerebellum showed the most dramatic increase in lipid peroxide levels, antioxidant capacity and PPP key enzyme activities and the sharpest decline in the activities of key glycolytic enzymes under transition from young to middle age but these changes slowed when transiting from middle to old age. A decrease in the activity of the key glycolytic enzyme phosphofructokinase was accompanied by a concomitant increase in the activities of hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), which may suggest that during normal cerebellar aging glucose metabolism shifts from glycolysis to the pentose phosphate pathway. The data indicate that intensification of free radical processes in the cerebellum occurred by middle age and that activation of the PPP together with increased antioxidant capacity can help to resist these changes into old age. However, the EODF regime did not significantly modulate or alleviate any of the metabolic processes studied in this analysis of the aging cerebellum.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Lesia O Sishchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Anastasiia O Hrushchenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Alina O Semchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Taras V Pryimak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074, Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
12
|
IDO-1 inhibition protects against neuroinflammation, oxidative stress and mitochondrial dysfunction in 6-OHDA induced murine model of Parkinson's disease. Neurotoxicology 2021; 84:184-197. [PMID: 33774066 DOI: 10.1016/j.neuro.2021.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD), a common neurodegenerative motor disorder characterized by striatal dopaminergic neuronal loss and localized neuroinflammation in the midbrain region. Activation of microglia is associated with various inflammatory mediators and Kynurenine pathway (KP) being one of the major regulator of immune response, is involved in the neuroinflammatory and neurotoxic cascade in PD. In the current study, 1-Methyltryptophan (1-MT), an Indolamine-2,3-dioxygenase-1 (IDO-1) inhibitor was tested at different doses (2.5 mg/kg, 5 mg/kg and 10 mg/kg) for its effect on behavioral parameters, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurotransmitter levels, biochemical and behavioral alterations in unilateral 6-OHDA (3 μg/μL) murine model of PD. The results showed improved locomotion in open field test and motor coordination in rota-rod, reduced oxidative stress, neuroinflammatory markers (TNF-α, IFN-γ, IL-6), mitochondrial dysfunction and neuronal apoptosis (caspase-3). Also, restoration of neurotransmitter levels (dopamine and homovanillic acid) in the striatum and increased striatal BDNF levels were observed. Overall findings suggest that 1-MT could be a potential candidate for further studies to explore its possibility as an alternative in the pharmacotherapy of PD.
Collapse
|
13
|
The effect of voluntary wheel running on the antioxidant status is dependent on sociability conditions. Pharmacol Biochem Behav 2020; 198:173018. [PMID: 32827504 PMCID: PMC7438373 DOI: 10.1016/j.pbb.2020.173018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Voluntary wheel running is widely used as a physical activity (PA) model in rodents, but most studies investigate the beneficial effects of this intervention in socially isolated mice. Social isolation stress (SIS) is associated with vulnerability to oxidative stress and reduced mitochondrial activity. Thus, the aim of this study was to investigate the effects of free access to a running wheel for 21 days on the various markers of the cellular redox/antioxidant status as well as mitochondrial function of mice subjected to SIS or maintained in groups of 3 in the homecage. SIS increased thiobarbituric acid reactive substance (TBARS) levels in the cerebral cortex, and PA intervention was not able to reverse such alteration. PA reduced TBARS levels in the liver of grouped mice and gastrocnemius of socially isolated mice. PA increased nonprotein thiol (NPSH) levels in the cerebral cortex of grouped mice. Furthermore, socially isolated mice presented lower glutathione peroxidase (GPx) activity in the cerebellum and gastrocnemius, and glutathione reductase (GR) activity in the cerebral cortex and liver. By contrast, SIS induced higher GPx activity in the cerebral cortex and heart. PA reduced GPx (cerebral cortex) and GR (cerebral cortex and liver) activities of socially isolated mice. SIS caused higher activity of mitochondrial complexes I and II in the cerebral cortex, and the PA paradigm was not able to alter this effect. Interestingly, the PA produced antidepressant-like effect at both SIS and control groups. In conclusion, the results showed the influence of SIS for the effects of PA on the antioxidant status, but not on the mitochondrial function and emotionality. PA intervention produces antioxidant responses dependent on sociability conditions. SIS induces mitochondria function and antioxidant defense abnormalities. Running produces antidepressant-like behavior and does not change the ambulation. The distance travelled on the running wheel is correlated with immobility time in the TST. The lipoperoxidation index is negatively correlated with time spent on the running wheel.
