1
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2024:10.1007/s12035-024-04270-w. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Dunalska A, Saramak K, Szejko N. The Role of Gut Microbiome in the Pathogenesis of Multiple Sclerosis and Related Disorders. Cells 2023; 12:1760. [PMID: 37443793 PMCID: PMC10341087 DOI: 10.3390/cells12131760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive neuroinflammatory disease with a complex pathophysiological background. A variety of diverse factors have been attributed to the propagation of inflammation and neurodegeneration in MS, mainly genetic, immunological, and environmental factors such as vitamin D deficiency, infections, or hormonal disbalance. Recently, the importance of the gut-brain axis for the development of many neurological conditions, including stroke, movement disorders, and neuroinflammatory disorders, has been postulated. The purpose of our paper was to summarize current evidence confirming the role of the gut microbiome in the pathophysiology of MS and related disorders, such as neuromyelitis optica spectrum disorder (NMO-SD). For this aim, we conducted a systematic review of the literature listed in the following databases: Medline, Pubmed, and Scopus, and were able to identify several studies demonstrating the involvement of the gut microbiome in the pathophysiology of MS and NMO-SD. It seems that the most relevant bacteria for the pathophysiology of MS are those belonging to Pseudomonas, Mycoplasma, Haemophilus, Blautia, Dorea, Faecalibacterium, Methanobrevibacter, Akkermansia, and Desulfovibrionaceae genera, while Clostridium perfringens and Streptoccocus have been demonstrated to play a role in the pathophysiology of NMO-SD. Following this line of evidence, there is also some preliminary data supporting the use of probiotics or other agents affecting the microbiome that could potentially have a beneficial effect on MS/NMO-SD symptoms and prognosis. The topic of the gut microbiome in the pathophysiology of MS is therefore relevant since it could be used as a biomarker of disease development and progression as well as a potential disease-modifying therapy.
Collapse
Affiliation(s)
- Anna Dunalska
- Department of Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Kamila Saramak
- Department of Neurology, Hochzirl Hospital, 6170 Hochzirl, Austria;
| | - Natalia Szejko
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Bioethics, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
5
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
Wu C, Jiang ML, Jiang R, Pang T, Zhang CJ. The roles of fungus in CNS autoimmune and neurodegeneration disorders. Front Immunol 2023; 13:1077335. [PMID: 36776399 PMCID: PMC9910218 DOI: 10.3389/fimmu.2022.1077335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Fungal infection or proliferation in our body is capable of initiation of strong inflammation and immune responses that result in different consequences, including infection-trigged organ injury and inflammation-related remote organ dysfunction. Fungi associated infectious diseases have been well recognized in the clinic. However, whether fungi play an important role in non-infectious central nervous system disease is still to be elucidated. Recently, a growing amount of evidence point to a non-negligible role of peripheral fungus in triggering unique inflammation, immune response, and exacerbation of a range of non-infectious CNS disorders, including Multiple sclerosis, Neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and Amyotrophic lateral sclerosis et al. In this review, we summarized the recent advances in recognizing patterns and inflammatory signaling of fungi in different subsets of immune cells, with a specific focus on its function in CNS autoimmune and neurodegeneration diseases. In conclusion, the fungus is capable of triggering unique inflammation by multiple mechanisms in the progression of a body of CNS non-infectious diseases, suggesting it serves as a key factor and critical novel target for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Chuyu Wu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Runqui Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Cun-Jin Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University of Chinese Medicine, Nanjing University, Nanjing, Jiangsu, China,Institute of Brain Sciences, Institute of Brain Disorder Translational Medicine, Nanjing University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| |
Collapse
|
7
|
Fraga-Silva TFDC, Munhoz-Alves N, Mimura LAN, de Oliveira LRC, Figueiredo-Godoi LMA, Garcia MT, Oliveira ES, Ishikawa LLW, Zorzella-Pezavento SFG, Bonato VLD, Junqueira JC, Bagagli E, Sartori A. Systemic Infection by Non-albicans Candida Species Affects the Development of a Murine Model of Multiple Sclerosis. J Fungi (Basel) 2022; 8:jof8040386. [PMID: 35448617 PMCID: PMC9032036 DOI: 10.3390/jof8040386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
Candidiasis may affect the central nervous system (CNS), and although Candida albicans is predominant, non-albicans Candida species can also be associated with CNS infections. Some studies have suggested that Candida infections could increase the odds of multiple sclerosis (MS) development. In this context, we investigated whether systemic infection by non-albicans Candida species would affect, clinically or immunologically, the severity of experimental autoimmune encephalomyelitis (EAE), which is an animal model used to study MS. For this, a strain of C. glabrata, C. krusei, and C. parapsilosis was selected and characterized using different in vitro and in vivo models. In these analysis, all the strains exhibited the ability to form biofilms, produce proteolytic enzymes, and cause systemic infections in Galleria mellonella, with C. glabrata being the most virulent species. Next, C57BL/6 mice were infected with strains of C. glabrata, C. krusei, or C. parapsilosis, and 3 days later were immunized with myelin oligodendrocyte glycoprotein to develop EAE. Mice from EAE groups previously infected with C. glabrata and C. krusei developed more severe and more prevalent paralysis, while mice from the EAE group infected with C. parapsilosis developed a disease comparable to non-infected EAE mice. Disease aggravation by C. glabrata and C. krusei strains was concomitant to increased IL-17 and IFN-γ production by splenic cells stimulated with fungi-derived antigens and with increased percentage of T lymphocytes and myeloid cells in the CNS. Analysis of interaction with BV-2 microglial cell line also revealed differences among these strains, in which C. krusei was the strongest activator of microglia concerning the expression of MHC II and CD40 and pro-inflammatory cytokine production. Altogether, these results indicated that the three non-albicans Candida strains were similarly able to reach the CNS but distinct in terms of their effect over EAE development. Whereas C. glabrata and C. Krusei aggravated the development of EAE, C. parapsilosis did not affect its severity. Disease worsening was partially associated to virulence factors in C. glabrata and to a strong activation of microglia in C. krusei infection. In conclusion, systemic infections by non-albicans Candida strains exerted influence on the experimental autoimmune encephalomyelitis in both immunological and clinical aspects, emphasizing their possible relevance in MS development.
