1
|
Leon M, Troscianko ET, Woo CC. Inflammation and olfactory loss are associated with at least 139 medical conditions. Front Mol Neurosci 2024; 17:1455418. [PMID: 39464255 PMCID: PMC11502474 DOI: 10.3389/fnmol.2024.1455418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Emily T. Troscianko
- The Oxford Research Centre in the Humanities, University of Oxford, Oxford, United Kingdom
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Wen Y, Zhao C, Chen J, Tian L, Wu B, Xie W, Dong T. Gandouling Regulates Ferroptosis and Improves Neuroinflammation in Wilson's Disease Through the LCN2/NLRP3 Signaling Pathway. J Inflamm Res 2024; 17:5599-5618. [PMID: 39193124 PMCID: PMC11348929 DOI: 10.2147/jir.s465341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Neuroinflammation is a main cause of neurological damage in Wilson's disease (WD). Ferroptosis is present in the WD pathological process, which is also closely related to the neuroinflammation. LCN2, a ferroptosis-related gene in WD, is linked with the activation of NLRP3 inflammasome. Our group has previously demonstrated that Gandouling (GDL) can effectively improve neuroinflammation in WD. This study aims to investigate the protective effect of GDL on neuroinflammation in animal and cell models of WD, and whether the pharmacological mechanism is related to the LCN2/NLRP3 signaling pathway. Methods Toxic milk (TX) mice and HT22 cells stimulated by copper ions were selected as models. The pathology of hippocampal tissues in TX mice were observed by HE staining and transmission electron microscopy. High-throughput sequencing analysis was conducted to screen ferroptosis-related genes in WD. The expression of LCN2 and GPX4 in hippocampus of TX mice were detected by immunohistochemical. The expression of LCN2, NLRP3, GPX4, and SLC7A11 was determined in TX mice and HT22 cells by Western blotting and RT-qPCR. The levels of Fe2+, inflammatory factor indicators TNF-α, IL-1β and IL-6 and oxidative stress indicators 4-HNE, MAD, SOD, GSH and ROS were detected in each group by ELISA. Results The results showed that GDL ameliorated pathological and mitochondrial damages in hippocampus of TX mice. The analysis of bioinformatics showed that LCN2 was a differential gene associated with ferroptosis in WD. The results of Western blotting and RT-qPCR indicated that GDL reduced the expression of LCN2 and NLRP3, and enhanced the expression of GPX4 and SLC711 in TX mice and HT22 cells. The ELISA results showed that GDL decreased the expression of Fe2+ and inflammatory factors TNF-α, IL-1β and IL-6 in TX mice with ferroptosis inducer intervention and copper ion-loaded HT22 cells. GDL decreased the expression of oxidative stress indicators ROS, 4-HNE and MDA, and increased the expression of oxidative stress indicators GSH and SOD in TX mice and copper ion-loaded HT22 cells. Conclusion GDL has anti-inflammatory and antioxidant effects. LCN2 is a differential gene associated with ferroptosis in WD. GDL may alleviate ferroptosis by inhibiting the LCN2/NLPR3 signaling pathway, thereby improving neuroinflammatory responses and exerting neuroprotective effects in WD.
