1
|
Admasu HN, Bedassa A, Tessema TS, Kovac J, Vipham JL, Woldegiorgis AZ. Seasonal variation of Salmonella enterica prevalence in milk and cottage cheese along the dairy value chain in three regions of Ethiopia. FOOD SAFETY AND RISK 2024; 11:2. [PMID: 38737868 PMCID: PMC11087248 DOI: 10.1186/s40550-024-00108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Seasonal fluctuations influence foodborne illness transmission and affect patterns of microbial contamination of food. Previous investigations on the seasonality of Salmonella enterica prevalence in dairy products in Ethiopia have been minimal. However, such data are needed to inform strategic development of effective interventions to improve food safety, as seasonal differences may affect intervention strategies. This study was conducted to identify differences in the prevalence of Salmonella in milk and cheese samples between wet and dry seasons. A longitudinal study design was utilized with a random sampling occurring during both dry and wet seasons. A total of 448 milk and cottage cheese samples were collected from Oromia, Sidama, and Amhara regions. Samples were tested for Salmonella using the ISO 6579-1: 2008 method, followed by PCR confirmation. A chi-square test was conducted to assess the significance of differences in the prevalence of Salmonella in the samples between the two seasons. Results from this study showed a higher prevalence of Salmonella in all sample types during the dry season (P < 0.05). Moreover, when comparing raw milk, pasteurized milk, and cottage cheese samples, a significant difference was observed in Salmonella prevalence from raw milk samples (27.08%) collected in the Oromia region. Additionally, data showed a significantly higher prevalence of Salmonella in samples collected from raw milk producers (29.17%) during the wet season (P < 0.05). This study indicates that in order to enhance the safety of dairy products in Ethiopia, comprehensive, long-term awareness building on hygienic milk production and handling that consider seasonal influence is warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s40550-024-00108-4.
Collapse
Affiliation(s)
- Henok Nahusenay Admasu
- Head quarter Food science and Nutrition research directorate, Ethiopian Institute of Agricultural Research, PO Box 2003, Addis Ababa, Ethiopia
| | - Abdi Bedassa
- Ethiopian Institute of Agricultural Research, National Agricultural Biotechnology Research Center, PO Box 249, Holeta, Ethiopia
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, New Graduate Building, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, 437 Erickson Food Science Building, University Park, Pennsylvania, PA 16802 USA
| | - Jessie L. Vipham
- Department of Animal Sciences and Industry, Kansas State University, 247 Weber Hall, Manhattan, KS 66506 USA
| | - Ashagrie Zewdu Woldegiorgis
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, New Graduate Building, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Rivas M, Pichel M, Colonna M, Casanello AL, Alconcher LF, Galavotti J, Principi I, Araujo SP, Ramírez FB, González G, Pianciola LA, Mazzeo M, Suarez Á, Oderiz S, Ghezzi LFR, Arrigo DJ, Paladini JH, Baroni MR, Pérez S, Tamborini A, Chinen I, Miliwebsky ES, Goldbaum F, Muñoz L, Spatz L, Sanguineti S. Surveillance of Shiga toxin-producing Escherichia coli associated bloody diarrhea in Argentina. Rev Argent Microbiol 2023; 55:345-354. [PMID: 37301652 DOI: 10.1016/j.ram.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC-HUS) infection is endemic, and reliable data about prevalence and risk factors have been available since 2000. However, information about STEC-associated bloody diarrhea (BD) is limited. A prospective study was performed during the period October 2018-June 2019 in seven tertiary-hospitals and 18 referral units from different regions, aiming to determine (i) the frequency of STEC-positive BD cases in 714 children aged 1-9 years of age and (ii) the rate of progression of bloody diarrhea to HUS. The number and regional distribution of STEC-HUS cases in the same hospitals and during the same period were also assessed. Twenty-nine (4.1%) of the BD patients were STEC-positive, as determined by the Shiga Toxin Quik Chek (STQC) test and/or the multiplex polymerase chain reaction (mPCR) assay. The highest frequencies were found in the Southern region (Neuquén, 8.7%; Bahía Blanca, 7.9%), in children between 12 and 23 month of age (8.8%), during summertime. Four (13.8%) cases progressed to HUS, three to nine days after diarrhea onset. Twenty-seven STEC-HUS in children under 5 years of age (77.8%) were enrolled, 51.9% were female; 44% were Stx-positive by STQC and all by mPCR. The most common serotypes were O157:H7 and O145:H28 and the prevalent genotypes, both among BD and HUS cases, were stx2a-only or -associated. Considering the endemic behavior of HUS and its high incidence, these data show that the rate of STEC-positive cases is low among BD patients. However, the early recognition of STEC-positive cases is important for patient monitoring and initiation of supportive treatment.
