1
|
Jegatheeswaran L, Gokani SA, Luke L, Klyvyte G, Espehana A, Garden EM, Tarantino A, Al Omari B, Philpott CM. Assessment of COVID-19-related olfactory dysfunction and its association with psychological, neuropsychiatric, and cognitive symptoms. Front Neurosci 2023; 17:1165329. [PMID: 37599993 PMCID: PMC10436231 DOI: 10.3389/fnins.2023.1165329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose of review To provide a detailed overview of the assessment of COVID-19-related olfactory dysfunction and its association with psychological, neuropsychiatric, and cognitive symptoms. Recent findings COVID-19-related olfactory dysfunction can have a detrimental impact to the quality of life of patients. Prior to the COVID-19 pandemic, olfactory and taste disorders were a common but under-rated, under-researched and under-treated sensory loss. The pandemic has exacerbated the current unmet need for accessing good healthcare for patients living with olfactory disorders and other symptoms secondary to COVID-19. This review thus explores the associations that COVID-19 has with psychological, neuropsychiatric, and cognitive symptoms, and provide a framework and rationale for the assessment of patients presenting with COVID-19 olfactory dysfunction. Summary Acute COVID-19 infection and long COVID is not solely a disease of the respiratory and vascular systems. These two conditions have strong associations with psychological, neuropsychiatric, and cognitive symptoms. A systematic approach with history taking and examination particularly with nasal endoscopy can determine the impact that this has on the patient. Specific olfactory disorder questionnaires can demonstrate the impact on quality of life, while psychophysical testing can objectively assess and monitor olfaction over time. The role of cross-sectional imaging is not yet described for COVID-19-related olfactory dysfunction. Management options are limited to conservative adjunctive measures, with some medical therapies described.
Collapse
Affiliation(s)
- Lavandan Jegatheeswaran
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
| | - Shyam Ajay Gokani
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Louis Luke
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Gabija Klyvyte
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Andreas Espehana
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Mairenn Garden
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Alessia Tarantino
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
| | - Basil Al Omari
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
| | - Carl Martin Philpott
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
2
|
Bayat AH, Azimi H, Hassani Moghaddam M, Ebrahimi V, Fathi M, Vakili K, Mahmoudiasl GR, Forouzesh M, Boroujeni ME, Nariman Z, Abbaszadeh HA, Aryan A, Aliaghaei A, Abdollahifar MA. COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus. Apoptosis 2022; 27:852-868. [PMID: 35876935 PMCID: PMC9310365 DOI: 10.1007/s10495-022-01754-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Recent investigations of COVID-19 have largely focused on the effects of this novel virus on the vital organs in order to efficiently assist individuals who have recovered from the disease. In the present study we used hippocampal tissue samples extracted from people who died after COVID-19. Utilizing histological techniques to analyze glial and neuronal cells we illuminated a massive degeneration of neuronal cells and changes in glial cells morphology in hippocampal samples. The results showed that in hippocampus of the studied brains there were morphological changes in pyramidal cells, an increase in apoptosis, a drop in neurogenesis, and change in spatial distribution of neurons in the pyramidal and granular layer. It was also demonstrated that COVID-19 alter the morphological characteristics and distribution of astrocyte and microglia cells. While the exact mechanism(s) by which the virus causes neuronal loss and morphology in the central nervous system (CNS) remains to be determined, it is necessary to monitor the effect of SARS-CoV-2 infection on CNS compartments like the hippocampus in future investigations. As a result of what happened in the hippocampus secondary to COVID-19, memory impairment may be a long-term neurological complication which can be a predisposing factor for neurodegenerative disorders through neuroinflammation and oxidative stress mechanisms.
Collapse
Affiliation(s)
- Amir-Hossein Bayat
- Department of Basic Sciences, Saveh University of Medical Sciences, Saveh, Iran
| | - Helia Azimi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Forouzesh
- Legal Medicine Research Center, Iranian Legal Medicine Organization, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zahra Nariman
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Aryan
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aliaghaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Paoletti AM, Melilli MG, Vecchio I. Experimental Models of SARS-COV-2 Infection in the Central Nervous System. J Cent Nerv Syst Dis 2022; 14:11795735221102231. [PMID: 35783991 PMCID: PMC9247991 DOI: 10.1177/11795735221102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has raised serious concerns worldwide due to
its great impact on human health and forced scientists racing to find effective
therapies to control the infection and a vaccine for the virus. To this end,
intense research efforts have focused on understanding the viral biology of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for
COVID-19. The ever-expanding list of cases, reporting clinical neurological
complications in COVID-19 patients, strongly suggests the possibility of the
virus invading the nervous system. The pathophysiological processes responsible
for the neurological impact of COVID-19 are not fully understood. Some
neurodegenerative disorders sometimes take more than a decade to manifest, so
the long-term pathophysiological outcomes of SARS-CoV-2 neurotropism should be
regarded as a challenge for researchers in this field. There is no documentation
on the long-term impact of SARS-CoV-2 on the human central nervous system (CNS).