Collapse
Affiliation(s)
- Thais Fernanda de Campos Fraga-Silva
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Correspondence:
| | - Natália Munhoz-Alves
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | | | - Lívia Mara Alves Figueiredo-Godoi
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Maíra Terra Garcia
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Evelyn Silva Oliveira
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Larissa Lumi Watanabe Ishikawa
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Sofia Fernanda Gonçalves Zorzella-Pezavento
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto 14049-900, Brazil;
| | - Juliana Campos Junqueira
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Eduardo Bagagli
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Alexandrina Sartori
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Postgraduate Program in Tropical Disease, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| |
Collapse
|
8
|
Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int J Mol Sci 2021; 22:ijms222212269. [PMID: 34830149 PMCID: PMC8619365 DOI: 10.3390/ijms222212269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth. The interplay between mold exposure and the host immune system is still not fully elucidated. Literature research focusing on up-to-date publications is providing a heterogenous picture of evidence and opinions regarding the role of mold and mycotoxins in the development of immune diseases. While the induction of allergic immune responses by molds is generally acknowledged, other direct health effects like the toxic mold syndrome are controversially discussed. However, recent observations indicate a particular importance of mold/mycotoxin exposure in individuals with pre-existing dysregulation of the immune system, due to exacerbation of underlying pathophysiology including allergic and non-allergic chronic inflammatory diseases, autoimmune disorders, and even human immunodeficiency virus (HIV) disease progression. In this review, we focus on the impact of mycotoxins regarding their impact on disease progression in pre-existing immune dysregulation. This is complemented by experimental in vivo and in vitro findings to present cellular and molecular modes of action. Furthermore, we discuss hypothetical mechanisms of action, where evidence is missing since much remains to be discovered.
Collapse
|
9
|
Ahangar-Sirous R, Poudineh M, Ansari A, Nili A, Dana SMMA, Nasiri Z, Hosseini ZS, Karami D, Mokhtari M, Deravi N. Pharmacotherapeutic Potential of Garlic in Age-Related Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:377-398. [PMID: 34579639 DOI: 10.2174/1871527320666210927101257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
Age-related neurological disorders [ANDs] involve neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD], the most frequent kind of dementia in elderly people, and Parkinson's disease [PD], and also other disorders like epilepsy and migraine. Although ANDs are multifactorial, Aging is a principal risk factor for them. The common and most main pathologic features among ANDs are inflammation, oxidative stress, and misfolded proteins accumulation. Since failing brains caused by ANDs impose a notable burden on public health and their incidence is increasing, a lot of works has been done to overcome them. Garlic, Allium sativum, has been used for different medical purposes globally and more than thousands of publications have reported its health benefits. Garlic and aged garlic extract are considered potent anti-inflammatory and antioxidants agents and can have remarkable neuroprotective effects. This review is aimed to summarize knowledge on the pharmacotherapeutic potential of garlic and its components in ANDs.
Collapse
Affiliation(s)
| | | | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Ali Nili
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | | | - Zahra Nasiri
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Dariush Karami
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran. Iran
| | - Niloofar Deravi
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
10
|
Candida tropicalis Systemic Infection Redirects Leukocyte Infiltration to the Kidneys Attenuating Encephalomyelitis. J Fungi (Basel) 2021; 7:jof7090757. [PMID: 34575795 PMCID: PMC8471291 DOI: 10.3390/jof7090757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Environmental factors, including infections, are strongly associated with the pathogenesis of multiple sclerosis (MS), which is an autoimmune and demyelinating disease of the central nervous system (CNS). Although classically associated with bacterial and viral agents, fungal species have also been suspected to affect the course of the disease. Candida tropicalis is an opportunistic fungus that affects immunocompromised individuals and is also able to spread to vital organs. As C. tropicalis has been increasingly isolated from systemic infections, we aimed to evaluate the effect of this fungus on experimental autoimmune encephalomyelitis (EAE), a murine model to study MS. For this, EAE was induced in female C57BL/6 mice 3 days after infection with 106 viable C. tropicalis yeasts. The infection decreased EAE prevalence and severity, confirmed by the less inflammatory infiltrate and less demyelization in the lumbar spinal cord. Despite this, C. tropicalis infection associated with EAE results in the death of some animals and increased urea and creatinine serum levels. The kidneys of EAE-infected mice showed higher fungal load associated with increased leukocyte infiltration (CD45+ cells) and higher expression of T-box transcription factor (Tbx21) and forkhead box P3 (Foxp3). Altogether, our results demonstrate that although C. tropicalis infection reduces the prevalence and severity of EAE, partially due to the sequestration of leukocytes by the inflamed renal tissue, this effect is associated with a poor disease outcome.