Collapse
|
14
|
Sinha P, Chakrabarti N, Ghosh N, Mitra S, Dalui S, Bhattacharyya A. Alterations of thyroidal status in brain regions and hypothalamo-pituitary-blood-thyroid-axis associated with dopaminergic depletion in substantia nigra and ROS formation in different brain regions after MPTP treatment in adult male mice. Brain Res Bull 2020; 156:131-140. [PMID: 31891753 DOI: 10.1016/j.brainresbull.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
MPTP produces oxidative stress, damages niagrostriatal dopaminergic neurons and develops Parkinsonism in rodents. Due to paucity of information, the thyroidal status in brain regions and peripheral tissues during different post-treatment days in MPTP-induced mice had been executed in the present study. MPTP depleted tyrosine hydroxylase protein expressions that signify the dopaminergic neuronal damage in substantia nigra. MPTP elevated ROS formation differentially in brain regions (cerebral cortex, hippocampus, substantia nigra) with maximal elevation at hippocampus. The changes in thyroid hormone (T4 and T3) levels indicate that brain regions might combat the adverse situation by keeping the levels of thyroid hormones either unchanged or in the elevated conditions in the latter phases (day-3 and day-7), apart from the depletion of thyroid hormones in certain brain regions (T4 in SN and hippocampus, T3 in hippocampus) as the immediate (day-1) effects after MPTP treatment. MPTP caused alterations of cellular morphology, RNA:Protein ratio and TPO protein expression, concomitantly depleted TPO mRNA expression and elevated TSH levels in the thyroid gland. Although T4 levels changed differentially, T3 levels remained unaltered in thyroid gland throughout the post-treatment days. Results have been discussed mentioning the putative role of T4 and TSH in apoptosis and/or proliferation/differentiation of thyrocytes. In blood, T4 levels remained unchanged while the changes in T3 and TSH levels did not signify the clinical feature of hypo/hyperthyroidism of animals. In the pituitary, both T4 and T3 levels remained elevated where TSH differentially altered (elevated followed by depletion) during post-treatment days. Notably, T4, T3 and TSH levels did not alter in hypothalamus except initial (day-1) depletion of the T4 level. Therefore, the feedback control mechanism of hypothalamo-pituitary-blood-thyroid-axis failed to occur after MPTP treatment. Overall, MPTP altered thyroidal status in the brain and peripheral tissues while both events might occur in isolation as well.
Collapse
Affiliation(s)
- Priyobrata Sinha
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India; Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India; Centres with Potential for Excellence in Particular Areas (CPEPA, UGC), Centre for "Electrophysiology & Neuroimaging Studies Including Mathematical Modeling" India.
| | - Nabanita Ghosh
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Soham Mitra
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Shauryabrota Dalui
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
15
|
Acute expression of the transcription factor Nrf2 after treatment with quinolinic acid is not induced by oxidative stress in the rat striatum. Neurotoxicology 2019; 73:120-131. [PMID: 30876764 DOI: 10.1016/j.neuro.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 11/20/2022]
Abstract
Quinolinic acid (QUIN) is an excitotoxic and pro-oxidant molecule used in the study of neurodegenerative disorders because it reproduces certain biochemical characteristics present in these diseases. The use of antioxidant molecules in the QUIN model reduces cellular damage through the nuclear factor erythroid 2-related to factor 2 (Nrf2) pathway. The Nrf2 transcription factor is considered the master regulator of antioxidant genes expression, and its activation occurs by an increase in the reactive oxygen species (ROS) levels or in the presence of electrophilic compounds. However, Nrf2 activation also occurs in an oxidative stress-independent process caused by the disruption of the Keap1-Nrf2 complex by the direct interaction of Keap1 with certain proteins, such as DPP3 and p62. The aim of this study was to evaluate the effect of QUIN on Nrf2 activation over short periods of time. QUIN administration increased Nrf2 activation at 30 min in the striatum without increasing ROS production or modifying the redox cellular state. Moreover, QUIN increased Keap1 and Nrf2 nuclear levels and increased the protein-protein interaction between Keap1 and DPP3 and Keap1 and p62 30 min after QUIN administration. Finally, we found that Nrf2 activation primarily occurs in striatal neurons. Our results show that QUIN administration in vivo stimulates Nrf2 expression and activation in the absence of oxidative stress primarily in neurons and increases the interaction of p62 and DPP3 with Keap1, which could participate in Nrf2 activation.