Collapse
Affiliation(s)
- Yuya Wen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Chenling Zhao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Jie Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Liwei Tian
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Bojin Wu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Wenting Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
- Key Laboratory of Xin’An Medicine, Ministry of Education, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| |
Collapse
|
3
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
4
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
5
|
Teschke R, Eickhoff A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int J Mol Sci 2024; 25:4753. [PMID: 38731973 PMCID: PMC11084815 DOI: 10.3390/ijms25094753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic steps, such as the generation of reactive oxygen species (ROS) and cuproptosis causing a copper dependent cell death. In the liver of patients with Wilson disease, also, increased iron deposits were found that may lead to iron-related ferroptosis responsible for phospholipid peroxidation within membranes of subcellular organelles. All topics are covered in this review article, in addition to the diagnostic and therapeutic issues of Wilson disease. Excess Cu2+ primarily leads to the generation of reactive oxygen species (ROS), as evidenced by early experimental studies exemplified with the detection of hydroxyl radical formation using the electron spin resonance (ESR) spin-trapping method. The generation of ROS products follows the principles of the Haber-Weiss reaction and the subsequent Fenton reaction leading to copper-related cuproptosis, and is thereby closely connected with ROS. Copper accumulation in the liver is due to impaired biliary excretion of copper caused by the inheritable malfunctioning or missing ATP7B protein. As a result, disturbed cellular homeostasis of copper prevails within the liver. Released from the liver cells due to limited storage capacity, the toxic copper enters the circulation and arrives at other organs, causing local accumulation and cell injury. This explains why copper injures not only the liver, but also the brain, kidneys, eyes, heart, muscles, and bones, explaining the multifaceted clinical features of Wilson disease. Among these are depression, psychosis, dysarthria, ataxia, writing problems, dysphagia, renal tubular dysfunction, Kayser-Fleischer corneal rings, cardiomyopathy, cardiac arrhythmias, rhabdomyolysis, osteoporosis, osteomalacia, arthritis, and arthralgia. In addition, Coombs-negative hemolytic anemia is a key feature of Wilson disease with undetectable serum haptoglobin. The modified Leipzig Scoring System helps diagnose Wilson disease. Patients with Wilson disease are well-treated first-line with copper chelators like D-penicillamine that facilitate the removal of circulating copper bound to albumin and increase in urinary copper excretion. Early chelation therapy improves prognosis. Liver transplantation is an option viewed as ultima ratio in end-stage liver disease with untreatable complications or acute liver failure. Liver transplantation finally may thus be a life-saving approach and curative treatment of the disease by replacing the hepatic gene mutation. In conclusion, Wilson disease is a multifaceted genetic disease representing a molecular and clinical challenge.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| |
Collapse
|
6
|
Hao W, Yang W, Yang Y, Cheng T, Wei T, Tang L, Qian N, Yang Y, Li X, Jiang H, Wang M. Identification of lncRNA-miRNA-mRNA Networks in the Lenticular Nucleus Region of the Brain Contributes to Hepatolenticular Degeneration Pathogenesis and Therapy. Mol Neurobiol 2024; 61:1673-1686. [PMID: 37759104 PMCID: PMC10896925 DOI: 10.1007/s12035-023-03631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a recently discovered group of non-coding RNAs that play a crucial role in the regulation of various human diseases, especially in the study of nervous system diseases which has garnered significant attention. However, there is limited knowledge on the identification and function of lncRNAs in hepatolenticular degeneration (HLD). The objective of this study was to identify novel lncRNAs and determine their involvement in the networks associated with HLD. We conducted a comprehensive analysis of RNA sequencing (RNA-seq) data, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and computational biology to identify novel lncRNAs and explore their potential mechanisms in HLD. We identified 212 differently expressed lncRNAs, with 98 upregulated and 114 downregulated. Additionally, 32 differently expressed mRNAs were found, with 15 upregulated and 17 downregulated. We obtained a total of 1131 pairs of co-expressed lncRNAs and mRNAs by Pearson correlation test and prediction and annotation of the lncRNA-targeted miRNA-mRNA network. The differential lncRNAs identified in this study were found to be involved in various biological functions and signaling pathways. These include translational initiation, motor learning, locomotors behavior, dioxygenase activity, integral component of postsynaptic membrane, neuroactive ligand-receptor interaction, nuclear factor-kappa B (NF-κB) signaling pathway, cholinergic synapse, sphingolipid signaling pathway, and Parkinson's disease signaling pathway, as revealed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Six lncRNAs, including XR_001782921.1 (P < 0.01), XR_ 001780581.1 (P < 0.01), ENSMUST_00000207119 (P < 0.01), XR_865512.2 (P < 0.01), TCONS_00005916 (P < 0.01), and TCONS_00020683 (P < 0.01), showed significant differences in expression levels between the model group and normal group by RT-qPCR. Among these, four lncRNAs (TCONS_00020683, XR_865512.2, XR_001780581.1, and ENSMUST00000207119) displayed a high degree of conservation. This study provides a unique perspective for the pathogenesis and therapy of HLD by constructing the lncRNA-miRNA-mRNA network. This insight provides a foundation for future exploration in this field.