Collapse
|
11
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
12
|
Carrasco L, Pisa D, Alonso R. Polymicrobial Infections and Neurodegenerative Diseases. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Zhang X, Pan LY, Zhang Z, Zhou YY, Jiang HY, Ruan B. Analysis of gut mycobiota in first-episode, drug-naïve Chinese patients with schizophrenia: A pilot study. Behav Brain Res 2019; 379:112374. [PMID: 31759045 DOI: 10.1016/j.bbr.2019.112374] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accumulating evidence has focused on elucidating the bacterial component of the gut microbiota in patients with schizophrenia (SC); however, the fungal composition in the gut has not been investigated, although previous studies have suggested that gut mycobiota may be intricately linked to this disorder. The purpose of this analysis was to examine gut bacterial and fungi in first-episode, drug- naïve adult SC patients in relation to age- and sex-matched healthy controls (HC). METHODS Ten SC patients and 16 HCs were enrolled in this cross-sectional study, and their gut microbiota and mycobiota were systematically characterized using 16S rRNA gene- and ITS1-based DNA sequencing. RESULTS The microbiota of the SC patients were characterized by increased abundance of harmful bacterial (Proteobacteria) and decreased short-chain fatty acid (SCFA)-producing bacteria, such as the Faecalibacterium and Lachnospiraceae genera. The gut mycobiota were characterized by a relative reduction in alpha diversity and altered composition. Most notably, the SC group had a higher level of Chaetomium and a lower level of Trichoderma than the HC group. Furthermore, the gut microbiota in patients with SC displayed a significant enhancement in the bacteria-fungi correlation network, suggestive of altered interkingdom interactions. CONCLUSIONS Both the bacterial gut microbiota as well as the gut mycobiota contributed to gut dysbiosis in patients with SC. However, our study was limited by sample size, and additional studies involving larger cohorts characterizing the gut mycobiome in SC patients are needed to form a foundation for research into the relationship between mycobiota, dysbiosis, and SC development.
Collapse
Affiliation(s)
- Xue Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Ya Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan-Yue Zhou
- Department of Child Psychiatry, Hangzhou Seventh People'S Hospital, Hangzhou, Zhejiang, China
| | - Hai-Yin Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Bing Ruan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Gliotoxin Aggravates Experimental Autoimmune Encephalomyelitis by Triggering Neuroinflammation. Toxins (Basel) 2019; 11:toxins11080443. [PMID: 31357414 PMCID: PMC6722733 DOI: 10.3390/toxins11080443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
Gliotoxin (GTX) is the major and the most potent mycotoxin that is secreted by Aspergillus fumigatus, which is capable of injuring and killing microglial cells, astrocytes, and oligodendrocytes. During the last years, studies with patients and experimental models of multiple sclerosis (MS), which is an autoimmune disease of the central nervous system (CNS), suggested that fungal infections are among the possible initiators or aggravators of this pathology. The deleterious effect can occur through a direct interaction of the fungus with the CNS or by the toxin release from a non-neurological site. In the present work, we investigated the effect of GTX on experimental autoimmune encephalomyelitis (EAE) development. Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein and then intraperitoneally injected with three doses of GTX (1 mg/kg b.w., each) on days 4, 7, and 10. GTX aggravated clinical symptoms of the disease in a dose-dependent way and this outcome was concomitant with an increased neuroinflammation. CNS analyses revealed that GTX locally increased the relative expression of inflammatory genes and the cytokine production. Our results indicate that GTX administered in a non-neuronal site was able to increase neuroinflammation in EAE. Other mycotoxins could also be deleterious to many neurological diseases by similar mechanisms.
Collapse
|
15
|
ALSUntangled No. 50: Antifungal Therapy. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:625-629. [PMID: 31155963 DOI: 10.1080/21678421.2019.1622197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Abdurasulova IN, Tarasova EA, Nikiforova IG, Il'ves AG, Ivashkova EV, Matsulevich AV, Tatarinov AE, Shangina LV, Ermolenko EI, Klimenko VM, Stolyarov ID, Suvorov AN. [The intestinal microbiota composition in patients with multiple sclerosis receiving different disease-modifying therapies DMT]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:62-69. [PMID: 30160670 DOI: 10.17116/jnevro201811808262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM To describe characteristics of the intestinal microbiota in patients with multiple sclerosis (MS) treated with glatiramer acetate (GA) or fingolimode (FG) for understanding causal relationships between gut microbiota and autoimmune processes in MS patients. MATERIAL AND METHODS The study included 34 patients treated with GA (n=17) or FG (n=17). GA was used in a dose of 20 mg/kg subcutaneously once a day, FG in a dose of 0.5 mg daily. All patients were examined during remission. To assess the composition of gut microbiota, bacteriological and real-time PCR techniques were used. DNA was extracted from feces using DNA-EXPRESS kit. RESULTS AND CONCLUSION There was a decrease in numbers of Escherichia coli with normal enzymatic activity, which was replaced by atypical forms of E. coli, Enterobacter spp. and fungi of the genus Candida, and, during treatment with GA, by atypical forms of E. coli, Proteus spp., Parvimonas micra. These differences indicate the effect of the therapy on the intestinal microbiota composition.