Collapse
|
16
|
Taniguti EH, Ferreira YS, Stupp IJV, Fraga-Junior EB, Doneda DL, Lopes L, Rios-Santos F, Lima E, Buss ZS, Viola GG, Vandresen-Filho S. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res Bull 2019; 146:279-286. [PMID: 30690060 DOI: 10.1016/j.brainresbull.2019.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/21/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Clinical and pre-clinical evidences indicate an association between inflammation and depression since increased levels of pro-inflammatory cytokines are associated with depression-related symptoms. Atorvastatin is a cholesterol-lowering statin that possesses pleiotropic effects including neuroprotective and antidepressant actions. However, the putative neuroprotective effect of atorvastatin treatment in the acute inflammation mice model of depressive-like behaviour has not been investigated. In the present study, we aimed to investigate the effect of atorvastatin treatment on lipopolysaccharide (LPS) induced depressive-like behaviour in mice. Mice were treated with atorvastatin (1 or 10 mg/kg, v.o.) or fluoxetine (30 mg/kg, positive control, v.o.) for 7 days before LPS (0.5 mg/kg, i.p.) injection. Twenty four hours after LPS infusion, mice were submitted to the forced swim test, tail suspension test or open field test. After the behavioural tests, mice were sacrificed and the levels of tumour necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), glutathione and malondialdehyde were measured. Atorvastatin (1 or 10 mg/kg/day) or fluoxetine treatment prevented LPS-induced increase in the immobility time in the forced swim and tail suspension tests with no alterations in the locomotor activity evaluated in the open field test. Atorvastatin (1 or 10 mg/kg/day) or fluoxetine treatment also prevented LPS-induced increase in TNF-α and reduction of BDNF levels in the hippocampus and prefrontal cortex. Treatment with atorvastatin (1 or 10 mg/kg/day) or fluoxetine prevented LPS-induced increase in lipid peroxidation and the reduction of glutathione levels in the hippocampus and prefrontal cortex. The present study suggests that atorvastatin treatment exerted neuroprotective effects against LPS-induced depressive-like behaviour which may be related to reduction of TNF-α release, oxidative stress and modulation of BDNF expression.
