1
|
Li Z, Yang T, Wang L, Liu X, Qu Y, Xu Z, Zhang J. Comparison of the effects of Amomum tsaoko and its adulterants on functional dyspepsia rats based on metabolomics analysis. J Pharm Biomed Anal 2024; 246:116208. [PMID: 38735210 DOI: 10.1016/j.jpba.2024.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Amomum tsaoko (AT) is commonly used in clinical practice to treat abdominal distension and pain. It is also a seasoning for cooking, with the functions of appetizing, invigorating the spleen, and being digestive-promoting. Amomum tsaoko (AT) has three adulterants, Amomum paratsaoko (AP), Amomum koenigii (AK), and Alpinia katsumadai Hayata, because of the confusion in historical classics regarding recorded sources as well as the near geographic distribution and fruit morphological similarities. In this study, we established a functional dyspepsia (FD) rat model and then treated it with the corresponding medicinal solutions AT, AP, AK, and AKH. The gastric emptying rate, intestinal propulsion rate, serum biochemical indicators, histopathological changes, and fecal metabolism were measured. The efficacy and mechanism of AT, AP, AK, and AKH in the treatment of FD were compared. Fecal metabolomics revealed that 20 potential biomarkers were involved in seven significant metabolic pathways in FD rats. These pathways include ubiquinone and other terpenoid-quinone biosynthesis, glycerophospholipid metabolism, tyrosine metabolism, primary bile acid biosynthesis, purine metabolism, folate biosynthesis, and amino sugar and nucleotide sugar metabolism. AP regulates 6 metabolic pathways, 5 metabolic pathways affected by AT, 4 metabolic pathways affected by AK, and 2 metabolic pathways affected by AKH.The above results suggest that the different effects of AT, AP, AK, and AKH on FD rats may be due to their different regulatory effects on the metabolome.
Collapse
Affiliation(s)
- Zhaoju Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, China
| | - Tianmei Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, China
| | - Li Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, China
| | - Xiaoli Liu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yuan Qu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zongliang Xu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, China.
| | - Jinyu Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, China.
| |
Collapse
|
2
|
Zhou Q, Chang C, Wang Y, Gai X, Chen Y, Gao X, Liang Y, Sun Y. Comparative analysis of lysophospholipid metabolism profiles and clinical characteristics in patients with high vs. low C-reactive protein levels in acute exacerbations of chronic obstructive pulmonary disease. Clin Chim Acta 2024; 561:119816. [PMID: 38885755 DOI: 10.1016/j.cca.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The precise role of lysophospholipids (LysoPLs) in the pathogenesis of acute exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD) remains unclear. In this study, we sought to elucidate the differences in serum LysoPL metabolite profiles and their correlation with clinical features between patients with low versus high CRP levels. METHODS A total of 58 patients with AECOPD were enrolled in the study. Patients were classified into two groups: low CRP group (CRP < 20 mg/L, n = 34) and high CRP group (CRP ≥ 20 mg/L, n = 24). Clinical data were collected, and the LysoPL metabolite profiles were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and identified by matching with the LipidBlast library. RESULTS Nineteen differential LysoPLs were initially identified through Student's t-test (p < 0.05 and VIP > 1). Subsequently, four LysoPLs, LPC(16:0), LPE(18:2), LPC(22:0), and LPC(24:0), were identified by FDR adjustment (adjusted p < 0.05). These four lysoPLs had a significant negative correlation with CRP. Integrative analysis revealed that LPC (16:0) and LPC (22:0) correlated with less hypercapnic respiratory failure and ICU admission. CONCLUSION AECOPD patients with high CRP levels demonstrated a distinctive LysoPL metabolism profile, with LPC (16:0), LPE(18:2), LPC(22:0), and LPC(24:0) being the most significantly altered lipid molecules. These alterations were associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Qiqiang Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yating Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China.
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
3
|
Ward LJ, Kling S, Engvall G, Söderberg C, Kugelberg FC, Green H, Elmsjö A. Postmortem metabolomics as a high-throughput cause-of-death screening tool for human death investigations. iScience 2024; 27:109794. [PMID: 38711455 PMCID: PMC11070332 DOI: 10.1016/j.isci.2024.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Autopsy rates are declining globally, impacting cause-of-death (CoD) diagnoses and quality control. Postmortem metabolomics was evaluated for CoD screening using 4,282 human cases, encompassing CoD groups: acidosis, drug intoxication, hanging, ischemic heart disease (IHD), and pneumonia. Cases were split 3:1 into training and test sets. High-resolution mass spectrometry data from femoral blood were analyzed via orthogonal-partial least squares discriminant analysis (OPLS-DA) to discriminate CoD groups. OPLS-DA achieved an R2 = 0.52 and Q2 = 0.30, with true-positive prediction rates of 68% and 65% for training and test sets, respectively, across all groups. Specificity-optimized thresholds predicted 56% of test cases with a unique CoD, average 45% sensitivity, and average 96% specificity. Prediction accuracies varied: 98.7% for acidosis, 80.5% for drug intoxication, 81.6% for hanging, 73.1% for IHD, and 93.6% for pneumonia. This study demonstrates the potential of large-scale postmortem metabolomics for CoD screening, offering high specificity and enhancing throughput and decision-making in human death investigations.