Collapse
Affiliation(s)
- Wenjie Hao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Cheng
- Department of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Taohua Wei
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nannan Qian
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yulong Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hailin Jiang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Meixia Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Jiang Z, Dong T, Wang Y, Tang L, Zhao C, Wen Y, Chen J. Gandouling alleviates cognitive dysfunction by regulates the p62/Nrf2 signaling pathway to reduce oxidative stress and autophagy in mice models of Wilson’s disease. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Zhang W, Yu Q, Peng H, Zheng Z, Zhou F. Clinical observation and risk assessment after splenectomy in hepatolenticular degeneration patients associated with hypersplenism. Front Surg 2022; 9:972561. [PMID: 36211271 PMCID: PMC9539271 DOI: 10.3389/fsurg.2022.972561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022] Open
Abstract
Background Both hepatolenticular degeneration (HLD) and viral hepatitis B (HBV) can cause hypersplenism, but whether splenectomy is needed or can be performed in HLD patients associated with hypersplenism is still controversial. At present, HLD combined with hypersplenism has not been listed as the indication of splenectomy. Objective This study aimed to investigate the efficacy, risks, and postoperative complications of splenectomy in HLD patients associated with hypersplenism. Methods We retrospectively analyzed the clinical data of 180 HLD patients with hypersplenism who underwent splenectomy in the Department of General Surgery, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, from January 2001 to December 2015. To evaluate the efficacy of splenectomy, the hemogram of white blood cells (WBC), red blood cells (RBC), platelets (PLT), and the liver function indexes including alanine aminotransferase, aspartate aminotransferase, and total bilirubin were recorded before surgery and 1, 3, 5, 7, and 14 days after surgery. In addition, the clinical data of 142 HBV patients with hypersplenism who underwent splenectomy over the same period were also recorded and compared with that of HLD patients. In particular, aiming to assess the risks of splenectomy in HLD, we also compared postoperative complications and 36-month mortality between the two groups. Result The level of WBC, RBC, and PLT were all elevated after splenectomy in both the HLD group and the HBV group. However, there was no significant difference in the variation of hemogram after splenectomy between the two groups (P > 0.05). Similarly, the variation of liver function indexes showed no statistical difference between the two groups. In terms of the incidence of postoperative complications including abdominal bleeding, pancreatic leakage, portal vein thrombosis treatment, incision infection, lung infection, and 36-month mortality, there were no significant differences between the two groups. Conclusion After splenectomy, the hemogram as well as liver function in the HLD group improved a lot and showed a consistent tendency with that in the HBV group. Meanwhile, compared to the HBV group, there was no significant difference in the incidence of postoperative complications in the HLD group. All these results indicate that splenectomy in HLD patients combined with hypersplenism is completely feasible and effective.