Collapse
Affiliation(s)
- E H Taniguti
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Y S Ferreira
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - I J V Stupp
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil; Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - E B Fraga-Junior
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - D L Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - L Lopes
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - F Rios-Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - E Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Z S Buss
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - G G Viola
- Programa de Pós-Graduação em Ensino, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte/Mossoró, Rua Raimundo Firmino de Oliveira, 400- Conj. Ulrick Graff, CEP 59628-330, Mossoró, RN, Brazil
| | - S Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
17
|
Garza-Lombó C, Petrosyan P, Tapia-Rodríguez M, Valdovinos-Flores C, Gonsebatt ME. Systemic L-buthionine-S-R-sulfoximine administration modulates glutathione homeostasis via NGF/TrkA and mTOR signaling in the cerebellum. Neurochem Int 2018; 121:8-18. [PMID: 30300680 DOI: 10.1016/j.neuint.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Glutathione (GSH) is an essential component of intracellular antioxidant systems that plays a primordial role in the protection of cells against oxidative stress, maintaining redox homeostasis and xenobiotic detoxification. GSH synthesis in the brain is limited by the availability of cysteine and glutamate. Cystine, the disulfide form of cysteine is transported into endothelial cells of the blood-brain barrier (BBB) and astrocytes via the system xc-, which is composed of xCT and the heavy chain of 4F2 cell surface antigen (4F2hc). Cystine is reduced inside the cells and the L-type amino acid transporter 1 (LAT1) transports cysteine from the endothelial cells into the brain, cysteine is transported into the neurons through the excitatory amino acid transporter 3 (EAAT3), also known as excitatory amino acid carrier 1 (EAAC1). The mechanistic/mammalian target of rapamycin (mTOR) and neurotrophins can activate signaling pathways that modulate amino acid transporters for GSH synthesis. The present study found that systemic L-buthionine-S-R-sulfoximine (BSO) administration selectively altered GSH homeostasis and EAAT3 levels in the mice cerebellum. Intraperitoneal treatment of mice with 6 mmol/kg of BSO depleted GSH and GSSG in the liver at 2 h of treatment. The cerebellum, but not other brain regions, exhibited a redox response. The mTOR and the neuronal growth factor (NGF)/tropomyosin receptor kinase A (TrkA) signaling pathways were activated and lead to an increase in the protein levels of the EAAT3 transporter, which was linked to an increase in the GSH/GSSG ratio and GSH concentration in the cerebellum at 0.5 and 2 h, respectively. Therefore, the cerebellum responds to peripheral GSH depletion via activation of the mTOR and NGF/TrkA pathways, which increase the transport of cysteine for GSH synthesis.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Cesar Valdovinos-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
18
|
Bo L, Guojun T, Li G. An Expanded Neuroimmunomodulation Axis: sCD83-Indoleamine 2,3-Dioxygenase-Kynurenine Pathway and Updates of Kynurenine Pathway in Neurologic Diseases. Front Immunol 2018; 9:1363. [PMID: 29963055 PMCID: PMC6013554 DOI: 10.3389/fimmu.2018.01363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
Many neurologic diseases are related to autoimmune dysfunction and a variety of molecules or reaction pathways are involved in the regulation of immune function of the nervous system. Soluble CD83 (sCD83) is the soluble form of CD83, a specific marker of mature dendritic cell, which has recently been shown to have an immunomodulatory effect. Indoleamine 2,3-dioxygenase (IDO; corresponding enzyme intrahepatic, tryptophan 2,3-dioxygenase, TDO), a rate-limiting enzyme of extrahepatic tryptophan kynurenine pathway (KP) participates in the immunoregulation through a variety of mechanisms solely or with the synergy of sCD83, and the imbalances of metabolites of KP were associated with immune dysfunction. With the complement of sCD83 to IDO-KP, a previously known immunomodulatory axis, this review focused on an expanded neuroimmunomodulation axis: sCD83-IDO-KP and its involvement in nervous system diseases.
Collapse
Affiliation(s)
- Li Bo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tan Guojun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Kovalčíková A, Gyurászová M, Vavrincová-Yaghi D, Vavrinec P, Tóthová Ľ, Boor P, Šebeková K, Celec P. Oxidative stress in the brain caused by acute kidney injury. Metab Brain Dis 2018. [PMID: 29516412 DOI: 10.1007/s11011-018-0204-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Uremic encephalopathy is a severe complication of renal failure. The underlying pathogenesis is unknown although several mechanisms have been suggested. Renal failure causes oxidative stress leading to cardiovascular complications. It has been suggested as the potential mediator of uremic encephalopathy as well, but it is largely unknown whether brain tissue itself undergoes oxidative damage in uremia. The aim of our experiment was to analyze oxidative stress markers in different brain regions in an animal model of acute kidney injury (AKI). AKI was induced by ischemia-reperfusion injury in male Wistar rats. Urine was collected in metabolic cages after 24 h. Samples of plasma and several brain regions were collected after 48 h. Markers of lipid peroxidation, protein oxidation and total antioxidant capacity were assessed. Renal failure was confirmed by high plasma creatinine, urea and urinary albumin to creatinine ratio. Our data confirmed increased systemic oxidative stress in the AKI group with plasma concentrations of markers of oxidative damage being twice as high compared to the sham-operated control group. No effect was seen in the urine. In the hippocampus, lipid and protein oxidation was higher, while antioxidant capacity was lower in the rats with AKI. Lipid oxidation markers in the frontal cortex were higher by 33%. No differences to controls were found in the cerebellum and hypothalamus. In conclusion, our results indicate that AKI leads to oxidative stress in the brain, especially in the hippocampus and in the frontal cortex. This kidney-brain crosstalk mediated by increased oxidative stress might explain some of the symptoms of uremic encephalopathy. The causes and consequences of oxidative damage observed in the brain during AKI remain to be elucidated.