Collapse
Affiliation(s)
- Liam J. Ward
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Sara Kling
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Gustav Engvall
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Department of Forensic Medicine, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Carl Söderberg
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Fredrik C. Kugelberg
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Albert Elmsjö
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| |
Collapse
|
4
|
Gu M, Lv S, Song Y, Wang H, Zhang X, Liu J, Liu D, Han X, Liu X. Predictive Value of Lysophosphatidylcholine for Determining the Disease Severity and Prognosis of Elderly Patients with Community-Acquired Pneumonia. Clin Interv Aging 2024; 19:517-527. [PMID: 38528884 PMCID: PMC10961246 DOI: 10.2147/cia.s454239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose To investigate the clinical value of serum lysophosphatidylcholine (LPC) as a predictive biomarker for determining disease severity and mortality risk in hospitalized elderly patients with community-acquired pneumonia (CAP). Methods This prospective, single-center study enrolled 208 elderly patients, including 67 patients with severe CAP (SCAP) and 141 with non-SCAP between November 1st, 2020, and November 30th, 2021 at the Qingdao Municipal Hospital, Shandong Province, China. The demographic and clinical parameters were recorded for all the included patients. Serum LPC levels were measured on day 1 and 6 after admission using ELISA. Propensity score matching (PSM) was used to balance the baseline variables between SCAP and non-SCAP patient groups. Receiver operative characteristic (ROC) curve analysis was used to compare the predictive performances of LPC and other clinical parameters in discriminating between SCAP and non-SCAP patients and determining the 30-day mortality risk of the hospitalized CAP patients. Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with SCAP. Cox proportional hazard regression analysis was used to determine if serum LPC was an independent risk factor for the 30-day mortality of CAP patients. Results The serum LPC levels at admission were significantly higher in the non-SCAP patients than in the SCAP patients (P = 0.011). Serum LPC level <24.36 ng/mL, and PSI score were independent risk factors for the 30-day mortality in the elderly patients with CAP. The risk of 30-day mortality in the elderly CAP patients with low serum LPC levels (< 24.36ng/mL) was >5-fold higher than in the patients with high serum LPC levels (≥ 24.36ng/mL). Conclusion Low serum LPC levels were associated with significantly higher disease severity and 30-day mortality in the elderly patients with CAP. Therefore, serum LPC is a promising predictive biomarker for the early identification of elderly CAP patients with poor prognosis.
Collapse
Affiliation(s)
- Minghao Gu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
- School of Medicine, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - SenSen Lv
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
| | - Yihui Song
- Department of Neurology, Weihai Municipal Hospital, Weihai, 264200, People’s Republic of China
| | - Hong Wang
- Hospital-Acquired Infection Control Department, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
| | - Xingyu Zhang
- Human Resources Department, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
| | - Deshun Liu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
| | - Xiudi Han
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
| | - Xuedong Liu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, 266011, People’s Republic of China
| |
Collapse
|
5
|
Yang K, Kang Z, Guan W, Lotfi-Emran S, Mayer ZJ, Guerrero CR, Steffen BT, Puskarich MA, Tignanelli CJ, Lusczek E, Safo SE. Developing A Baseline Metabolomic Signature Associated with COVID-19 Severity: Insights from Prospective Trials Encompassing 13 U.S. Centers. Metabolites 2023; 13:1107. [PMID: 37999202 PMCID: PMC10672920 DOI: 10.3390/metabo13111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disease is a significant risk factor for severe COVID-19 infection, but the contributing pathways are not yet fully elucidated. Using data from two randomized controlled trials across 13 U.S. academic centers, our goal was to characterize metabolic features that predict severe COVID-19 and define a novel baseline metabolomic signature. Individuals (n = 133) were dichotomized as having mild or moderate/severe COVID-19 disease based on the WHO ordinal scale. Blood samples were analyzed using the Biocrates platform, providing 630 targeted metabolites for analysis. Resampling techniques and machine learning models were used to determine metabolomic features associated with severe disease. Ingenuity Pathway Analysis (IPA) was used for functional enrichment analysis. To aid in clinical decision making, we created baseline metabolomics signatures of low-correlated molecules. Multivariable logistic regression models were fit to associate these signatures with severe disease on training data. A three-metabolite signature, lysophosphatidylcholine a C17:0, dihydroceramide (d18:0/24:1), and triacylglyceride (20:4_36:4), resulted in the best discrimination performance with an average test AUROC of 0.978 and F1 score of 0.942. Pathways related to amino acids were significantly enriched from the IPA analyses, and the mitogen-activated protein kinase kinase 5 (MAP2K5) was differentially activated between groups. In conclusion, metabolites related to lipid metabolism efficiently discriminated between mild vs. moderate/severe disease. SDMA and GABA demonstrated the potential to discriminate between these two groups as well. The mitogen-activated protein kinase kinase 5 (MAP2K5) regulator is differentially activated between groups, suggesting further investigation as a potential therapeutic pathway.
Collapse
Affiliation(s)
- Kaifeng Yang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| | - Zhiyu Kang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| | - Sahar Lotfi-Emran
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J. Mayer
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Candace R. Guerrero
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian T. Steffen
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA (E.L.)
| | - Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN 55455, USA
| | - Christopher J. Tignanelli
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA (E.L.)
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth Lusczek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA (E.L.)
| | - Sandra E. Safo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA (S.E.S.)
| |
Collapse
|
6
|
Wang M, Zhang R, Zhang S, Zhou X, Song Y, Wang Q. Simultaneous quantitation of multiple myeloma related dietary metabolites in serum using HILIC-LC-MS/MS. Food Nutr Res 2023; 67:9135. [PMID: 37533448 PMCID: PMC10392861 DOI: 10.29219/fnr.v67.9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 08/04/2023] Open
Abstract
Background Recent studies from targeted and untargeted metabolomics have consistently revealed that diet-related metabolites, including carnitine (C0), several species of acylcarnitines (AcyCNs), amino acids, ceramides, and lysophosphatidylcholines (LPCs) may serve as potential multiple myeloma (MM) biomarkers. However, most of these approaches had some intrinsic limitations, namely low reproducibility and compromising the accuracy of the results. Objective This study developed and validated a precise, efficient, and reliable liquid chromatography tandem mass spectrometric (LC-MS/MS) method for measuring these 28 metabolic risk factors in human serum. Design This method employed isopropanol to extract the metabolites from serum, gradient elution on a hydrophilic interaction liquid chromatographic column (HILIC) for chromatographic separation, and multiple reaction monitor (MRM) mode with positive electrospray ionization (ESI) for mass spectrometric detection. Results The correlation coefficients of linear response for this method were more than 0.9984. Analytical recoveries ranged from 91.3 to 106.3%, averaging 99.5%. The intra-run and total coefficients of variation were 1.1-5.9% and 2.0-9.6%, respectively. We have simultaneously determined the serological levels of C0, several subclasses of AcyCNs, amino acids, ceramides, and LPCs within 15 min for the first time. Conclusion The established LC-MS/MS method was accurate, sensitive, efficient, and could be valuable in providing insights into the association between diet patterns and MM disease and added value in further clinical research.