Collapse
Affiliation(s)
- Wanzong Zhang
- First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Qingsheng Yu
- First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Correspondence: Qingsheng Yu
| | - Hui Peng
- First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Zhou Zheng
- First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Fuhai Zhou
- First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Zhang M, Jin C, Ding Y, Tao Y, Zhang Y, Fu Z, Zhou T, Zhang L, Song Z, Hao Z, Meng J, Liang C. Higher Intake of Fat, Vitamin E-(β+γ), Magnesium, Sodium, and Copper Increases the Susceptibility to Prostatitis-like Symptoms: Evidence from a Chinese Adult Cohort. Nutrients 2022; 14:nu14183675. [PMID: 36145052 PMCID: PMC9501331 DOI: 10.3390/nu14183675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Prostatitis-like symptoms (PLS) lead to severe discomfort in males in their daily lives. Diet has been established as affecting PLS in our prior study, but the effect of nutrients, particularly for micronutrients remains largely unclear. Methods: This study enrolled 1284 participants from August 2020 to March 2021. The National Institute of Health−Chronic Prostatitis Symptom Index was used to assess PLS. The diet composition was evaluated by the Chinese Food Composition Tables. Results: Participants were separated into PLS (n = 216), control (n = 432), and noninflammatory-abnormal symptoms (NIANS) (n = 608) groups. We observed higher levels of carotene, vitamin C, vitamin E-(β+γ) and subclass, zinc, magnesium, selenium, potassium, sodium, iron and manganese in the PLS group than in the control group. After adjustment for the potential confounders, the elevated risk from IQR2 to IQR4 of fat (P for trend = 0.011), vitamin E-(β+γ) (P for trend = 0.003), magnesium (P for trend = 0.004), sodium (P for trend = 0.001) and copper (P for trend < 0.001) was identified. Conclusions: This is the first study to evaluate the nutrient distribution in PLS patients and reveal that the higher intake of fat, vitamin E-(β+γ), magnesium, sodium, and copper is associated with a risk of PLS.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yang Ding
- The Second Clinical Medical College, Anhui Medical University, Hefei 230022, China
| | - Yuqing Tao
- The Second Clinical Medical College, Anhui Medical University, Hefei 230022, China
| | - Yulin Zhang
- The Second Clinical Medical College, Anhui Medical University, Hefei 230022, China
| | - Ziyue Fu
- The Second Clinical Medical College, Anhui Medical University, Hefei 230022, China
| | - Tao Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Zhengyao Song
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Anhui Clinical Research Center of Urology Disease, Hefei 230022, China
- Correspondence: (J.M.); (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Correspondence: (J.M.); (C.L.)
| |
Collapse
|
10
|
Liposome-encapsulated curcumin attenuates HMGB1-mediated hepatic inflammation and fibrosis in a murine model of Wilson's disease. Biomed Pharmacother 2022; 152:113197. [PMID: 35687913 DOI: 10.1016/j.biopha.2022.113197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is an inherited disorder of copper metabolism with predominant hepatic manifestations. Left untreated, it can be fatal. Current therapies focus on treating copper overload rather than targeting the pathophysiology of copper-induced liver injuries. We sought to investigate whether liposome-encapsulated curcumin (LEC) could attenuate the underlying pathophysiology of WD in a mouse model of WD. APPROACH AND RESULTS Subcutaneous administration in a WD mouse model with ATP7B knockout (Atp7b-/-) resulted in robust delivery of LEC to the liver as determined by in-vitro and in-vivo imaging. Treatment with LEC attenuated hepatic injuries, restored lipid metabolism and decreased hepatic inflammation and fibrosis, and thus hepatosplenomegaly in Atp7b-/- mice. Mechanistically, LEC decreased hepatic immune cell and macrophage infiltration and attenuated the hepatic up-regulation of p65 by preventing cellular translocation of high-mobility group box-1 (HMGB-1). Moreover, decreased translocation of HMGB1 was associated with reduced splenic CD11b+/CD43+/Ly6CHi inflammatory monocyte expansion and circulating level of proinflammatory cytokines. Nevertheless there was no change in expression of oxidative stress-related genes or significant copper chelation effect of LEC in Atp7b-/- mice. CONCLUSION Our results indicate that treatment with subcutaneous LEC can attenuate copper-induced liver injury in an animal model of WD via suppression of HMGB1-mediated hepatic and systemic inflammation. These findings provide important proof-of-principle data to develop LEC as a novel therapy for WD as well as other inflammatory liver diseases.