Collapse
Affiliation(s)
- Alexandra Kovalčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 841 01, Bratislava, Slovakia
| | - Marianna Gyurászová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 841 01, Bratislava, Slovakia
| | - Diana Vavrincová-Yaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 841 01, Bratislava, Slovakia
| | - Peter Boor
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 841 01, Bratislava, Slovakia
- Institute of Pathology and Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 841 01, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 841 01, Bratislava, Slovakia.
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
20
|
Role of Phosphatidylinositol-3 Kinase Pathway in NMDA Preconditioning: Different Mechanisms for Seizures and Hippocampal Neuronal Degeneration Induced by Quinolinic Acid. Neurotox Res 2018; 34:452-462. [PMID: 29679291 DOI: 10.1007/s12640-018-9903-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
N-methyl D-aspartate (NMDA) preconditioning is evoked by the administration of a subtoxic dose of NMDA and is protective against neuronal excitotoxicity. This effect may involve a diversity of targets and cell signaling cascades associated to neuroprotection. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases (MAPKs) such as extracellular regulated protein kinase 1/2 (ERK1/2) and p38MAPK pathways play a major role in neuroprotective mechanisms. However, their involvement in NMDA preconditioning was not yet fully investigated. The present study aimed to evaluate the effect of NMDA preconditioning on PI3K/Akt, ERK1/2, and p38MAPK pathways in the hippocampus of mice and characterize the involvement of PI3K on NMDA preconditioning-evoked prevention of seizures and hippocampal cell damage induced by quinolinic acid (QA). Thus, mice received wortmannin (a PI3K inhibitor) and 15 min later a subconvulsant dose of NMDA (preconditioning) or saline. After 24 h of this treatment, an intracerebroventricular QA infusion was administered. Phosphorylation levels and total content of Akt, glycogen synthase protein kinase-3β (GSK-3β), ERK1/2, and p38MAPK were not altered after 24 h of NMDA preconditioning with or without wortmmanin pretreatment. Moreover, after QA administration, behavioral seizures, hippocampal neuronal degeneration, and Akt activation were evaluated. Inhibition of PI3K pathway was effective in abolishing the protective effect of NMDA preconditioning against QA-induced seizures, but did not modify neuronal protection promoted by preconditioning as evaluated by Fluoro-Jade B staining. The study confirms that PI3K participates in the mechanism of protection induced by NMDA preconditioning against QA-induced seizures. Conversely, NMDA preconditioning-evoked protection against neuronal degeneration is not altered by PI3K signaling pathway inhibition. These results point to differential mechanisms regarding protection against a behavioral and cellular manifestation of neural damage.