Collapse
Affiliation(s)
- Mo Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, P.R. China
| | - Rui Zhang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, P.R. China
| | - Shunli Zhang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, P.R. China
| | - Xiaojie Zhou
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, The Third Clinical Medical College of Capital Medical University, Beijing, P.R. China
| | - Yichuan Song
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Qingtao Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, P.R. China
| |
Collapse
|
7
|
Park JY, Lee HB, Son SE, Gupta PK, Park Y, Hur W, Seong GH. Determination of lysophosphatidylcholine using peroxidase-mimic PVP/PtRu nanozyme. Anal Bioanal Chem 2023; 415:1865-1876. [PMID: 36792781 DOI: 10.1007/s00216-023-04590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Lysophosphatidylcholine (LPC) can be used as a biomarker for diseases such as cancer, diabetes, atherosclerosis, and sepsis. In this study, we demonstrated the ability of nanozymes to displace the natural derived enzyme in enzyme-based assays for the measurement of LPC. Synthesized polyvinylpyrrolidone-stabilized platinum-ruthenium nanozymes (PVP/PtRu NZs) had a uniform size of 2.48 ± 0.24 nm and superb peroxidase-mimicking activity. We demonstrated that the nanozymes had high activity over a wide pH and temperature range and high stability after long-term storage. The LPC concentration could be accurately analyzed through the absorbance and fluorescence signals generated by the peroxidation reaction using the synthesized nanozyme with substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) and 10-acetyl-3,7-dihydroxyphenoxazine (Ampliflu™ Red). LPC at a concentration of 0-400 µM was used for the analysis, and the coefficient of determination (R2) was 0.977, and the limit of detection (LOD) was 23.1 µM by colorimetric assay. In the fluorometric assay, the R2 was 0.999, and the LOD was 8.97 µM. The spiked recovery values for the determination of LPC concentration in human serum samples were 102-115%. Based on these results, we declared that PVP/PtRu NZs had an ability comparable to that of the native enzyme horseradish peroxidase (HRP) in the enzyme-based LPC detection method.
Collapse
Affiliation(s)
- Ji Yeon Park
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Pramod K Gupta
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Yosep Park
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea.
| |
Collapse
|
8
|
Nan W, Xiong F, Zheng H, Li C, Lou C, Lei X, Wu H, Gao H, Li Y. Myristoyl lysophosphatidylcholine is a biomarker and potential therapeutic target for community-acquired pneumonia. Redox Biol 2022; 58:102556. [PMID: 36459717 PMCID: PMC9712772 DOI: 10.1016/j.redox.2022.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
There is no gold standard for evaluating the severity of community-acquired pneumonia (CAP), and it is still based on a score. This study aimed to use the metabolomics method to find promised biomarkers in assessing disease severity and potential therapeutic targets for CAP. The result found that the metabolites in the plasma samples of CAP patients had significantly different between the acute phase and the remission phase, especially lysophosphatidylcholine (LPCs) in glycerophospholipids, whose levels are negatively linked to the severity of the disease. Subsequently, the two key metabolites of myristoyl lysophosphatidylcholine (LPC 14:0) and LPC 16:1 were screened. We analyzed the predictive performance of the two metabolites using Spearman-related analysis and ROC curves, and LPC14:0 showed more satisfactory diagnostic performance than LPC16:1. Then we explored the protective role and mechanism of LPC 14:0 in animal and cell models. The results showed that LPC 14:0 could inhibit the LPS-induced secretion of IL-1β, IL-6, and TNF-α, lower the ROS and MDA levels, and decreased the depletion of SOD and GSH, thereby reducing lung tissue and cell damage, such as down-regulating the protein level in BALF, lung W/D ratio, MPO activity, and apoptosis. We found that LPC 14:0 inhibited LPS-induced inflammatory response and oxidative stress, and the above protection was achieved by inhibiting LPS-induced activation of the NLRP3 inflammasome. LPC 14:0 may serve as a novel biomarker for predicting the severity of CAP. In addition, our exploration of the role of LPC 14:0 in animal and cellular models has reinforced its promise as a therapeutic target to improve the clinical efficacy for CAP.