Collapse
Affiliation(s)
- Marta Rivas
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina.
| | - Mariana Pichel
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Mariana Colonna
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | | | - Laura F Alconcher
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Jimena Galavotti
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Iliana Principi
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Sofía Pérez Araujo
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Flavia B Ramírez
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Gladys González
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Luis A Pianciola
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Melina Mazzeo
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Ángela Suarez
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Sebastián Oderiz
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Lidia F R Ghezzi
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - Diego J Arrigo
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - José H Paladini
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - María R Baroni
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - Susana Pérez
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Ana Tamborini
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Elizabeth S Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Fernando Goldbaum
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Luciana Muñoz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Linus Spatz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Santiago Sanguineti
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| |
Collapse
|
3
|
Potential Zoonotic Pathovars of Diarrheagenic Escherichia coli Detected in Lambs for Human Consumption from Tierra del Fuego, Argentina. Microorganisms 2021; 9:microorganisms9081710. [PMID: 34442790 PMCID: PMC8401499 DOI: 10.3390/microorganisms9081710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
Diarrheagenic Escherichia coli (DEC) pathovars impact childhood health. The southern region of Argentina shows the highest incidence of hemolytic uremic syndrome (HUS) in children of the country. The big island of Tierra del Fuego (TDF) in Argentina registered an incidence of five cases/100,000 inhabitants of HUS in 2019. This work aimed to establish the prevalence of STEC, EPEC, and EAEC in lambs slaughtered in abattoirs from TDF as well as to characterize the phenotypes and the genotypes of the isolated pathogens. The prevalence was 26.6% for stx+, 5.7% for eae+, and 0.27% for aagR+/aaiC+. Twelve STEC isolates were obtained and belonged to the following serotypes: O70:HNT, O81:H21, O81:HNT, O102:H6, O128ab:H2, O174:H8, and O174:HNT. Their genotypic profiles were stx1c (2), stx1c/ehxA (3), stx2b/ehxA (1), stx1c/stx2b (2), and stx1c/stx2/ehxA (4). Six EPEC isolates were obtained and corresponded to five serotypes: O2:H40, O32:H8, O56:H6, O108:H21, and O177:H25. All the EPEC isolates were bfpA- and two were ehxA+. By XbaI-PFGE of 17 isolates, two clusters were identified. By antimicrobial susceptibility tests, 8/12 STEC and 5/6 EPEC were resistant to at least one antibiotic. This work provides new data to understand the ecology of DEC in TDF and confirms that ovine are an important carrier of these pathogens in the region.
Collapse
|
4
|
Lisboa LF, Szelewicki J, Lin A, Latonas S, Li V, Zhi S, Parsons BD, Berenger B, Fathima S, Chui L. Epidemiology of Shiga Toxin-Producing Escherichia coli O157 in the Province of Alberta, Canada, 2009-2016. Toxins (Basel) 2019; 11:toxins11100613. [PMID: 31652648 PMCID: PMC6832344 DOI: 10.3390/toxins11100613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections are the product of the interaction between bacteria, phages, animals, humans, and the environment. In the late 1980s, Alberta had one of the highest incidences of STEC infections in North America. Herein, we revisit and contextualize the epidemiology of STEC O157 human infections in Alberta for the period 2009–2016. STEC O157 infections were concentrated in large urban centers, but also in rural areas with high cattle density. Hospitalization was often required when the Shiga toxin genotype stx2a stx2c was involved, however, only those aged 60 years or older and infection during spring months (April to June) independently predicted that need. Since the late 1980s, the rate of STEC O157-associated hemolytic uremic syndrome (HUS) in Alberta has remained unchanged at 5.1%, despite a marked drop in the overall incidence of the infection. While Shiga toxin genotypes stx1a stx2c and stx2a stx2c seemed associated with HUS, only those aged under 10 years and infection during spring months were independently predictive of that complication. The complexity of the current epidemiology of STEC O157 in Alberta highlights the need for a One Health approach for further progress to be made in mitigating STEC morbidity.