Collapse
|
11
|
Goldman JE. Alzheimer Type I Astrocytes: Still Mysterious Cells. J Neuropathol Exp Neurol 2022; 81:588-595. [PMID: 35689655 DOI: 10.1093/jnen/nlac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over 100 years ago, von Hösslein and Alzheimer described enlarged and multinucleated astrocytes in the brains of patients with Wilson disease. These odd astrocytes, now well known to neuropathologists, are present in a large variety of neurological disorders, and yet the mechanisms underlying their generation and their functional attributes are still not well understood. They undergo abnormal mitoses and fail to accomplish cytokinesis, resulting in multinucleation. Oxidative stress, hypoxia, and inflammation may be contributing pathologies to generate these astrocytes. The abnormal mitoses occur from changes in cell shape, the accumulation of cytoplasmic proteins, and the mislocalization of many of the important molecules whose coordination is necessary for proper mitotic spindle formation. Modern technologies will be able to characterize their abnormalities and solve century old questions of their form and function.
Collapse
Affiliation(s)
- James E Goldman
- From the Division of Neuropathology, Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and The Taub Institute for Research on Alzheimer's Disease and Aging, NY-Presbyterian Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Olsson M, Hellman U, Wixner J, Anan I. Metabolomics analysis for diagnosis and biomarker discovery of transthyretin amyloidosis. Amyloid 2021; 28:234-242. [PMID: 34319177 DOI: 10.1080/13506129.2021.1958775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Untargeted metabolomics is a well-established technique and a powerful tool to find potential plasma biomarkers for early diagnosing hereditary transthyretin amyloidosis. Hereditary transthyretin amyloidosis (ATTRv) is a disabling and fatal disease with different clinical features such as polyneuropathy, cardiomyopathy, different gastrointestinal symptoms and renal failure. Plasma specimens collected from 27 patients with ATTRv (ATTRV30M), 26 asymptomatic TTRV30M carriers and 26 control individuals were subjected to gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS)-based metabolomics analysis. Partial least squares discriminant and univariate analysis was used to analyse the data. The models constructed by Partial least squares-discriminant analysis (PLS-DA) could clearly discriminate ATTRV30M patients from controls and asymptomatic TTRV30M carriers. In total, 24 plasma metabolites (VIP > 1.0 and p < .05) were significantly altered in ATTRV30M patient group (6 increased and 18 decreased). Eleven of these distinguished the ATTRV30M group from both controls and TTRV30M carriers. Plasma metabolomics analysis revealed marked changes in several pathways in patients with ATTRV30M amyloidosis. Statistical analysis identified a panel of biomarkers that could effectively separate controls/TTRV30M carriers from ATTRV30M patients. These biomarkers can potentially be used to diagnose patients at an early stage of the disease.
Collapse
Affiliation(s)
- Malin Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jonas Wixner
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Sánchez-Monteagudo A, Ripollés E, Berenguer M, Espinós C. Wilson's Disease: Facing the Challenge of Diagnosing a Rare Disease. Biomedicines 2021; 9:1100. [PMID: 34572285 PMCID: PMC8471362 DOI: 10.3390/biomedicines9091100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Wilson disease (WD) is a rare disorder caused by mutations in ATP7B, which leads to the defective biliary excretion of copper. The subsequent gradual accumulation of copper in different organs produces an extremely variable clinical picture, which comprises hepatic, neurological psychiatric, ophthalmological, and other disturbances. WD has a specific treatment, so that early diagnosis is crucial to avoid disease progression and its devastating consequences. The clinical diagnosis is based on the Leipzig score, which considers clinical, histological, biochemical, and genetic data. However, even patients with an initial WD diagnosis based on a high Leipzig score may harbor other conditions that mimic the WD's phenotype (Wilson-like). Many patients are diagnosed using current available methods, but others remain in an uncertain area because of bordering ceruloplasmin levels, inconclusive genetic findings and unclear phenotypes. Currently, the available biomarkers for WD are ceruloplasmin and copper in the liver or in 24 h urine, but they are not solid enough. Therefore, the characterization of biomarkers that allow us to anticipate the evolution of the disease and the monitoring of new drugs is essential to improve its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ana Sánchez-Monteagudo