Collapse
Affiliation(s)
- Wengang Nan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fen Xiong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Cong Lou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiong Lei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huizhen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Yuping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Saito K, Gemma A, Tatsumi K, Hattori N, Ushiki A, Tsushima K, Saito Y, Abe M, Horimasu Y, Kashiwada T, Mori K, Sato M, Nishiya T, Takamatsu K, Sun Y, Arakawa N, Izumi T, Ohno Y, Saito Y, Hanaoka M. Identification and characterization of lysophosphatidylcholine 14:0 as a biomarker for drug-induced lung disease. Sci Rep 2022; 12:19819. [PMID: 36396675 PMCID: PMC9671920 DOI: 10.1038/s41598-022-24406-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Drug-induced interstitial lung disease (DILD) occurs when drug exposure causes inflammation of the lung interstitium. DILD can be caused by different types of drugs, and some DILD patterns results in a high mortality rate; hence, DILD poses a serious problem in clinical practice as well as drug development, and strategies to diagnose and distinguish DILD from other lung diseases are necessary. We aimed to identify novel biomarkers for DILD by performing lipidomics analysis on plasma samples from patients with acute and recovery phase DILD. Having identified lysophosphatidylcholines (LPCs) as candidate biomarkers for DILD, we determined their concentrations using validated liquid chromatography/mass spectrometry biomarker assays. In addition, we evaluated the ability of LPCs to discriminate patients with acute phase DILD from those with recovery phase DILD, DILD-tolerant, or other lung diseases, and characterized their association with clinical characteristics. Lipidomics analysis revealed a clear decrease in LPC concentrations in the plasma of patients with acute phase DILD. In particular, LPC(14:0) had the highest discriminative index against recovery phase and DILD-tolerant patients. LPC(14:0) displayed no clear association with causal drugs, or subjects' backgrounds, but was associated with disease severity. Furthermore, LPC(14:0) was able to discriminate between patients with DILD and other lung diseases, including idiopathic interstitial pneumonia and lung disease associated with connective tissue disease. LPC(14:0) is a promising biomarker for DILD that could improve the diagnosis of DILD and help to differentiate DILD from other lung diseases, such as idiopathic interstitial pneumonia and connective tissue disease.
Collapse
Affiliation(s)
- Kosuke Saito
- grid.410797.c0000 0001 2227 8773Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, 210-9501 Japan
| | - Akihiko Gemma
- grid.410821.e0000 0001 2173 8328Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603 Japan
| | - Koichiro Tatsumi
- grid.136304.30000 0004 0370 1101Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Noboru Hattori
- grid.470097.d0000 0004 0618 7953Department of Respiratory Medicine, Hiroshima University Hospital, Hiroshima, 734-8551 Japan
| | - Atsuhito Ushiki
- grid.263518.b0000 0001 1507 4692First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Kenji Tsushima
- grid.410797.c0000 0001 2227 8773Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, 210-9501 Japan ,grid.411731.10000 0004 0531 3030School of Medicine, International University of Health and Welfare, Narita, 286-8686 Japan
| | - Yoshinobu Saito
- grid.410821.e0000 0001 2173 8328Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603 Japan
| | - Mitsuhiro Abe
- grid.136304.30000 0004 0370 1101Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Yasushi Horimasu
- grid.470097.d0000 0004 0618 7953Department of Respiratory Medicine, Hiroshima University Hospital, Hiroshima, 734-8551 Japan
| | - Takeru Kashiwada
- grid.410821.e0000 0001 2173 8328Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603 Japan
| | - Kazuhiko Mori
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd., Tokyo, 134-8630 Japan
| | - Motonobu Sato
- grid.418042.b0000 0004 1758 8699Astellas Pharma Inc., Tsukuba, 305-8585 Japan
| | - Takayoshi Nishiya
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd., Tokyo, 134-8630 Japan
| | - Kazuhiko Takamatsu
- grid.418042.b0000 0004 1758 8699Astellas Pharma Inc., Tsukuba, 305-8585 Japan
| | - Yuchen Sun
- grid.410797.c0000 0001 2227 8773Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, 210-9501 Japan
| | - Noriaki Arakawa
- grid.410797.c0000 0001 2227 8773Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, 210-9501 Japan
| | - Takashi Izumi
- Kihara Memorial Foundation, Yokohama, 230-0045 Japan
| | - Yasuo Ohno
- Kihara Memorial Foundation, Yokohama, 230-0045 Japan
| | - Yoshiro Saito
- grid.410797.c0000 0001 2227 8773Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, 210-9501 Japan
| | - Masayuki Hanaoka
- grid.263518.b0000 0001 1507 4692First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| |
Collapse
|
10
|
Montague B, Summers A, Bhawal R, Anderson ET, Kraus-Malett S, Zhang S, Goggs R. Identifying potential biomarkers and therapeutic targets for dogs with sepsis using metabolomics and lipidomics analyses. PLoS One 2022; 17:e0271137. [PMID: 35802586 PMCID: PMC9269464 DOI: 10.1371/journal.pone.0271137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis is a diagnostic and therapeutic challenge and is associated with morbidity and a high risk of death. Metabolomic and lipidomic profiling in sepsis can identify alterations in metabolism and might provide useful insights into the dysregulated host response to infection, but investigations in dogs are limited. We aimed to use untargeted metabolomics and lipidomics to characterize metabolic pathways in dogs with sepsis to identify therapeutic targets and potential diagnostic and prognostic biomarkers. In this prospective observational cohort study, we examined the plasma metabolomes and lipidomes of 20 healthy control dogs and compared them with those of 21 client-owned dogs with sepsis. Patient data including signalment, physical exam findings, clinicopathologic data and clinical outcome were recorded. Metabolites were identified using an untargeted mass spectrometry approach and pathway analysis identified multiple enriched metabolic pathways including pyruvaldehyde degradation; ketone body metabolism; the glucose-alanine cycle; vitamin-K metabolism; arginine and betaine metabolism; the biosynthesis of various amino acid classes including the aromatic amino acids; branched chain amino acids; and metabolism of glutamine/glutamate and the glycerophospholipid phosphatidylethanolamine. Metabolites were identified with high discriminant abilities between groups which could serve as potential biomarkers of sepsis including 13,14-Dihydro-15-keto Prostaglandin A2; 12(13)-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid); and 9-HpODE (9-Hydroxyoctadecadienoic acid). Metabolites with higher abundance in samples from nonsurvivors than survivors included 3-(2-hydroxyethyl) indole, indoxyl sulfate and xanthurenic acid. Untargeted lipidomic profiling revealed multiple sphingomyelin species (SM(d34:0)+H; SM(d36:0)+H; SM(d34:0)+HCOO; and SM(d34:1D3)+HCOO); lysophosphatidylcholine molecules (LPC(18:2)+H) and lipophosphoserine molecules (LPS(20:4)+H) that were discriminating for dogs with sepsis. These biomarkers could aid in the diagnosis of dogs with sepsis, provide prognostic information, or act as potential therapeutic targets.