Collapse
Affiliation(s)
- Luiz F Lisboa
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Jonas Szelewicki
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Alex Lin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Sarah Latonas
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Vincent Li
- Provincial Laboratory for Public Health, Alberta Public Laboratories, Edmonton, AB T6G 2B7, Canada.
| | - Shuai Zhi
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Brendon D Parsons
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Byron Berenger
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Sumana Fathima
- The Ministry of Health, Government of Alberta, Edmonton, AB T5J 1S6, Canada.
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
- Provincial Laboratory for Public Health, Alberta Public Laboratories, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|
5
|
Rhades LC, Larzábal M, Bentancor A, García JSY, Babinec FJ, Cataldi A, Amigo N, Baldone VN, Urquiza L, Delicia PJ, Fort MC. A one-year longitudinal study of enterohemorrhagic Escherichia coli O157 fecal shedding in a beef cattle herd. Res Vet Sci 2019; 127:27-32. [PMID: 31670090 DOI: 10.1016/j.rvsc.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
Bovines are the primary reservoir of enterohemorrhagic Escherichia coli (EHEC) O157:H7 and the main source of its transmission to humans. Here, we present a one-year longitudinal study of fecal shedding of E. coli O157. E. coli O157 obtained from recto-anal mucosal samples were characterized by multiplex PCR. The E. coli O157 prevalence ranged from 0.84% in July to 15.25% in November. The confinement within pens resulted in prevalence of 11%. Most animals (61.86%; 75/118) shed E. coli O157 at least in one sampling occasion. Of the positive animals, 82.19%, 16.44%, and 1.37% were stx positive on one, two and three sampling occasions, respectively. All the E. coli O157 isolated strains carried the genes eae and rfbO157, whereas 11%, 33% and 56% contained stx1, stx2 and stx1/stx2, respectively. The stx1/stx2 and stx2 types were significantly higher during the grazing and finishing periods, respectively, in comparison with the rearing and grazing periods. The presence of stx2a subtype was evident in four isolates, whereas stx2c was present in at least seven. However, both subtypes were present simultaneously in two isolates. The stx1/stx2c, stx1/stx2d and stx1/stx2NT genotypes occurred in 24, 2 and 15 isolates, respectively. The simultaneous occurrence of stx1 and stx2c significantly increased during grazing. Some cases of within-pen and between-pen transmission occurred throughout the study. Contagion levels during in-field grazing were higher than during permanent confinement in the pens. Thus, the individual patterns of shedding varied depending on the proportion of animals shedding the bacteria within pens and the time of shedding.