Collapse
Affiliation(s)
- I N Abdurasulova
- Institute of Experimental Medicine, St-Petersburg, Russia; St-Petersburg State Pediatric Medical University, St-Petersburg, Russia
| | - E A Tarasova
- Institute of Experimental Medicine, St-Petersburg, Russia
| | | | - A G Il'ves
- Bekhtereva Institute of the Human Brain, St-Petersburg
| | - E V Ivashkova
- Bekhtereva Institute of the Human Brain, St-Petersburg
| | | | - A E Tatarinov
- Institute of Experimental Medicine, St-Petersburg, Russia
| | - L V Shangina
- Institute of Experimental Medicine, St-Petersburg, Russia
| | - E I Ermolenko
- Institute of Experimental Medicine, St-Petersburg, Russia; St-Petersburg State University, St-Petersburg, Russia
| | - V M Klimenko
- Institute of Experimental Medicine, St-Petersburg, Russia
| | - I D Stolyarov
- Bekhtereva Institute of the Human Brain, St-Petersburg
| | - A N Suvorov
- Institute of Experimental Medicine, St-Petersburg, Russia; St-Petersburg State University, St-Petersburg, Russia
| |
Collapse
|
17
|
Hachim MY, Elemam NM, Maghazachi AA. The Beneficial and Debilitating Effects of Environmental and Microbial Toxins, Drugs, Organic Solvents and Heavy Metals on the Onset and Progression of Multiple Sclerosis. Toxins (Basel) 2019; 11:E147. [PMID: 30841532 PMCID: PMC6468554 DOI: 10.3390/toxins11030147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system is common amongst young adults, leading to major personal and socioeconomic burdens. However, it is still considered complex and challenging to understand and treat, in spite of the efforts made to explain its etiopathology. Despite the discovery of many genetic and environmental factors that might be related to its etiology, no clear answer was found about the causes of the illness and neither about the detailed mechanism of these environmental triggers that make individuals susceptible to MS. In this review, we will attempt to explore the major contributors to MS autoimmunity including genetic, epigenetic and ecological factors with a particular focus on toxins, chemicals or drugs that may trigger, modify or prevent MS disease.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| |
Collapse
|
18
|
Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front Microbiol 2019; 9:3249. [PMID: 30687254 PMCID: PMC6333682 DOI: 10.3389/fmicb.2018.03249] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023] Open
Abstract
The human microbiome has received decades of attention from scientific and medical research communities. The human gastrointestinal tract is host to immense populations of microorganisms including bacteria, viruses, archaea, and fungi (the gut microbiota). High-throughput sequencing and computational advancements provide unprecedented ability to investigate the structure and function of microbial communities associated with the human body in health and disease. Most research to date has largely focused on elucidating the bacterial component of the human gut microbiota. Study of the gut "mycobiota," which refers to the diverse array of fungal species, is a relatively new and rapidly progressing field. Though omnipresent, the number and abundance of fungi occupying the human gut is orders of magnitude smaller than that of bacteria. Recent insights however, have suggested that the gut mycobiota may be intricately linked to health and disease. Evaluation of the gut mycobiota has shown that not only are the fungal communities altered in disease, but they also play a role in maintaining intestinal homeostasis and influencing systemic immunity. In addition, it is now widely accepted that host-fungi and bacteria-fungi associations are critical to host health. While research of the gut mycobiota in health and disease is on the rise, little research has been performed in the context of neuroimmune and neurodegenerative conditions. Gut microbiota dysbiosis (specifically bacteria and archaea) have been reported in neurological diseases such as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's, among others. Given the widely accepted bacteria-fungi associations and paucity of mycobiota-specific studies in neurological disease, this review discusses the potential role fungi may play in multiple sclerosis and other neurological diseases. Herein, we provide an overview of recent advances in gut mycobiome research and discuss the plausible role of both intestinal and non-intestinal fungi in the context of neuroimmune and neurodegenerative conditions.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Helen Tremlett
- Centre for Brain Health and Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Sanches MD, Mimura LAN, Oliveira LRC, Ishikawa LLW, Garces HG, Bagagli E, Sartori A, Kurokawa CS, Fraga-Silva TFC. Differential Behavior of Non- albicans Candida Species in the Central Nervous System of Immunocompetent and Immunosuppressed Mice. Front Microbiol 2019; 9:2968. [PMID: 30671026 PMCID: PMC6332706 DOI: 10.3389/fmicb.2018.02968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/18/2018] [Indexed: 12/16/2022] Open
Abstract