Collapse
Affiliation(s)
- Brett Montague
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - April Summers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth T. Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Sydney Kraus-Malett
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Jeong S, Kim B, Byun DJ, Jin S, Seo BS, Shin MH, Leem AY, Choung JJ, Park MS, Hyun YM. Lysophosphatidylcholine Alleviates Acute Lung Injury by Regulating Neutrophil Motility and Neutrophil Extracellular Trap Formation. Front Cell Dev Biol 2022; 10:941914. [PMID: 35859904 PMCID: PMC9289271 DOI: 10.3389/fcell.2022.941914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Sepsis is predominantly initiated by bacterial infection and can cause systemic inflammation, which frequently leads to rapid death of the patient. However, this acute systemic inflammatory response requires further investigation from the perspectives of clinical judgment criteria and early treatment strategies for the relief of symptoms. Lysophosphatidylcholine (LPC) 18:0 may relieve septic symptoms, but the relevant mechanism is not clearly understood. Therefore, we aimed to assess the effectiveness of LPC as a therapeutic treatment for acute inflammation in the lung induced by lipopolysaccharide in mice. Systemic inflammation of mice was induced by lipopolysaccharide (LPS) inoculation to investigate the role of LPC in the migration and the immune response of neutrophils during acute lung injury. By employing two-photon intravital imaging of the LPS-stimulated LysM-GFP mice and other in vitro and in vivo assays, we examined whether LPC alleviates the inflammatory effect of sepsis. We also tested the effect of LPC to human neutrophils from healthy control and sepsis patients. Our data showed that LPC treatment reduced the infiltration of innate immune cells into the lung. Specifically, LPC altered neutrophil migratory patterns and enhanced phagocytic efficacy in the damaged lung. Moreover, LPC treatment reduced the release of neutrophil extracellular trap (NET), which can damage tissue in the inflamed organ and exacerbate disease. It also reduced human neutrophil migration under inflammatory environment. Our results suggest that LPC can alleviate sepsis-induced lung inflammation by regulating the function of neutrophils. These findings provide evidence for the beneficial application of LPC treatment as a potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Soi Jeong
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Bora Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Jeong Byun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sunmin Jin
- R&D Center, AriBio Co., Ltd., Sengnam, South Korea
| | - Bo Seung Seo
- R&D Center, AriBio Co., Ltd., Sengnam, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Moo Suk Park, ; Young-Min Hyun,
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Moo Suk Park, ; Young-Min Hyun,
| |
Collapse
|
12
|
Adams K, Tenforde MW, Chodisetty S, Lee B, Chow EJ, Self WH, Patel MM. A literature review of severity scores for adults with influenza or community-acquired pneumonia - implications for influenza vaccines and therapeutics. Hum Vaccin Immunother 2021; 17:5460-5474. [PMID: 34757894 PMCID: PMC8903905 DOI: 10.1080/21645515.2021.1990649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza vaccination and antiviral therapeutics may attenuate disease, decreasing severity of illness in vaccinated and treated persons. Standardized assessment tools, definitions of disease severity, and clinical endpoints would support characterizing the attenuating effects of influenza vaccines and antivirals. We review potential clinical parameters and endpoints that may be useful for ordinal scales evaluating attenuating effects of influenza vaccines and antivirals in hospital-based studies. In studies of influenza and community-acquired pneumonia, common physiologic parameters that predicted outcomes such as mortality, ICU admission, complications, and duration of stay included vital signs (hypotension, tachypnea, fever, hypoxia), laboratory results (blood urea nitrogen, platelets, serum sodium), and radiographic findings of infiltrates or effusions. Ordinal scales based on these parameters may be useful endpoints for evaluating attenuating effects of influenza vaccines and therapeutics. Factors such as clinical and policy relevance, reproducibility, and specificity of measurements should be considered when creating a standardized ordinal scale for assessment.
Collapse
Affiliation(s)
- Katherine Adams
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark W. Tenforde
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shreya Chodisetty
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin Lee
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric J. Chow
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wesley H. Self
- Department of Emergency Medicine and Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Manish M. Patel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Elmsjö A, Vikingsson S, Söderberg C, Kugelberg FC, Green H. Post-Mortem Metabolomics: A Novel Approach in Clinical Biomarker Discovery and a Potential Tool in Death Investigations. Chem Res Toxicol 2021; 34:1496-1502. [PMID: 33890460 DOI: 10.1021/acs.chemrestox.0c00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabolomics can be defined as the scientific field aiming at characterizing all low-weight molecules (so-called metabolites) in a biological system. At the time of death, the level and type of metabolites present will most likely reflect the events leading up to death.In this proof of concept study, we investigated the potential of post-mortem metabolomics by identifying post-mortem biomarkers, correlated these identified biomarkers with those reported in clinical metabolomics studies, and finally validated the models predictability of unknown autopsy cases. In this post-mortem metabolomics setting, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry data from 404 post-mortem samples, including pneumonia cases and control cases, were processed using XCMS (R). Potential biomarkers were evaluated using principal component analysis and orthogonal partial least squares-discriminant analysis. Biomarkers were putatively annotated using an in-house database and the online databases METLIN and HMDB. The results showed that clear group separation was observed between pneumonia cases and control cases. The metabolites responsible for group separation belonged to a broad set of biological classes, such as amino acids, carnitines, lipids, nicotinamides, nucleotides, and steroids. Many of these metabolites have been reported as important in clinical manifestation of pneumonia. For the unknown autopsy cases, the sensitivity and specificity were 86 and 84%, respectively. This study successfully investigated the robustness and usability of post-mortem metabolomics in death investigations. The identified post-mortem biomarkers correlated well with biomarkers reported and identified through clinical research.