Most of the data relating to neurological damage during SARS-CoV-2 infection
have yet to be established experimentally. The purpose of this review is to
describe the knowledge gained, from experimental models, to date, on the
mechanisms of neuronal invasion and the effects produced by infection. The hope
is that, once the processes are understood, therapies can be implemented to
limit the damage produced. Long-term monitoring and the use of appropriate and
effective therapies could reduce the severity of symptoms and improve quality of
life of the most severely affected patients, with a special focus on those have
required hospital care and assisted respiration.
Collapse
Affiliation(s)
- Anna Maria Paoletti
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| | | | - Immacolata Vecchio
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| |
Collapse
|
4
|
Illéš R, Chochol J, Džubera A, Chocholová A, Zemková E. COVID-19 Worsens Chronic Lumbosacral Radicular Pain—Case Series Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116410. [PMID: 35681993 PMCID: PMC9180125 DOI: 10.3390/ijerph19116410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/08/2023]
Abstract
The knowledge of the COVID-19 symptomatology has increased since the beginning of the SARS-CoV-2 pandemic. The symptoms of nervous system involvement have been observed across the spectrum of COVID-19 severity. Reports describing difficulties of nerve roots are rare; the affection of brain and spinal cord by SARS-CoV-2 is of leading interest. Our aim therefore is to describe the radicular pain deterioration in the group of nine chronic lumbosacral radicular syndrome sufferers in acute COVID-19. The intensity of radicular pain was evaluated by the Visual Analogue Scale (VAS). The VAS score in acute infection increased from 5.6 ± 1.1 to 8.0 ± 1.3 (Cohen’s d = 1.99) over the course of COVID-19, indicating dramatic aggravation of pain intensity. However, the VAS score decreased spontaneously to pre-infection levels after 4 weeks of COVID-19 recovery (5.8 ± 1.1). The acute SARS-CoV-2 infection worsened the pre-existing neural root irritation symptomatology, which may be ascribed to SARS-CoV-2 radiculitis of neural roots already compressed by the previous disc herniation. These findings based on clinical observations indicate that the neurotropism of novel coronavirus infection can play an important role in the neural root irritation symptomatology deterioration in patients with chronic pre-existing lumbosacral radicular syndrome.
Collapse
Affiliation(s)
- Róbert Illéš
- Department of Neurosurgery, Slovak Medical University and University Hospital—St. Michael’s Hospital, Satinského 1, 811 08 Bratislava, Slovakia; (R.I.); (A.D.)
- Faculty of Medicine, Slovak Medical University in Bratislava, Limbová 12, 833 03 Bratislava, Slovakia
| | - Juraj Chochol
- Department of Neurosurgery, Slovak Medical University and University Hospital—St. Michael’s Hospital, Satinského 1, 811 08 Bratislava, Slovakia; (R.I.); (A.D.)
- Faculty of Medicine, Slovak Medical University in Bratislava, Limbová 12, 833 03 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3261-2305
| | - Andrej Džubera
- Department of Neurosurgery, Slovak Medical University and University Hospital—St. Michael’s Hospital, Satinského 1, 811 08 Bratislava, Slovakia; (R.I.); (A.D.)
- Faculty of Medicine, Slovak Medical University in Bratislava, Limbová 12, 833 03 Bratislava, Slovakia
| | - Alica Chocholová
- Department of Paediatric Haematology and Oncology, National Institute of Children’s Diseases, Limbova 1, 833 40 Bratislava, Slovakia;
| | - Erika Zemková
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, Nábrežie Armádneho Generála Ludvíka Svobodu 9, 814 69 Bratislava, Slovakia;
- Sports Technology Institute, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Rázusova 14, 921 01 Trnava, Slovakia
| |
Collapse
|
5
|
Tirozzi A, Santonastaso F, de Gaetano G, Iacoviello L, Gialluisi A. Does COVID-19 increase the risk of neuropsychiatric sequelae? Evidence from a mendelian randomization approach. World J Psychiatry 2022; 12:536-540. [PMID: 35433322 PMCID: PMC8968503 DOI: 10.5498/wjp.v12.i3.536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Observational studies based on electronic health records (EHR) report an increased risk of neurological/neuropsychiatric sequelae for patients who have had coronavirus disease 2019 (COVID-19). However, these studies may suffer from biases such as unmeasured confounding, residual reverse causality, or lack of precision in EHR-based diagnoses. To rule out these biases, we tested causal links between COVID-19 and different potential neurological/neuropsychiatric sequelae through a two-sample Mendelian randomization analysis of summary statistics from large Genome-Wide Association Scans of susceptibility to COVID-19 and different neurological and neuropsychiatric disorders, including major depression, anxiety, schizophrenia, stroke, Parkinson’s and Alzheimer’s diseases. We found robust evidence suggesting that COVID-19 – notably the hospitalized and most severe forms – carries an increased risk of neuropsychiatric sequelae, particularly Alzheimer’s disease, and to a lesser extent anxiety disorder. In line with a large longitudinal EHR-based study, this evidence was stronger for more severe COVID-19 forms. These results call for a targeted screening strategy to tackle the post-COVID neuropsychiatric pandemic.