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Edna Ripollés
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Marina Berenguer
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
- Hepatology-Liver Transplantation Unit, Digestive Medicine Service, IIS La Fe and CIBER-EHD, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| |
Collapse
|
14
|
Neuropsychiatric Manifestations of Wilson Disease: Correlation with MRI and Glutamate Excitotoxicity. Mol Neurobiol 2021; 58:6020-6031. [PMID: 34435331 DOI: 10.1007/s12035-021-02525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
This study aims to identify neuropsychiatric manifestations in neurological Wilson disease (NWD), and their correlation with MRI changes and glutamate excitotoxicity. Forty-three consecutive patients with NWD from a tertiary care teaching hospital were evaluated prospectively who fulfilled the inclusion criteria. The neuropsychiatric evaluation was done using Neuropsychiatric Inventory (NPI) battery that assesses 12 domains including delusion, hallucination, agitation/aggression, dysphoria/depression, anxiety, euphoria, apathy, disinhibition, irritability, aberrant motor activity, appetite change, and abnormal nighttime behavior. Cranial MRI was done using a 3 T machine, and locations of signal changes were noted including the total number of MRI lesions. Serum glutamate level was measured by a fluorescence microplate reader. Abnormal NPI in various domains and total NPI scores were correlated with MRI lesions, serum and urinary copper, and glutamate level. The median age of the patients was 16 years. Forty-one (48.8%) patients had cognitive impairment and 37 (86%) had movement disorder. Neurobehavioral abnormality was detected in all-commonest being agitation (90.7%) followed by appetite change (81.4%), elation (74.4%), irritability (69.8%), anxiety (67.4%), depression (65.1%), apathy (44.2%), night time abnormal behavior (32.6%), aberrant motor behavior (20.9%), delusions (16.3%), and hallucination (18.6%). The thalamic lesion was associated with depression, globus pallidus with depression and anxiety, caudate with anxiety and agitation, brainstem with irritability, and frontal cortex with apathy. Serum glutamate level was higher in NWD. NPI sum score correlated with MRI load and glutamate level. Varying severity of neurobehavioral abnormalities are common in the patients with NWD and correlate with the location of MRI lesion and glutamate level.
Collapse
|
15
|
Kong L, Huang H, Luan S, Liu H, Ye M, Wu F. Inhibition of ASIC1a-Mediated ERS Improves the Activation of HSCs and Copper Transport Under Copper Load. Front Pharmacol 2021; 12:653272. [PMID: 34135753 PMCID: PMC8201774 DOI: 10.3389/fphar.2021.653272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatolenticular degeneration (HLD) is an autosomal recessive genetic disease caused by the toxic accumulation of copper in the liver. Excessive copper will disrupt the redox balance in cells and tissues, causing ischemia, hypoxia, and inflammation. Acid-sensitive ion channel 1a is a cationic channel activated by extracellular acid and allowing Ca2+ and Na+ to flow into cells. Its expression appears in inflammation, arthritis, fibrotic tissue, and damaged environment, but its role in hepatolenticular degeneration has not been studied. This study established a Wistar rat model of high copper accumulation and used CuSO4 to induce the activation of HSC-T6 in an in vitro experiment. In vivo, Wistar rats were examined to determine the serum copper concentration, serum ALT and AST activities, and liver copper accumulation, and liver tissue HE staining and immunohistochemical analyses were conducted. The expression of ASIC1a, α-SMA, Collagen-Ι, GRP78, XBP1, ATP7B, and CCS were detected. Besides, immunofluorescence technology can detect the expression of the phosphorylated protein in vitro. It is suggested that ASIC1a is involved in the quality control of the endoplasmic reticulum, which degrades mutant ATP7B and increases the accumulation of copper. After blocking or silencing the expression of ASIC1a, ELISA can detect the level of inflammatory factors, the expression of endoplasmic reticulum stress-related factors, and ATP7B was improved in a higher copper environment reduction of copper deposition was observed in liver Timm’s staining. Collectively, we conclude that ASIC1a is involved in the HSC activation induced by copper accumulation and promotes the occurrence of hepatolenticular fibrosis.