Collapse
Affiliation(s)
- Albert Elmsjö
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Svante Vikingsson
- RTI International, Research Triangle Park, North Carolina 27709, United States.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Carl Söderberg
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Fredrik C Kugelberg
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
14
|
Zhang X, Peng D, Zhang X, Wang X, Chen N, Zhao S, He Q. Serum metabolomic profiling reveals important difference between infants with and without subsequent recurrent wheezing in later childhood after RSV bronchiolitis. APMIS 2020; 129:128-137. [PMID: 33155332 DOI: 10.1111/apm.13095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/01/2020] [Indexed: 01/19/2023]
Abstract
We aimed to use serum metabolomics to discriminate infants with severe respiratory syncytial virus (RSV) bronchiolitis who later developed subsequent recurrent wheezing from those who did not and to investigate the relationship between serum metabolome and host immune responses with regard to the subsequent development of recurrent wheezing. Fifty-one infants who were hospitalized during an initial episode of severe RSV bronchiolitis at 6 months of age or less were included and followed for up to the age of 3 years. Of them, 24 developed subsequent recurrent wheezing and 27 did not. Untargeted serum metabolomics was performed by ultraperformance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-MS/MS). Cytokines were measured by multiplex immunoassay. Difference in serum metabolomic profiles was observed between infants who developed recurrent wheezing and those who did not. L-lactic acid level was significantly higher in infants with recurrent wheezing than those without. Pyrimidine metabolism, glycerophospholipid metabolism, and arginine biosynthesis were identified as the most significant changed pathways between the two groups. Moreover, L-lactic acid level was positively associated with serum CXCL8 level. This exploratory study showed that differential serum metabolic signatures during severe RSV bronchiolitis in early infancy were associated with the development of subsequent recurrent wheezing in later childhood.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Dan Peng
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Xiang Zhang
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xinglan Wang
- Department of Pediatrics, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Banoei MM, Vogel HJ, Weljie AM, Yende S, Angus DC, Winston BW. Plasma lipid profiling for the prognosis of 90-day mortality, in-hospital mortality, ICU admission, and severity in bacterial community-acquired pneumonia (CAP). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:461. [PMID: 32718333 PMCID: PMC7385943 DOI: 10.1186/s13054-020-03147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022]
Abstract
Introduction Pneumonia is the most common cause of mortality from infectious diseases, the second leading cause of nosocomial infection, and the leading cause of mortality among hospitalized adults. To improve clinical management, metabolomics has been increasingly applied to find specific metabolic biopatterns (profiling) for the diagnosis and prognosis of various infectious diseases, including pneumonia. Methods One hundred fifty bacterial community-acquired pneumonia (CAP) patients whose plasma samples were drawn within the first 24 h of hospital admission were enrolled in this study and separated into two age- and sex-matched cohorts: non-survivors (died ≤ 90 days) and survivors (survived > 90 days). Three analytical tools, 1H-NMR spectroscopy, GC-MS, and targeted DI-MS/MS, were used to prognosticate non-survivors from survivors by means of metabolic profiles. Results We show that quantitative lipid profiling using DI-MS/MS can predict the 90-day mortality and in-hospital mortality among patients with bacterial CAP compared to 1H-NMR- and GC-MS-based metabolomics. This study showed that the decreased lysophosphatidylcholines and increased acylcarnitines are significantly associated with increased mortality in bacterial CAP. Additionally, we found that decreased lysophosphatidylcholines and phosphatidylcholines (> 36 carbons) and increased acylcarnitines may be used to predict the prognosis of in-hospital mortality for bacterial CAP as well as the need for ICU admission and severity of bacterial CAP. Discussion This study demonstrates that lipid-based plasma metabolites can be used for the prognosis of 90-day mortality among patients with bacterial CAP. Moreover, lipid profiling can be utilized to identify patients with bacterial CAP who are at the highest risk of dying in hospital and who need ICU admission as well as the severity assessment of CAP.
Collapse
Affiliation(s)
- Mohammad M Banoei
- Department of Critical Care Medicine, Faculty of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W, Calgary, Alberta, T2N 4Z6, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Aalim M Weljie
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sachin Yende
- The Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Derek C Angus
- The Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent W Winston
- Department of Critical Care Medicine, Faculty of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W, Calgary, Alberta, T2N 4Z6, Canada. .,Departments of Medicine and Biochemistry and Molecular Biology, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
16
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
17
|
Mecatti GC, Messias MCF, de Oliveira Carvalho P. Lipidomic profile and candidate biomarkers in septic patients. Lipids Health Dis 2020; 19:68. [PMID: 32284068 PMCID: PMC7155265 DOI: 10.1186/s12944-020-01246-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a severe disease with a high mortality rate. Identification and treatment in the initial hours of the disease improve outcomes. Some biomarkers like procalcitonin and C-reactive protein are used for diagnosis and to access sepsis prognosis and they can help in clinical decision-making, but none has sufficient specificity or sensitivity to be routinely employed in clinical practice. This review seeks to evaluate lipid metabolism alterations in patients with sepsis and the possibility of using the respective metabolites as biomarkers of the disease. A search of the main electronic biomedical databases was conducted for the 20-year period ending in February 2020, focused on primary research articles on biomarkers in sepsis. The keywords included sepsis, septic shock, biomarker, metabolomic, lipidomic and lysophosphatidylcoline. . It concludes that altered lipid profiles, along with the progress of the disease should provide new insights, enabling a better understanding of the pathogenic mechanisms and making it possible to design new early diagnosis and therapeutic procedures for sepsis.