Collapse
|
21
|
Affiliation(s)
- Ursula Geronzi
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| |
Collapse
|
22
|
Taniguti EH, Ferreira YS, Stupp IJV, Fraga-Junior EB, Mendonça CB, Rossi FL, Ynoue HN, Doneda DL, Lopes L, Lima E, Buss ZS, Vandresen-Filho S. Neuroprotective effect of melatonin against lipopolysaccharide-induced depressive-like behavior in mice. Physiol Behav 2018; 188:270-275. [PMID: 29458118 DOI: 10.1016/j.physbeh.2018.02.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates an interaction between inflammation and depression since increased levels of pro-inflammatory cytokines are associated with depression-related symptoms. Melatonin is a hormone synthesized and secreted by the pineal gland with antioxidant, anti-inflammatory and antidepressant-like effects. In this way, it would be interesting to evaluate the putative antidepressant-like effect of melatonin treatment in an acute inflammation mice model of depression. The present study aimed to investigate the effect of melatonin treatment on lipopolysaccharide (LPS) induced depressive-like behavior, neuroinflammation, oxidative stress and alteration on brain-derived neurotrophic fator (BDNF) levels. Mice were treated with melatonin (10 mg/kg, i.p.) 30 min before LPS (0.5 mg/kg, i.p.) injection. Twenty-four hours after LPS infusion, mice were submitted to the behavioral tests and, thereafter, biochemical determinations were performed. Melatonin treatment prevented LPS-induced depressive-like behavior in the forced swim and tail suspension tests with no alterations in locomotor activity evaluated in the open field test. Melatonin attenuated LPS-induced increase in tumor necrosis factor-α (TNF-α) and reduction of BDNF levels in the hippocampus. Treatment with melatonin also prevented LPS-induced increase in lipid peroxidation and the reduction of glutathione levels in the hippocampus. In conclusion, the present study suggests that melatonin treatment exerted neuroprotective effects against LPS-induced depressive-like behavior which may be related to reduction of TNF-α release, oxidative stress and modulation of BDNF expression.
Collapse
Affiliation(s)
- E H Taniguti
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Y S Ferreira
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - I J V Stupp
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil; Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - E B Fraga-Junior
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - C B Mendonça
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - F L Rossi
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - H N Ynoue
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - D L Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - L Lopes
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - E Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Z S Buss
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - S Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil.
| |
Collapse
|
23
|
Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, Breitenecker RJ, Rothenhäusler HB, Robier C, Baranyi M, Theokas S, Meinitzer A. Revisiting the tryptophan-serotonin deficiency and the inflammatory hypotheses of major depression in a biopsychosocial approach. PeerJ 2017; 5:e3968. [PMID: 29109914 PMCID: PMC5671663 DOI: 10.7717/peerj.3968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/08/2017] [Indexed: 12/19/2022] Open
Abstract
Background The aim of this cross-sectional study was to identify important biopsychosocial correlates of major depression. Biological mechanisms, including the inflammatory and the tryptophan-serotonin deficiency hypotheses of major depression, were investigated alongside health-related quality of life, life satisfaction, and social support. Methods The concentrations of plasma tryptophan, plasma kynurenine, plasma kynurenic acid, serum quinolinic acid, and the tryptophan breakdown to kynurenine were determined alongside health-related quality of life (Medical Outcome Study Form, SF-36), life satisfaction (Life Satisfaction Questionnaire, FLZ), and social support (Social Support Survey, SSS) in 71 depressive patients at the time of their in-patient admittance and 48 healthy controls. Results Corresponding with the inflammatory hypothesis of major depression, our study results suggest a tryptophan breakdown to kynurenine in patients with major depression, and depressive patients had a lower concentration of neuroprotective kynurenic acid in comparison to the healthy controls (Mann-Whitney-U: 1315.0; p = 0.046). Contradicting the inflammatory theory, the concentrations of kynurenine (t: -0.945; df = 116; p = 0.347) and quinolinic acid (Mann-Whitney-U: 1376.5; p = 0.076) in depressive patients were not significantly different between depressed and healthy controls. Our findings tend to support the tryptophan-serotonin deficiency hypothesis of major depression, as the deficiency of the serotonin precursor tryptophan in depressive patients (t: -3.931; df = 116; p < 0.001) suggests dysfunction of serotonin neurotransmission. A two-step hierarchical linear regression model showed that low tryptophan concentrations, low social support (SSS), occupational requirements (FLZ), personality traits (FLZ), impaired physical role (SF-36), and impaired vitality (SF-36) predict higher Beck Depression Inventory (BDI-II) scores. Discussion Our study results argue for the validity of a biopsychosocial model of major depression with multiple pathophysiological mechanisms involved.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Hans-Bernd Rothenhäusler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Maria Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Simon Theokas
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
25
|
Fedorovich SV, Waseem TV, Puchkova LV. Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Rev Neurosci 2017; 28:363-373. [DOI: 10.1515/revneuro-2016-0077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
AbstractThe mitochondria of different cells are different in their morphological and biochemical properties. These organelles generate free radicals during activity, leading inevitably to mitochondrial DNA damage. It is not clear how this problem is addressed in long-lived cells, such as neurons. We propose the hypothesis that mitochondria within the same cell also differ in lifespan and ability to divide. According to our suggestion, cells have a pool of ‘stem’ mitochondria with low metabolic activity and a pool of ‘differentiated’ mitochondria with significantly shorter lifespans and high metabolic activity. We consider synaptic mitochondria as a possible example of ‘differentiated’ mitochondria. They are significantly smaller than mitochondria from the cell body, and they are different in key enzyme activity levels, proteome, and lipidome. Synaptic mitochondria are more sensitive to different damaging factors. It has been established that neurons have a sorting mechanism that sends mitochondria with high membrane potential to presynaptic endings. This review describes the properties of synaptic mitochondria and their role in the regulation of synaptic transmission.