Collapse
Affiliation(s)
- Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli 86077, Italy
| | | | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli 86077, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli 86077, Italy
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli 86077, Italy
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| |
Collapse
|
6
|
Ilyas Rahamathulla MM, Shankar S. Incidence of psychiatric illness among COVID-19-positive individuals with and without loss of smell or taste symptoms in a Tertiary Care Hospital in South India – A prospective cohort study. ANNALS OF INDIAN PSYCHIATRY 2022. [DOI: 10.4103/aip.aip_39_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Memiah P, Nkinda L, Majigo M, Humwa F, Haile ZT, Muthoka K, Zuheri A, Kamau A, Ochola L, Buluku G. Mental health symptoms and inflammatory markers among HIV infected patients in Tanzania. BMC Public Health 2021; 21:1113. [PMID: 34112126 PMCID: PMC8193867 DOI: 10.1186/s12889-021-11064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/14/2021] [Indexed: 01/22/2023] Open
Abstract
Background HIV and mental disorders are predicted to be the leading causes of illness worldwide by the year 2030. HIV-infected patients are at increased risk of developing mental disorders which are significantly associated with negative clinical outcomes and propagation of new HIV infections. There is little evidence that links inflammation to development of mental disorders among HIV patients. Therefore, the main objective of this study was to evaluate if mental health symptoms were associated with biomarkers of inflammation in HIV infected subjects. Methods A cross-sectional study was conducted in Dar es Salam, Tanzania from March to May 2018. Standardized tools were used to collect data based on the World Health Organisation's (WHO) stepwise approach for non-communicable diseases (NCD) surveillance. A total of 407 HIV+ patients on antiretroviral therapy were recruited. The WHO stepwise approach for NCD surveillance was used to collect data together with anthropometric measurements. Mental health symptoms were determined based on self-reported thoughts of helplessness, suicide ideation, depression, despair, discouragement, and feelings of isolation. Enzyme-linked immunosorbent assay was used to test for inflammatory markers:- C-reactive protein (CRP), Iinterleukin-6 (IL-6), interleukin-18 (IL-18), soluble tumour necrosis factor receptor-I (sTNFR-I), and soluble tumour necrosis factor receptor-II (sTNFR-II). Bivariate and multi-variate analysis was conducted to examine the association between biomarkers and mental health symptoms. Results The prevalence of self-reported mental health symptoms was 42% (n = 169). Participants with self-reported symptoms of mental health had elevated CRP, were less likely to walk or use a bicycle for at least 10 minutes, were less likely to participate in moderate-intensity sports or fitness activities, and had poor adherence to HIV treatment (p < 0.005). CRP remained significant in the sex adjusted, age-sex adjusted, and age-sex-moderate exercise adjusted models. In the fully adjusted logistic regression model, self-reported mental health symptoms were significantly associated with a higher quartile of elevated CRP (OR 4.4; 95% CI 1.3–5.9) and sTNFR-II (OR 2.6; 95% CI 1.4–6.6) and the third quartile of IL-18 (OR 5.1;95% CI 1.5–17.5) as compared with those reporting no mental health symptoms. The significance of sTNFR-II and IL-18 in the fully adjusted model is confounded by viral load suppression rates at the sixth month. Conclusion High CRP and sTNFR II were important contributors to the prevalence of mental health symptoms. This study is among the minimal studies that have examined mental health issues in HIV, and therefore, the findings may offer significant knowledge despite the potential reverse causality. Regardless of the nature of these associations, efforts should be directed toward screening, referral, and follow-up of HIV patients who are at-risk for mental health disorders.