Collapse
Affiliation(s)
- Giovana Colozza Mecatti
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| | - Márcia Cristina Fernandes Messias
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| |
Collapse
|
18
|
Arshad H, Alfonso JCL, Franke R, Michaelis K, Araujo L, Habib A, Zboromyrska Y, Lücke E, Strungaru E, Akmatov MK, Hatzikirou H, Meyer-Hermann M, Petersmann A, Nauck M, Brönstrup M, Bilitewski U, Abel L, Sievers J, Vila J, Illig T, Schreiber J, Pessler F. Decreased plasma phospholipid concentrations and increased acid sphingomyelinase activity are accurate biomarkers for community-acquired pneumonia. J Transl Med 2019; 17:365. [PMID: 31711507 PMCID: PMC6849224 DOI: 10.1186/s12967-019-2112-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background There continues to be a great need for better biomarkers and host-directed treatment targets for community-acquired pneumonia (CAP). Alterations in phospholipid metabolism may constitute a source of small molecule biomarkers for acute infections including CAP. Evidence from animal models of pulmonary infections and sepsis suggests that inhibiting acid sphingomyelinase (which releases ceramides from sphingomyelins) may reduce end-organ damage. Methods We measured concentrations of 105 phospholipids, 40 acylcarnitines, and 4 ceramides, as well as acid sphingomyelinase activity, in plasma from patients with CAP (n = 29, sampled on admission and 4 subsequent time points), chronic obstructive pulmonary disease exacerbation with infection (COPD, n = 13) as a clinically important disease control, and 33 age- and sex-matched controls. Results Phospholipid concentrations were greatly decreased in CAP and normalized along clinical improvement. Greatest changes were seen in phosphatidylcholines, followed by lysophosphatidylcholines, sphingomyelins and ceramides (three of which were upregulated), and were least in acylcarnitines. Changes in COPD were less pronounced, but also differed qualitatively, e.g. by increases in selected sphingomyelins. We identified highly accurate biomarkers for CAP (AUC ≤ 0.97) and COPD (AUC ≤ 0.93) vs. Controls, and moderately accurate biomarkers for CAP vs. COPD (AUC ≤ 0.83), all of which were phospholipids. Phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins were also markedly decreased in S. aureus-infected human A549 and differentiated THP1 cells. Correlations with C-reactive protein and procalcitonin were predominantly negative but only of mild-to-moderate extent, suggesting that these markers reflect more than merely inflammation. Consistent with the increased ceramide concentrations, increased acid sphingomyelinase activity accurately distinguished CAP (fold change = 2.8, AUC = 0.94) and COPD (1.75, 0.88) from Controls and normalized with clinical resolution. Conclusions The results underscore the high potential of plasma phospholipids as biomarkers for CAP, begin to reveal differences in lipid dysregulation between CAP and infection-associated COPD exacerbation, and suggest that the decreases in plasma concentrations are at least partially determined by changes in host target cells. Furthermore, they provide validation in clinical blood samples of acid sphingomyelinase as a potential treatment target to improve clinical outcome of CAP.
Collapse
Affiliation(s)
- Haroon Arshad
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Juan Carlos López Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Center for Infection Research (DZIF), Brunswick, Germany
| | - Katina Michaelis
- Clinic for Pneumology, Otto-von-Guericke University, Magdeburg, Germany
| | - Leonardo Araujo
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Aamna Habib
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Department of Chemical Biology, Helmholtz Centre for Infection Research and German Center for Infection Research (DZIF), Brunswick, Germany
| | - Yuliya Zboromyrska
- Department of Clinical Microbiology, Biomedical Diagnostic Centre (CDB), Hospital Clinic, School of Medicine, University of Barcelona, Institute of Global Health (ISGlobal), Barcelona, Spain
| | - Eva Lücke
- Clinic for Pneumology, Otto-von-Guericke University, Magdeburg, Germany
| | - Emilia Strungaru
- Clinic for Pneumology, Otto-von-Guericke University, Magdeburg, Germany
| | - Manas K Akmatov
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Haralampos Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Astrid Petersmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,UMG-Laboratory, University Medicine Göttingen, Göttingen, Germany
| | - Matthias Nauck
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Center for Infection Research (DZIF), Brunswick, Germany
| | - Ursula Bilitewski
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Center for Infection Research (DZIF), Brunswick, Germany
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
| | - Jorg Sievers
- Clinical Microbiology, GlaxoSmithKline, Collegeville, PA, USA.,Clinical Development, ViiV Healthcare, Brentford, UK
| | - Jordi Vila
- Department of Clinical Microbiology, Biomedical Diagnostic Centre (CDB), Hospital Clinic, School of Medicine, University of Barcelona, Institute of Global Health (ISGlobal), Barcelona, Spain
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Jens Schreiber
- Clinic for Pneumology, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Pessler
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz Centre for Infection Research, Brunswick, Germany. .,Centre for Individualised Infection Medicine, Hannover, Germany.