Collapse
Affiliation(s)
- Lingjin Kong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Huiping Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Shaohua Luan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Hui Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Manping Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Fanrong Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Alkhuraimi WM, Alqahtani W, Alqahtani AS. Challenges in Management of Rhegmatogenous Retinal Detachment in a Patient With Wilson's Disease: A Case Report and Literature Review. Cureus 2021; 13:e12921. [PMID: 33654604 PMCID: PMC7906275 DOI: 10.7759/cureus.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Wilson’s disease (WD) is a rare hepatolenticular inherited disorder affecting copper transport resulting in accumulation of copper, which leads to the induction of apoptosis in different organs. Furthermore, patients with WD have elevated cytokines activity responsible for inflammation of various tissues. Here, we report our challenges in managing a case of rhegmatogenous retinal detachment (RRD) in a one-eyed 28-year-old male with WD who had a previous history of severe intraocular inflammation that ended with phthisis bulbi after pars plana vitrectomy for RRD. After one year, he developed RRD in the seeing eye. A decision was made to perform scleral buckling to avoid the risk of postoperative intraocular inflammation. However, a barrage laser was required for shallow retinal detachment in a subsequent follow-up, which was ultimately complicated by severe intraocular inflammation. We observed that our patient with WD had a tendency for severe intraocular inflammation, even following minor non-surgical ophthalmic procedures. For this reason, ophthalmologists need to be aware of managing similar cases and perhaps other diseases associated with elevated levels of cytokines.
Collapse
Affiliation(s)
| | | | - Abdullah S Alqahtani
- Ophthalmology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU.,Ophthalmology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
17
|
Dong J, Wang X, Xu C, Gao M, Wang S, Zhang J, Tong H, Wang L, Han Y, Cheng N, Han Y. Inhibiting NLRP3 inflammasome activation prevents copper-induced neuropathology in a murine model of Wilson's disease. Cell Death Dis 2021; 12:87. [PMID: 33462188 PMCID: PMC7813851 DOI: 10.1038/s41419-021-03397-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Wilson’s disease (WD) is an inherited disorder characterized by excessive accumulation of copper in the body, particularly in the liver and brain. In the central nervous system (CNS), extracellular copper accumulation triggers pathological microglial activation and subsequent neurotoxicity. Growing evidence suggests that levels of inflammatory cytokines are elevated in the brain of murine WD models. However, the mechanisms associated with copper deposition to neuroinflammation have not been completely elucidated. In this study, we investigated how the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to copper-mediated neuroinflammation in an animal model of WD. Elevated levels of interleukin-1β, interleukin-18, interleukin-6, and tumor necrosis factor-α were observed in the sera of WD patients and toxic milk (TX) mice. The protein levels of inflammasome adaptor molecule apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), cleaved caspase-1, and interleukin-1β were upregulated in the brain regions of the TX mice. The NLRP3 inflammasome was activated in the TX mice brains. Furthermore, the activation of NLRP3 inflammasome was noted in primary microglia treated with CuCl2, accompanied by the increased levels of cleaved caspase-1, ASC, and interleukin-1β. Blocking NLRP3 inflammasome activation with siNlrp3 or MCC950 reduced interleukin-1β and interleukin-18 production, thereby effectively mitigating cognitive decline, locomotor behavior impairment, and neurodegeneration in TX mice. Overall, our study demonstrates the contribution of copper overload-mediated activation of NLRP3 inflammasome to progressive neuropathology in the CNS of a murine model of WD. Therefore, blockade of the NLRP3 inflammasome activation could be a potential therapeutic strategy for WD.