The genus Candida includes commensal fungi that can cause local and systemic infections, frequently involving vital organs as the central nervous system (CNS). Candida spp. occupy the fourth place among infections that affect the CNS. Although the incidence of Candida albicans is decreasing among patients under immunosuppressive therapies, the incidence of non-albicans Candida is increasing. In this context, the objective of this work was to evaluate the ability of non-albicans Candida species to spread to the CNS of immunocompetent and immunosuppressed mice. Adult female C57BL/6 mice were treated with prednisolone, intravenously infected with Candida glabrata, Candida krusei and Candida parapsilosis yeasts and then evaluated at the 3rd and 14th days after infection. All Candida species disseminated to the brain from immunocompetent animals and induced local inflammation at the third day post-infection. The immunosuppression resulted in body weight loss, leukopenia and reduced IL-2 production by spleen cell cultures. Higher fungal loads were recovered from the CNS of immunosuppressed mice. Inflammatory infiltration associated to a Th1 subset profile was higher in brain samples from C. krusei immunosuppressed mice compared with immunocompetent ones. Additionally, C. krusei was able to transform into pseudohypha inside microglia in vitro infected cells and also to induce elevated nitric oxide production. Altogether, these results indicate that C. glabrata, C. krusei and C. parapsilosis are able to disseminate to the CNS and promote local inflammation in both immunocompetent and immunosuppressed mice. C. krusei displayed a distinct behavior at the CNS triggering a local Th1 profile. The possible contribution of these non-albicans Candida species to other CNS pathologies as multiple sclerosis, Parkinson’s and Alzheimer’s diseases deserves further attention.
Collapse
Affiliation(s)
| | - Luiza A N Mimura
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | - Hans G Garces
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Eduardo Bagagli
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Alexandrina Sartori
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | |
Collapse
|
20
|
Alonso R, Fernández-Fernández AM, Pisa D, Carrasco L. Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiol Dis 2018; 117:42-61. [PMID: 29859870 DOI: 10.1016/j.nbd.2018.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is the prototypical inflammatory disease of the central nervous system (CNS), leading to multifocal demyelination and neurodegeneration. The etiology of this incurable disease is unknown and remains a matter of intensive research. The possibility that microbial infections, such as viruses or bacteria, can trigger an autoimmune reaction in CNS tissue has been suggested. However, the recent demonstration that bacteria are present in CNS tissue points to a direct involvement of microbial infections in the etiology of MS. In the present study, we provide the first evidence of fungal infection in CNS tissue of MS patients, and demonstrate that fungal DNA from different species can be detected in the CNS. We used, nested PCR assays together with next-generation sequencing to identify the fungal species in the nervous tissue of 10 patients with MS. Strikingly, Trichosporon mucoides was found in the majority of MS patients, and particularly high levels of this fungus were found in two patients. Importantly, T. mucoides was not detected in the CNS of control subjects. We were also able to visualize fungal structures in CNS tissue sections by immunohistochemistry using specific antifungal antibodies, which also revealed the accumulation of a number of microbial cells in microfoci. Again, microbial structures were not observed in CNS sections from controls. In addition to fungi, neural tissue from MS patients was also positive for bacteria. In conclusion, our present observations point to the novel concept that MS could be caused by polymicrobial infections. Thus, mycosis of the CNS may be accompanied by opportunistic bacterial infection, promoting neuroinflammation and directly causing focal lesions, followed by demyelination and axonal injury.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana M Fernández-Fernández
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Castanedo-Vazquez D, Bosque-Varela P, Sainz-Pelayo A, Riancho J. Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. J Neurol 2018; 266:27-36. [PMID: 29845377 DOI: 10.1007/s00415-018-8919-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons (MN). This fatal disease is characterized by progressive muscle wasting and lacks an effective treatment. ALS pathogenesis has not been elucidated yet. In a small proportion of ALS patients, the disease has a familial origin, related to mutations in specific genes, which directly result in MN degeneration. By contrast, the vast majority of cases are though to be sporadic, in which genes and environment interact leading to disease in genetically predisposed individuals. Lately, the role of the environment has gained relevance in this field and an extensive list of environmental conditions have been postulated to be involved in ALS. Among them, infectious agents, particularly viruses, have been suggested to play an important role in the pathogenesis of the disease. These agents could act by interacting with some crucial pathways in MN degeneration, such as gene processing, oxidative stress or neuroinflammation. In this article, we will review the main studies about the involvement of microorganisms in ALS, subsequently discussing their potential pathogenic effect and integrating them as another piece in the puzzle of ALS pathogenesis.