| |
Collapse
|
19
|
Müller DC, Kauppi A, Edin A, Gylfe Å, Sjöstedt AB, Johansson A. Phospholipid levels in blood during community-acquired pneumonia. PLoS One 2019; 14:e0216379. [PMID: 31063483 PMCID: PMC6504044 DOI: 10.1371/journal.pone.0216379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/21/2019] [Indexed: 02/01/2023] Open
Abstract
Phospholipids, major constituents of bilayer cell membranes, are present in large amounts in pulmonary surfactant and play key roles in cell signaling. Here, we aim at finding clinically useful disease markers in community-acquired pneumonia (CAP) using comprehensive phospholipid profiling in blood and modeling of changes between sampling time points. Serum samples from 33 patients hospitalized with CAP were collected at admission, three hours after the start of intravenous antibiotics, Day 1 (at 12–24 h), Day 2 (at 36–48 h), and several weeks after recovery. A profile of 75 phospholipid species including quantification of the bioactive lysophosphatidylcholines (LPCs) was determined using liquid chromatography coupled to time-of-flight mass spectrometry. To control for possible enzymatic degradation of LPCs, serum autotaxin levels were examined. Twenty-two of the 33 patients with a clinical diagnosis of CAP received a laboratory-verified CAP diagnosis by microbial culture or microbial DNA detection by qPCR. All major phospholipid species, especially the LPCs, were pronouncedly decreased in the acute stage of illness. Total and individual LPC concentrations increased shortly after the initiation of antibiotic treatment, concentrations were at their lowest 3h after the initiation, and increased after Day 1. The total LPC concentration increased by a change ratio of 1.6–1.7 between acute illness and Day 2, and by a ratio of 3.7 between acute illness and full disease resolution. Autotaxin levels were low in acute illness and showed little changes over time, contradicting a hypothesis of enzymatic degradation causing the low levels of LPCs. In this sample of patients with CAP, the results demonstrate that LPC concentration changes in serum of patients with CAP closely mirrored the early transition from acute illness to recovery after the initiation of antibiotics. LPCs should be further explored as potential disease stage biomarkers in CAP and for their potential physiological role during recovery.
Collapse
Affiliation(s)
- Daniel C. Müller
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Anna Kauppi
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Alicia Edin
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Åsa Gylfe
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Anders B. Sjöstedt
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
20
|
Yang T, Wan C, Wang H, Qin J, Chen L, Shen Y, Wen F. The prognostic and risk-stratified value of neutrophil–lymphocyte count ratio in Chinese patients with community-acquired pneumonia. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17702150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Community-acquired pneumonia is a common disease associated with high mortality. This retrospective study examined whether the neutrophil–lymphocyte count ratio (NLR), already widely used as an index of inflammation, can be used to predict in-hospital mortality of adults with community-acquired pneumonia. Clinical characteristics, CURB-65 and pneumonia severity index score of pneumonia severity, NLR, serum levels of C-reactive protein and procalcitonin, and in-hospital mortality were analyzed for 318 consecutive adults with community-acquired pneumonia admitted to West China Hospital between July 2012 and December 2013. The ability of NLR and other parameters to predict in-hospital mortality was assessed using receiver operating characteristic (ROC) curves. Results showed that NLR increased with increasing CURB-65 ( P < 0.05) and pneumonia severity index ( P < 0.05), and NLR correlated positively with serum levels of C-reactive protein (r = 0.239, P < 0.05) and procalcitonin (r = 0.211, P < 0.05). The median value of NLR was significantly higher among patients who died in hospital (11.96) than among those who were alive at the end of hospitalization (4.19, P < 0.05). Based on a cut-off NLR of 7.12, this index predicted in-hospital mortality with a sensitivity of 82.61% and specificity of 72.20% (area under ROC curve, 0.799). Predictive power was greater for the combination of NLR and serum levels of C-reactive protein and procalcitonin. These results suggest that NLR may be useful for predicting prognosis in Chinese adults with community-acquired pneumonia, and it may work better in combination with traditional markers.
Collapse
Affiliation(s)
- Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, China
| | - Chun Wan
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, China
| | - Hao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, China
| |
Collapse
|
21
|
Quan H, Hur YH, Xin C, Kim JM, Choi JI, Kim MY, Bae HB. Stearoyl lysophosphatidylcholine enhances the phagocytic ability of macrophages through the AMP-activated protein kinase/p38 mitogen activated protein kinase pathway. Int Immunopharmacol 2016; 39:328-334. [DOI: 10.1016/j.intimp.2016.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 11/26/2022]
|
22
|
To KKW, Lee KC, Wong SSY, Sze KH, Ke YH, Lui YM, Tang BSF, Li IWS, Lau SKP, Hung IFN, Law CY, Lam CW, Yuen KY. Lipid metabolites as potential diagnostic and prognostic biomarkers for acute community acquired pneumonia. Diagn Microbiol Infect Dis 2016; 85:249-54. [PMID: 27105773 PMCID: PMC7173326 DOI: 10.1016/j.diagmicrobio.2016.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 02/03/2023]
Abstract
Early diagnosis of acute community-acquired pneumonia (CAP) is important in patient triage and treatment decisions. To identify biomarkers that distinguish patients with CAP from non-CAP controls, we conducted an untargeted global metabolome analysis for plasma samples from 142 patients with CAP (CAP cases) and 97 without CAP (non-CAP controls). Thirteen lipid metabolites could discriminate between CAP cases and non-CAP controls with area-under-the-receiver-operating-characteristic curve of >0.8 (P ≤ 10−9). The levels of glycosphingolipids, sphingomyelins, lysophosphatidylcholines and L-palmitoylcarnitine were higher, while the levels of lysophosphatidylethanolamines were lower in the CAP cases than those in non-CAP controls. All 13 metabolites could distinguish CAP cases from the non-infection, extrapulmonary infection and non-CAP respiratory tract infection subgroups. The levels of trihexosylceramide (d18:1/16:0) were higher, while the levels of lysophosphatidylethanolamines were lower, in the fatal than those of non-fatal CAP cases. Our findings suggest that lipid metabolites are potential diagnostic and prognostic biomarkers for CAP. Thirteen lipid metabolites could discriminate CAP cases from non-CAP controls. The levels of 2 lipid metabolites differ between fatal and non-fatal CAP cases. Lipid metabolites are potential diagnostic and prognostic biomarkers for CAP.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Samson S Y Wong
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Hong Ke
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yin-Ming Lui
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Bone S F Tang
- Department of Pathology, Hong Kong Sanatorium Hospital, Hong Kong SAR, China
| | - Iris W S Li
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Susanna K P Lau
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan F N Hung
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chun-Yiu Law
- Department of Pathology, The University of Hong Kong Hong Kong SAR, China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong Hong Kong SAR, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|