Collapse
Affiliation(s)
| | | | - A Bentancor
- Facultad Ciencias Veterinarias, UBA, Argentina
| | - J Sabio Y García
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, Argentina
| | - F J Babinec
- EEA INTA, Anguil, Argentina; Facultad de Agronomía, UNLPam, Argentina
| | | | - N Amigo
- IABIMO, CICVyA INTA, Argentina
| | | | | | | | | |
Collapse
|
6
|
Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ. Multi-Year Persistence of Verotoxigenic Escherichia coli (VTEC) in a Closed Canadian Beef Herd: A Cohort Study. Front Microbiol 2018; 9:2040. [PMID: 30233526 PMCID: PMC6127291 DOI: 10.3389/fmicb.2018.02040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
In this study, fecal samples were collected from a closed beef herd in Alberta, Canada from 2012 to 2015. To limit serotype bias, which was observed in enrichment broth cultures, Verotoxigenic Escherichia coli (VTEC) were isolated directly from samples using a hydrophobic grid-membrane filter verotoxin immunoblot assay. Overall VTEC isolation rates were similar for three different cohorts of yearling heifers on both an annual (68.5 to 71.8%) and seasonal basis (67.3 to 76.0%). Across all three cohorts, O139:H19 (37.1% of VTEC-positive samples), O22:H8 (15.8%) and O?(O108):H8 (15.4%) were among the most prevalent serotypes. However, isolation rates for serotypes O139:H19, O130:H38, O6:H34, O91:H21, and O113:H21 differed significantly between cohort-years, as did isolation rates for some serotypes within a single heifer cohort. There was a high level of VTEC serotype diversity with an average of 4.3 serotypes isolated per heifer and 65.8% of the heifers classified as "persistent shedders" of VTEC based on the criteria of >50% of samples positive and ≥4 consecutive samples positive. Only 26.8% (90/336) of the VTEC isolates from yearling heifers belonged to the human disease-associated seropathotypes A (O157:H7), B (O26:H11, O111:NM), and C (O22:H8, O91:H21, O113:H21, O137:H41, O2:H6). Conversely, seropathotypes B (O26:NM, O111:NM) and C (O91:H21, O2:H29) strains were dominant (76.0%, 19/25) among VTEC isolates from month-old calves from this herd. Among VTEC from heifers, carriage rates of vt1, vt2, vt1+vt2, eae, and hlyA were 10.7, 20.8, 68.5, 3.9, and 88.7%, respectively. The adhesin gene saa was present in 82.7% of heifer strains but absent from all of 13 eae+ve strains (from serotypes/intimin types O157:H7/γ1, O26:H11/β1, O111:NM/θ, O84:H2/ζ, and O182:H25/ζ). Phylogenetic relationships inferred from wgMLST and pan genome-derived core SNP analysis showed that strains clustered by phylotype and serotype. Further, VTEC strains of the same serotype usually shared the same suite of antibiotic resistance and virulence genes, suggesting the circulation of dominant clones within this distinct herd. This study provides insight into the diverse and dynamic nature of VTEC populations within groups of cattle and points to a broad spectrum of human health risks associated with these E. coli strains.
Collapse
Affiliation(s)
- Lu Ya Ruth Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB, Canada
| | | | - Chad R Laing
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB, Canada
| |
Collapse
|
7
|
Acquaotta F, Ardissino G, Fratianni S, Perrone M. Role of climate in the spread of shiga toxin-producing Escherichia coli infection among children. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1647-1655. [PMID: 28389880 DOI: 10.1007/s00484-017-1344-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Haemolytic-uraemic syndrome (HUS) is a rare disease mainly affecting children that develops as a complication of shiga toxin-producing Escherichia coli (STEC) infection. It is characterised by acute kidney injury, platelet consumption and mechanical destruction of red blood cells (haemolysis). In order to test the working hypothesis that the spread of the infection is influenced by specific climatic conditions, we analysed all of the identified cases of infection occurring between June 2010 and December 2013 in four provinces of Lombardy, Italy (Milano, Monza Brianza, Varese and Brescia), in which a STEC surveillance system has been developed as part of a preventive programme. In the selected provinces, we recorded in few days a great number of cases and clusters which are unrelated for spatially distant or for the disease are caused by different STEC serotypes. In order to investigate a common factor that favoured the onset of infection, we have analysed in detail the weather conditions of the areas. The daily series of temperature, rain and relative humidity were studied to show the common climate peculiarities whilst the correlation coefficient and the principal component analysis (PCA) were used to point out the meteorological variable, maximum temperature, as the principal climate element in the onset of the infection. The use of distributed lag non-linear models (DLNM) and the climate indices characterising heat waves (HWs) has allowed to identify the weather conditions associated with STEC infection. The study highlighted a close temporal correlation between STEC infection in children and the number, duration and frequency of heat waves. In particular, if the maximum temperature is greater than 90th percentile, days classified as very hot, for 3 or more consecutive days, the risk of infection is increasing.