Collapse
Affiliation(s)
| | - Pilar Bosque-Varela
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | | | - Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Torrelavega, Spain. .,CIBERNED, Madrid, Spain.
| |
Collapse
|
22
|
Laurence M, Asquith M, Rosenbaum JT. Spondyloarthritis, Acute Anterior Uveitis, and Fungi: Updating the Catterall-King Hypothesis. Front Med (Lausanne) 2018; 5:80. [PMID: 29675414 PMCID: PMC5895656 DOI: 10.3389/fmed.2018.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spondyloarthritis is a common type of arthritis which affects mostly adults. It consists of idiopathic chronic inflammation of the spine, joints, eyes, skin, gut, and prostate. Inflammation is often asymptomatic, especially in the gut and prostate. The HLA-B*27 allele group, which presents intracellular peptides to CD8+ T cells, is by far the strongest risk factor for spondyloarthritis. The precise mechanisms and antigens remain unknown. In 1959, Catterall and King advanced a novel hypothesis explaining the etiology of spondyloarthritis: an as-yet-unrecognized sexually acquired microbe would be causing all spondyloarthritis types, including acute anterior uveitis. Recent studies suggest an unrecognized sexually acquired fungal infection may be involved in prostate cancer and perhaps multiple sclerosis. This warrants reanalyzing the Catterall-King hypothesis based on the current literature. In the last decade, many links between spondyloarthritis and fungal infections have been found. Antibodies against the fungal cell wall component mannan are elevated in spondyloarthritis. Functional polymorphisms in genes regulating the innate immune response against fungi have been associated with spondyloarthritis (CARD9 and IL23R). Psoriasis and inflammatory bowel disease, two common comorbidities of spondyloarthritis, are both strongly associated with fungi. Evidence reviewed here lends credence to the Catterall-King hypothesis and implicates a common fungal etiology in prostate cancer, benign prostatic hyperplasia, multiple sclerosis, psoriasis, inflammatory bowel disease, and spondyloarthritis. However, the evidence available at this time is insufficient to definitely confirm this hypothesis. Future studies investigating the microbiome in relation to these conditions should screen specimens for fungi in addition to bacteria. Future clinical studies of spondyloarthritis should consider antifungals which are effective in psoriasis and multiple sclerosis, such as dimethyl fumarate and nystatin.
Collapse
Affiliation(s)
| | - Mark Asquith
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States
| | - James T Rosenbaum
- Department of Ophthalmology, Oregon Health and Science University, Portland, OR, United States.,Department of Medicine, Oregon Health and Science University, Portland, OR, United States.,Department of Cell Biology, Oregon Health and Science University, Portland, OR, United States.,Legacy Devers Eye Institute, Portland, OR, United States
| |
Collapse
|
23
|
Benito-León J, Laurence M. The Role of Fungi in the Etiology of Multiple Sclerosis. Front Neurol 2017; 8:535. [PMID: 29085329 PMCID: PMC5650687 DOI: 10.3389/fneur.2017.00535] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system. Infectious triggers of MS are being actively investigated. Substantial evidence supports the involvement of the Epstein-Barr virus (EBV), though other viruses, bacteria, protists, and fungi are also being considered. Many links between fungi and diseases involving chronic inflammation have been found recently. Evidence linking MS and fungi is reviewed here. The HLA-DRB1*15 allele group is the most important genetic risk factor of MS, and is a risk factor in several other conditions linked to fungal infections. Many biomarkers of MS are consistent with fungal infections, such as IL-17, chitotriosidase, and antibodies against fungi. Dimethyl fumarate (DMF), first used as an industrial fungicide, was recently repurposed to reduce MS symptoms. Its mechanisms of action in MS have not been firmly established. The low risk of MS during childhood and its moderate association with herpes simplex virus type 2 suggest genital exposure to microbes (including fungi) should be investigated as a possible trigger. Molecular and epidemiological evidence support a role for infections such as EBV in MS. Though fungal infections have not been widely studied in MS, many lines of evidence are consistent with a fungal etiology. Future microbiome and serological studies should consider fungi as a possible risk factor for MS, and future clinical studies should consider the effect of fungicides other than DMF on MS symptoms.
Collapse
Affiliation(s)
- Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | |
Collapse
|
24
|
Saroukolaei SA, Ghabaee M, Shokri H, Badiei A, Ghourchian S. The role of Candida albicans in the severity of multiple sclerosis. Mycoses 2017; 59:697-704. [PMID: 27061227 DOI: 10.1111/myc.12489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to compare the specific activity of proteinase A in Candida albicans (C. albicans) between multiple sclerosis (MS) patients and controls. A total of 135 and 100 C. albicans strains were isolated from superficial surfaces of MS patients and healthy controls. Analytical models (regression and neural network) were applied to predict the severity of MS considering specific enzyme activity (SEA) and other factors which affect the expanded disability status scale (EDSS). The SEA of C. albicans in MS patients (3466.95 ± 277.25 μmol min-1 mg-1 ) was significantly more than that of healthy controls (1108.98 ± 294.51 μmol min-1 mg-1 ) that was confirmed by regression model (P < 0.001). The SEA had a positive correlation with the severity of MS (P < 0.001, r = 0.65). Analytical models showed that SEA played the most important role (among all included factors that affect on EDSS) in the severity of MS. The SEA of C. albicans in MS patients was significantly more than the healthy controls. The results suggest that the level of SEA of proteinase A and probably the capacity of C. albicans isolates to invade the host tissue is associated with the severity of MS.