Collapse
Affiliation(s)
- Peter Memiah
- Division of Epidemiology and Prevention: Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Room N459, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland Medical Centre Midtown Campus, Baltimore, MD, USA.
| | - Lillian Nkinda
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mtebe Majigo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Felix Humwa
- Global Program for Research Teaching, University of California San Francisco, Nairobi, Kenya
| | - Zelalem T Haile
- Department of Social Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, USA
| | | | - Aisha Zuheri
- Infectious Disease Centre, Dar es Salaam, Tanzania
| | - Anne Kamau
- University of Nairobi, Institute for Development Studies, Nairobi, Kenya
| | - Lucy Ochola
- Institute of Primate Research, Nairobi, Kenya
| | | |
Collapse
|
8
|
de Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning. Alzheimers Dement 2021; 17:1056-1065. [PMID: 33399270 PMCID: PMC10431934 DOI: 10.1002/alz.12255] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The increasing evidence of SARS-CoV-2 impact on the central nervous system (CNS) raises key questions on its impact for risk of later life cognitive decline, Alzheimer's disease (AD), and other dementia. METHODS The Alzheimer's Association and representatives from more than 30 countries-with technical guidance from the World Health Organization-have formed an international consortium to study the short-and long-term consequences of SARS-CoV-2 on the CNS-including the underlying biology that may contribute to AD and other dementias. This consortium will link teams from around the world covering more than 22 million COVID-19 cases to enroll two groups of individuals including people with disease, to be evaluated for follow-up evaluations at 6, 9, and 18 months, and people who are already enrolled in existing international research studies to add additional measures and markers of their underlying biology. CONCLUSIONS The increasing evidence and understanding of SARS-CoV-2's impact on the CNS raises key questions on the impact for risk of later life cognitive decline, AD, and other dementia. This program of studies aims to better understand the long-term consequences that may impact the brain, cognition, and functioning-including the underlying biology that may contribute to AD and other dementias.
Collapse
Affiliation(s)
- Gabriel A. de Erausquin
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UTHSA, San Antonio, Texas, USA
| | | | | | - Akram A. Hosseini
- Neurology Department, Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham, UK
| | - Traolach S. Brugha
- Social and Epidemiological Psychiatry Research Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UTHSA, San Antonio, Texas, USA
| | | |
Collapse
|
9
|
Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci 2020; 41:2657-2669. [PMID: 32725449 PMCID: PMC7385206 DOI: 10.1007/s10072-020-04575-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
Respiratory viruses are opportunistic pathogens that infect the upper respiratory tract in humans and cause severe illnesses, especially in vulnerable populations. Some viruses have neuroinvasive properties and activate the immune response in the brain. These immune events may be neuroprotective or they may cause long-term damage similar to what is seen in some neurodegenerative diseases. The new “Severe Acute Respiratory Syndrome Coronavirus 2” (SARS-CoV-2) is one of the Respiratory viruses causing highly acute lethal pneumonia coronavirus disease 2019 (COVID-19) with clinical similarities to those reported in “Severe Acute Respiratory Syndrome Coronavirus”(SARS-CoV) and the “Middle East Respiratory Syndrome Coronavirus”(MERS-CoV) including neurological manifestation. To examine the possible neurological damage induced by SARS-CoV-2, it is necessary to understand the immune reactions to viral infection in the brain, and their short- and long-term consequences. Considering the similarities between SARS-CoV and SARS-CoV-2, which will be discussed, cooperative homological and phylogenetical studies lead us to question if SARS-CoV-2 can have similar neuroinvasive capacities and neuroinflammatiory events that may lead to the same short- and long-term neuropathologies that SARS-CoV had shown in human and animal models. To explain the neurological manifestation caused by SARS-CoV-2, we will present a literature review of 765 COVID-19 patients, in which 18% had neurological symptoms and complications, including encephalopathy, encephalitis and cerebrovascular pathologies, acute myelitis, and Guillain-Barré syndrome. Clinical studies describe anosmia or partial loss of the sense of smell as the most frequent symptom in COVID19 patients, suggesting that olfactory dysfunction and the initial ultrarapid immune responses could be a prognostic factor.
Collapse
Affiliation(s)
- Yassine Yachou
- Neurology Department, Astrakhan State Medical University, Astrakhan, Russia.
| | - Abdeslem El Idrissi
- Center for Developmental Neuroscience, City University of New York, College of Staten Island, New York, USA
| | - Vladimir Belapasov
- Neurology Department, Astrakhan State Medical University, Astrakhan, Russia
| | - Said Ait Benali
- Neurosurgery Department, Mohammed VI University Hospital Center, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
10
|
Federico A. Experiencing COVID19 pandemic and neurology: learning by the recent reports and by old literary or scientific descriptions. Neurol Sci 2020; 41:1323-1327. [PMID: 32430624 PMCID: PMC7235549 DOI: 10.1007/s10072-020-04471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|