Collapse
Affiliation(s)
- Fiorella Acquaotta
- Dipartimento di Scienze della Terra, Universita degli Studi di Torino, Torino, Italy.
- Centro interdipartimentale sui rischi naturali in ambiente montano e collinare, NatRisk, Grugliasco, Torino, Italy.
| | - Gianluigi Ardissino
- Center for Prevention, Control and Management of Hemolytic Uremic Syndrome at the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Fratianni
- Dipartimento di Scienze della Terra, Universita degli Studi di Torino, Torino, Italy
- Centro interdipartimentale sui rischi naturali in ambiente montano e collinare, NatRisk, Grugliasco, Torino, Italy
| | - Michela Perrone
- Center for Prevention, Control and Management of Hemolytic Uremic Syndrome at the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Garvey P, Carroll A, McNamara E, Charlett A, Danis K, McKeown PJ. Serogroup-specific Seasonality of Verotoxigenic Escherichia coli, Ireland. Emerg Infect Dis 2016; 22:742-4. [PMID: 26982693 PMCID: PMC4806943 DOI: 10.3201/eid2204.151160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Stanford K, Johnson RP, Alexander TW, McAllister TA, Reuter T. Influence of Season and Feedlot Location on Prevalence and Virulence Factors of Seven Serogroups of Escherichia coli in Feces of Western-Canadian Slaughter Cattle. PLoS One 2016; 11:e0159866. [PMID: 27482711 PMCID: PMC4970752 DOI: 10.1371/journal.pone.0159866] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Pooled feces collected over two years from 1749 transport trailers hauling western-Canadian slaughter cattle were analysed by PCR for detection of Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157. Sequential immunomagnetic separation was then used to collect bacterial isolates (n = 1035) from feces positive for target serogroups. Isolated bacteria were tested by PCR to confirm serogroup and the presence of eae, ehxA, stx1, and stx2 virulence genes. Based on PCR screening, serogroup prevalence in feces ranged from 7.0% (O145) to 94.4% (O103) with at least 3 serogroups present in 79.5% of samples. Origin of cattle affected serogroup PCR prevalence and O157 was most prevalent in feces from south-west Alberta (P < 0.001). All serogroups demonstrated seasonal variations in PCR prevalence, with O26, O45, O103, O121, and O157 least prevalent (P < 0.001) in cooler winter months, while uncommon serogroups O111 and O145 increased in prevalence during winter (P < 0.001). However, isolates collected during winter were predominantly from serogroups O103 and O45. No seasonal variation was noted in proportion of isolates which were Shiga toxin containing E. coli (STEC; P = 0.18) or positive for Shiga toxin and eae (enterohemorrhagic E. coli; EHEC; P = 0.29). Isolates of serogroups O111, O145, and O157 were more frequently EHEC than were others, although 37.6–54.3% of isolates from other serogroups were also EHEC. Shiga-toxin genes present also varied by geographic origin of cattle (P < 0.05) in all serogroups except O157. As cattle within feedlots are sourced from multiple regions, locational differences in serogroup prevalence and virulence genes imply existence of selection pressures for E. coli and their virulence in western-Canadian cattle. Factors which reduce carriage or expression of virulence genes, particularly in non-O157 serogroups, should be investigated.