Collapse
Affiliation(s)
- Sergei V. Fedorovich
- Institute of Biophysics and Cell Engineering, Akademicheskaya St., 27, Minsk 220072, Belarus
| | - Tatyana V. Waseem
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ludmila V. Puchkova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St. Petersburg 195251, Russia
- ITMO University, Kronverksky av., 49, St.Petersburg 197101, Russia
- Institute of Experimental Medicine, Pavlova str., 12, St.Petersburg 197376, Russia
| |
Collapse
|
26
|
Baranyi A, Amouzadeh-Ghadikolai O, Lewinski DV, Breitenecker RJ, Stojakovic T, März W, Robier C, Rothenhäusler HB, Mangge H, Meinitzer A. Beta-trace Protein as a new non-invasive immunological Marker for Quinolinic Acid-induced impaired Blood-Brain Barrier Integrity. Sci Rep 2017; 7:43642. [PMID: 28276430 PMCID: PMC5343478 DOI: 10.1038/srep43642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/26/2017] [Indexed: 12/27/2022] Open
Abstract
Quinolinic acid, a macrophage/microglia-derived excitotoxin fulfills a plethora of functions such as neurotoxin, gliotoxin, and proinflammatory mediator, and it alters the integrity and cohesion of the blood-brain barrier in several pathophysiological states. Beta-trace protein (BTP), a monomeric glycoprotein, is known to indicate cerebrospinal fluid leakage. Thus, the prior aim of this study was to investigate whether BTP might non-invasively indicate quinolinic acid-induced impaired blood-brain barrier integrity. The research hypotheses were tested in three subsamples with different states of immune activation (patients with HCV-infection and interferon-α, patients with major depression, and healthy controls). BTP has also been described as a sensitive marker in detecting impaired renal function. Thus, the renal function has been considered. Our study results revealed highest quinolinic acid and highest BTP- levels in the subsample of patients with HCV in comparison with the other subsamples with lower or no immune activation (quinolinic acid: F = 21.027, p < 0.001 [ANOVA]; BTP: F = 6.792, p < 0.01 [ANOVA]). In addition, a two-step hierarchical linear regression model showed that significant predictors of BTP levels are quinolinic acid, glomerular filtration rate and age. The neurotoxin quinolinic acid may impair blood-brain barrier integrity. BTP might be a new non-invasive biomarker to indicate quinolinic acid-induced impaired blood-brain barrier integrity.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria.,Institute for International Management Practice, ARU Cambridge, Cambridge, UK
| | | | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert J Breitenecker
- Department of Innovation Management and Entrepreneurship, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Synlab Academy, Synlab Services LLC, Mannheim, Germany.,Medical Clinic V (Nephrology, Hypertensiology, Endocrinology), Medical Faculty Mannheim, Ruperto Carola University Heidelberg, Mannheim, Germany
| | - Christoph Robier
- Hospital of the Brothers of St. John of God, Graz, Austria.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Hans-Bernd Rothenhäusler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
27
|
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2016; 53:10-27. [PMID: 27593095 DOI: 10.1016/j.mam.2016.08.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| |
Collapse
|
28
|
Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling. Neurochem Res 2016; 41:2017-28. [DOI: 10.1007/s11064-016-1913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
29
|
Son SW, Lee JS, Kim HG, Kim DW, Ahn YC, Son CG. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J Neurochem 2015; 136:106-17. [PMID: 26385432 DOI: 10.1111/jnc.13371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Seung-Wan Son
- Department of Biomedical Engineering; College of Health Science; Korea University; Seongbuk-Gu Seoul Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center; Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University; Jung-gu Daejeon South Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center; Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University; Jung-gu Daejeon South Korea
| | - Dong-Woon Kim