Collapse
Affiliation(s)
- Jianjian Dong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China.,The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China
| | - Xun Wang
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China.,Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Chenchen Xu
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China.,Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Manli Gao
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China.,Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Shijing Wang
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China.,Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Jin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Haiyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Lulu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yongzhu Han
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China.,Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Nan Cheng
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China. .,Anhui University of Chinese Medicine, Hefei, 230012, P. R. China.
| | - Yongsheng Han
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, 230061, P. R. China. .,Anhui University of Chinese Medicine, Hefei, 230012, P. R. China.
| |
Collapse
|
18
|
Federico A. Rare Neurologic Diseases and Neurological Sciences: a report for the celebration of the 2020 Rare Diseases Day. Neurol Sci 2020; 41:491-495. [PMID: 32062737 DOI: 10.1007/s10072-020-04287-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonio Federico
- Department Medicine, Surgery an Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|
19
|
Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in Patients with Wilson Disease: Exploratory Metabolomic Profiling and Implications for Hepatic and Neurologic Phenotypes. Int J Mol Sci 2019; 20:ijms20235937. [PMID: 31779102 PMCID: PMC6928853 DOI: 10.3390/ijms20235937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Wilson disease (WD) is a genetic copper overload condition characterized by hepatic and neuropsychiatric symptoms with a not well-understood pathogenesis. Dysregulated methionine cycle is reported in animal models of WD, though not verified in humans. Choline is essential for lipid and methionine metabolism. Defects in neurotransmitters as acetylcholine, and biogenic amines are reported in WD; however, less is known about their circulating precursors. We aimed to study choline, methionine, aromatic amino acids, and phospholipids in serum of WD subjects. Hydrophilic interaction chromatography-quadrupole time-of-flight mass spectrometry was employed to profile serum of WD subjects categorized as hepatic, neurologic, and pre-clinical. Hepatic transcript levels of genes related to choline and methionine metabolism were verified in the Jackson Laboratory toxic milk mouse model of WD (tx-j). Compared to healthy subjects, choline, methionine, ornithine, proline, phenylalanine, tyrosine, and histidine were significantly elevated in WD, with marked alterations in phosphatidylcholines and reductions in sphingosine-1-phosphate, sphingomyelins, and acylcarnitines. In tx-j mice, choline, methionine, and phosphatidylcholine were similarly dysregulated. Elevated choline is a hallmark dysregulation in WD interconnected with alterations in methionine and phospholipid metabolism, which are relevant to hepatic steatosis. The elevated phenylalanine, tyrosine, and histidine carry implications for neurologic manifestations and are worth further investigation.
Collapse
|
20
|
Kalita J, Kumar V, Misra UK, Parashar V, Ranjan A. Adjunctive Antioxidant Therapy in Neurologic Wilson’s Disease Improves the Outcomes. J Mol Neurosci 2019; 70:378-385. [DOI: 10.1007/s12031-019-01423-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
|
21
|
Hongyan L, Mengjiao Z, Chunyan W, Yaruo H. Rhynchophyllin attenuates neuroinflammation in Tourette syndrome rats via JAK2/STAT3 and NF-κB pathways. ENVIRONMENTAL TOXICOLOGY 2019; 34:1114-1120. [PMID: 31231976 DOI: 10.1002/tox.22813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was designed to investigate the effects of rhynchophyllin (RH) on neuroinflammation in Tourette syndrome (TS) rats. TS model was established in rats by the injection of selective 5-HT2A/2C agonist 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Behavior in DOI-induced rats was tested. Inflammatory cytokines levels such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in serum and striatum were detected. The expression levels of janus kinase 2 (JAK2)/signal transducer and transcription activator 3 (STAT3) and nuclear factor (NF)-κB pathways in striatum were measured by Western blot. Data indicated that RH can significantly reduce the numbers of nodding experiment of TS rats. RH significantly decreased IL-6, IL-1β, and TNF-α in serum and striatum of TS rats, with altered expression of P-JAK2, P-STAT3, P-NF-κBp65, and P-IκBα in TS rats, as evidenced by Western blot analysis and immunohistochemistry, suggesting that the regulation of JAK2/STAT3 and NF-κB pathways might be involved in the mechanism of RH on TS.
Collapse
Affiliation(s)
- Long Hongyan
- Central Laboratory, Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Wang Chunyan
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huang Yaruo
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|