Collapse
Affiliation(s)
- Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- * E-mail:
| | | | | | | | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| |
Collapse
|
10
|
Brandal LT, Wester AL, Lange H, Løbersli I, Lindstedt BA, Vold L, Kapperud G. Shiga toxin-producing escherichia coli infections in Norway, 1992-2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infect Dis 2015; 15:324. [PMID: 26259588 PMCID: PMC4531490 DOI: 10.1186/s12879-015-1017-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/08/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) infection is associated with haemolytic uremic syndrome (HUS). Therefore Norway has implemented strict guidelines for prevention and control of STEC infection. However, only a subgroup of STEC leads to HUS. Thus, identification of determinants differentiating high risk STEC (HUS STEC) from low risk STEC (non-HUS STEC) is needed to enable implementation of graded infectious disease response. METHODS A national study of 333 STEC infections in Norway, including one STEC from each patient or outbreak over two decades (1992-2012), was conducted. Serotype, virulence profile, and genotype of each STEC were determined by phenotypic or PCR based methods. The association between microbiological properties and demographic and clinical data was assessed by univariable analyses and multiple logistic regression models. RESULTS From 1992 through 2012, an increased number of STEC cases including more domestically acquired infections were notified in Norway. O157 was the most frequent serogroup (33.6 %), although a decrease of this serogroup was seen over the last decade. All 25 HUS patients yielded STEC with stx2, eae, and ehxA. In a multiple logistic regression model, age ≤5 years (OR = 16.7) and stx2a (OR = 30.1) were independently related to increased risk of HUS. eae and hospitalization could not be modelled since all HUS patients showed these traits. The combination of low age (≤5 years) and the presence of stx2a, and eae gave a positive predictive value (PPV) for HUS of 67.5 % and a negative predictive value (NPV) of 99.0 %. SF O157:[H7] and O145:H?, although associated with HUS in the univariable analyses, were not independent risk factors. stx1 (OR = 0.1) was the sole factor independently associated with a reduced risk of HUS (NPV: 79.7 %); stx2c was not so. CONCLUSIONS Our results indicate that virulence gene profile and patients' age are the major determinants of HUS development.
Collapse
Affiliation(s)
- Lin T Brandal
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
- Division of Infectious Disease Control, Department of Foodborne Infections, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403, Oslo, Norway.
| | - Astrid L Wester
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Heidi Lange
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Inger Løbersli
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | | | - Line Vold
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Georg Kapperud
- Division of Infectious Disease Control, The Norwegian Institute of Public Health, Oslo, Norway.
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
11
|
Bibliography. Current world literature. Neonatology and perinatology. Curr Opin Pediatr 2013; 25:275-81. [PMID: 23481475 DOI: 10.1097/mop.0b013e32835f58ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Seasonality in human zoonotic enteric diseases: a systematic review. PLoS One 2012; 7:e31883. [PMID: 22485127 PMCID: PMC3317665 DOI: 10.1371/journal.pone.0031883] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/19/2012] [Indexed: 12/26/2022] Open
Abstract
Background Although seasonality is a defining characteristic of many infectious diseases, few studies have described and compared seasonal patterns across diseases globally, impeding our understanding of putative mechanisms. Here, we review seasonal patterns across five enteric zoonotic diseases: campylobacteriosis, salmonellosis, vero-cytotoxigenic Escherichia coli (VTEC), cryptosporidiosis and giardiasis in the context of two primary drivers of seasonality: (i) environmental effects on pathogen occurrence and pathogen-host associations and (ii) population characteristics/behaviour. Methodology/Principal Findings We systematically reviewed published literature from 1960–2010, resulting in the review of 86 studies across the five diseases. The Gini coefficient compared temporal variations in incidence across diseases and the monthly seasonality index characterised timing of seasonal peaks. Consistent seasonal patterns across transnational boundaries, albeit with regional variations was observed. The bacterial diseases all had a distinct summer peak, with identical Gini values for campylobacteriosis and salmonellosis (0.22) and a higher index for VTEC (Gini = 0.36). Cryptosporidiosis displayed a bi-modal peak with spring and summer highs and the most marked temporal variation (Gini = 0.39). Giardiasis showed a relatively small summer increase and was the least variable (Gini = 0.18). Conclusions/Significance Seasonal variation in enteric zoonotic diseases is ubiquitous, with regional variations highlighting complex environment-pathogen-host interactions. Results suggest that proximal environmental influences and host population dynamics, together with distal, longer-term climatic variability could have important direct and indirect consequences for future enteric disease risk. Additional understanding of the concerted influence of these factors on disease patterns may improve assessment and prediction of enteric disease burden in temperate, developed countries.
Collapse
|