- Department of Anatomy; Brain Research Institute; Chungnam National University School of Medicine; Daejeon South Korea
| | - Yo-Chan Ahn
- Department of Health Service Management; Daejeon University; Dong-gu Daejeon Korea
| | - Chang-Gue Son
- Department of Biomedical Engineering; College of Health Science; Korea University; Seongbuk-Gu Seoul Korea
- Liver and Immunology Research Center; Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University; Jung-gu Daejeon South Korea
| |
Collapse
|
30
|
Baranyi A, Meinitzer A, Breitenecker RJ, Amouzadeh-Ghadikolai O, Stauber R, Rothenhäusler HB. Quinolinic Acid Responses during Interferon-α-Induced Depressive Symptomatology in Patients with Chronic Hepatitis C Infection - A Novel Aspect for Depression and Inflammatory Hypothesis. PLoS One 2015; 10:e0137022. [PMID: 26368809 PMCID: PMC4569409 DOI: 10.1371/journal.pone.0137022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The aim of this exploratory study is to gain for the first time a more comprehensive picture of the impact of changes of quinolinic acid concentrations on depressive symptomatology during and after IFN-α therapy. METHODS The quinolinic acid concentrations of 35 HCV patients are examined in a prospective survey over the entire period of IFN-α treatment as well as three months later at six different times (baseline, one, three, six and nine months after the beginning of IFN-α treatment, and after the end of treatment). RESULTS During IFN-α treatment Hamilton Depression Rating Scale scores rise significantly. At the same time there is greater activity of indoleamine 2,3-dioxygenase, with a resulting increase in plasma kynurenine concentrations. Compared to baseline values quinolinic acid concentrations increase significantly during therapy, reflecting an increased neurotoxic challenge. In addition, patients with higher scores in the Hamilton Depression Rating Scale at six and nine months after starting therapy show significantly higher levels of quinolinic acid concentration. CONCLUSIONS The increase of quinolinic acid during IFN-α therapy might contribute to depressive symptomatology through the neurotoxic challenge caused by quinolinic acid. Subsequently, our exploratory study results support the inflammatory hypothesis of depression. The awareness of relevant risk factors of IFN-α treatment-induced depression is essential to develop preventative treatment strategies.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Robert J. Breitenecker
- Alpen-Adria Universität Klagenfurt, Department of Innovation Management and Entrepreneurship, Klagenfurt, Austria
| | | | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
31
|
Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, Rosenfeld JV, Walker DW, Guillemin GJ, Morganti-Kossmann MC. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation 2015; 12:110. [PMID: 26025142 PMCID: PMC4457980 DOI: 10.1186/s12974-015-0328-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Abstract During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery. Methods Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9–10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry. Results In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores. Conclusion TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN’s detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.
Collapse
Affiliation(s)
- Edwin B Yan
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Tony Frugier
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Chai K Lim
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - May Tan
- Hospital Queen Elizabeth, Karung Berkunci No. 2029, 88586, Kota Kinabalu, Sabah, Malaysia
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia.,Department of Surgery, Central Clinical School and Monash Institute of Medical Engineering, Monash University, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, Australia
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Maria Cristina Morganti-Kossmann
- Australian New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Child Health, Barrow Neurological Institute, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|