Collapse
Affiliation(s)
- Shahla Amri Saroukolaei
- Neurology Department, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Ghabaee
- Neurology Department, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hojjatollah Shokri
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Alireza Badiei
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Shadi Ghourchian
- Medical Internship, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Daschner A. An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS. Front Immunol 2017; 7:672. [PMID: 28119688 PMCID: PMC5220099 DOI: 10.3389/fimmu.2016.00672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/20/2016] [Indexed: 01/20/2023] Open
Abstract
Among potential environmental harmful factors, fungi deserve special consideration. Their intrinsic ability to actively germinate or infect host tissues might determine a prominent trigger in host defense mechanisms. With the appearance of fungi in evolutionary history, other organisms had to evolve strategies to recognize and cope with them. Existing controversies around dampness and mold hypersensitivity syndrome (DMHS) can be due to the great variability of clinical symptoms but also of possible eliciting factors associated with mold and dampness. An hypothesis is presented, where an evolutionary analysis of the different response patterns seen in DMHS is able to explain the existing variability of disease patterns. Classical interpretation of immune responses and symptoms are addressed within the field of pathophysiology. The presented evolutionary analysis seeks for the ultimate causes of the vast array of symptoms in DMHS. Symptoms can be interpreted as induced by direct (toxic) actions of spores, mycotoxins, or other fungal metabolites, or on the other side by the host-initiated response, which aims to counterbalance and fight off potentially deleterious effects or fungal infection. Further, individual susceptibility of immune reactions can confer an exaggerated response, and magnified symptoms are then explained in terms of immunopathology. IgE-mediated allergy fits well in this scenario, where individuals with an atopic predisposition suffer from an exaggerated response to mold exposure, but studies addressing why such responses have evolved and if they could be advantageous are scarce. Human history is plenty of plagues and diseases connected with mold exposure, which could explain vulnerability to mold allergy. Likewise, multiorgan symptoms in DMHS are analyzed for its possible adaptive role not only in the defense of an active infection, but also as evolved mechanisms for avoidance of potentially harmful environments in an evolutionary past or present setting.
Collapse
Affiliation(s)
- Alvaro Daschner
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Servicio de Alergia, Madrid, Spain
| |
Collapse
|
26
|
Alonso R, Pisa D, Rábano A, Rodal I, Carrasco L. Cerebrospinal Fluid from Alzheimer's Disease Patients Contains Fungal Proteins and DNA. J Alzheimers Dis 2016; 47:873-6. [PMID: 26401766 DOI: 10.3233/jad-150382] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The identification of biomarkers for Alzheimer's disease is important for patient management and to assess the effectiveness of clinical intervention. Cerebrospinal fluid (CSF) biomarkers constitute a powerful tool for diagnosis and monitoring disease progression. We have analyzed the presence of fungal proteins and DNA in CSF from AD patients. Our findings reveal that fungal proteins can be detected in CSF with different anti-fungal antibodies using a slot-blot assay. Additionally, amplification of fungal DNA by PCR followed by sequencing distinguished several fungal species. The possibility that these fungal macromolecules could represent AD biomarkers is discussed.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa", c/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa", c/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Izaskun Rodal
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa", c/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
27
|
Fraga-Silva TFC, Mimura LAN, Zorzella-Pezavento SFG, Ishikawa LLW, França TGD, Thomé R, Verinaud L, Arruda MSP, Sartori A. Tolerogenic Vaccination with MOG/VitD Overcomes Aggravating Effect of C. albicans in Experimental Encephalomyelitis. CNS Neurosci Ther 2016; 22:807-16. [PMID: 27321391 DOI: 10.1111/cns.12572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/28/2023] Open
Abstract
AIMS Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS). We described that Candida albicans (Ca) aggravates experimental autoimmune encephalomyelitis (EAE) that is a model to study MS. We also observed that vaccination with a myelin peptide (MOG) in the presence of vitamin D (VitD) protected mice against EAE. In this work, we investigated whether Ca infection interferes with the efficacy of this vaccine. METHODS EAE was induced in C57BL/6 female mice previously vaccinated with MOG+VitD and then infected 3 days before encephalomyelitis induction. RESULTS Vaccination was able to control EAE development in infected mice. These animals gained weight, and only a few progressed to very low clinical scores. Protection was confirmed by a lower inflammatory infiltration in the CNS and was also associated with a reduced production of encephalitogenic cytokines by spleen and CNS cell cultures. The elevated percentage of CD25(+) FoxP3(+) cells suggests that regulatory T cells are involved in the protection. Adoptive transfer of splenocytes from mice vaccinated with MOG+VitD supports the view that protection is mediated by immunoregulatory cells. CONCLUSION Together, these experiments provide evidence demonstrating that EAE can be prevented by the inverse vaccination with MOG+VitD even in the presence of a disease-aggravating infectious agent.
Collapse
Affiliation(s)
- Thais F C Fraga-Silva
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Luiza A N Mimura
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Sofia F G Zorzella-Pezavento
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Larissa L W Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Thais G D França
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria S P Arruda
- Department of Biological Sciences, School of Sciences, Univ. Estadual Paulista (UNESP), Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
28
|
Different Brain Regions are Infected with Fungi in Alzheimer's Disease. Sci Rep 2015; 5:15015. [PMID: 26468932 PMCID: PMC4606562 DOI: 10.1038/srep15015] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
The possibility that Alzheimer's disease (AD) has a microbial aetiology has been proposed by several researchers. Here, we provide evidence that tissue from the central nervous system (CNS) of AD patients contain fungal cells and hyphae. Fungal material can be detected both intra- and extracellularly using specific antibodies against several fungi. Different brain regions including external frontal cortex, cerebellar hemisphere, entorhinal cortex/hippocampus and choroid plexus contain fungal material, which is absent in brain tissue from control individuals. Analysis of brain sections from ten additional AD patients reveals that all are infected with fungi. Fungal infection is also observed in blood vessels, which may explain the vascular pathology frequently detected in AD patients. Sequencing of fungal DNA extracted from frozen CNS samples identifies several fungal species. Collectively, our findings provide compelling evidence for the existence of fungal infection in the CNS from AD patients, but not in control individuals.
Collapse
|
29
|
Experimental autoimmune encephalomyelitis development is aggravated by Candida albicans infection. J Immunol Res 2015; 2015:635052. [PMID: 25969836 PMCID: PMC4417602 DOI: 10.1155/2015/635052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory/autoimmune disease of the central nervous system (CNS) mainly mediated by myelin specific T cells. It is widely believed that environmental factors, including fungal infections, contribute to disease induction or evolution. Even though Candida infection among MS patients has been described, the participation of this fungus in this pathology is not clear. The purpose of this work was to evaluate the effect of a Candida albicans infection on experimental autoimmune encephalomyelitis (EAE) that is a widely accepted model to study MS. Female C57BL/6 mice were infected with C. albicans and 3 days later, animals were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein. Previous infection increased the clinical score and also the body weight loss. EAE aggravation was associated with expansion of peripheral CD4+ T cells and production of high levels of TNF-α, IFN-γ IL-6, and IL-17 by spleen and CNS cells. In addition to yeast and hyphae, fungus specific T cells were found in the CNS. These findings suggest that C. albicans infection before EAE induction aggravates EAE, and possibly MS, mainly by CNS dissemination and local induction of encephalitogenic cytokines. Peripheral production of encephalitogenic cytokines could also contribute to disease aggravation.
Collapse
|
30
|
Alonso R, Pisa D, Marina AI, Morato E, Rábano A, Rodal I, Carrasco L. Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. Int J Biol Sci 2015; 11:546-58. [PMID: 25892962 PMCID: PMC4400386 DOI: 10.7150/ijbs.11084] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Among neurogenerative diseases, amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by a progressive motor neuron dysfunction in the motor cortex, brainstem and spinal cord. ALS is the most common form of motor neuron disease; yet, to date, the exact etiology of ALS remains unknown. In the present work, we have explored the possibility of fungal infection in cerebrospinal fluid (CSF) and in brain tissue from ALS patients. Fungal antigens, as well as DNA from several fungi, were detected in CSF from ALS patients. Additionally, examination of brain sections from the frontal cortex of ALS patients revealed the existence of immunopositive fungal antigens comprising punctate bodies in the cytoplasm of some neurons. Fungal DNA was also detected in brain tissue using PCR analysis, uncovering the presence of several fungal species. Finally, proteomic analyses of brain tissue demonstrated the occurrence of several fungal peptides. Collectively, our observations provide compelling evidence of fungal infection in the ALS patients analyzed, suggesting that this infection may play a part in the etiology of the disease or may constitute a risk factor for these patients.
Collapse
Affiliation(s)
- Ruth Alonso
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Diana Pisa
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Ana Isabel Marina
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Esperanza Morato
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Alberto Rábano
- 2. Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid. Spain
| | - Izaskun Rodal
- 2. Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid. Spain
| | - Luis Carrasco
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| |
Collapse
|
31
|
Alonso R, Pisa D, Rábano A, Carrasco L. Alzheimer's disease and disseminated mycoses. Eur J Clin Microbiol Infect Dis 2014; 33:1125-32. [PMID: 24452965 DOI: 10.1007/s10096-013-2045-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/29/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence in the brain of amyloid plaques and neurofibrillary tangles that provoke neuronal cell death, vascular dysfunction and inflammatory processes. In the present work, we have analyzed the existence of fungal infection in AD patients. A number of tests have been carried out in blood serum, including the detection of antibodies against several yeast species and fungal proteins, and also the presence of fungal (1,3)-β-glucan. Results from this analysis indicate that there is disseminated fungal infection in the majority of AD patients tested. Of interest, several AD patients contain high levels of fungal polysaccharides in peripheral blood, reflecting that disseminated fungal infection occurs in these patients. Together, these results suggest the presence of disseminated mycoses in blood serum from AD patients. To our knowledge these findings represent the first evidence that fungal infection is detectable in blood samples in AD patients. The possibility that this may represent a risk factor or may contribute to the etiological cause of AD is discussed.
Collapse
Affiliation(s)
- R Alonso
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|