1
|
Li Q, Liu Y, Zheng J, Chen Y, Liu Z, Xie Q, Li D, Xi L, Zheng J, Liu H. Potassium iodide enhances the killing effect of methylene blue mediated photodynamic therapy against F. monophora. Photodiagnosis Photodyn Ther 2024; 48:104255. [PMID: 38901715 DOI: 10.1016/j.pdpdt.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Chromoblastomycosis (CMB) is a chronic granulomatous fungal infection that affect the skin and subcutaneous tissues. It is clinically problematic due to limited treatment options, low cure rates, and high rates of relapse. This underscores the necessity for innovative treatment approaches. In this study, potassium iodide (KI) combined with Methylene Blue (MB) mediated antimicrobial photodynamic therapy (PDT) were assessed in the treatment of Fonsecaea monophora (F. monophora) both in vitro and in vivo. And the underlying mechanism that contributes to the efficacy of this treatment approach was investigated. METHODS In vitro experiments were conducted using different combinations and concentrations of MB, KI, and 660 nm light (60 mW/cm2) to inhibit F. monophora. The study was carried out using colony-forming unit (CFU) counts and scanning electron microscopy (SEM). The production of singlet oxygen (1O2), free iodine (I2), hydrogen peroxide (H2O2), and superoxide anion during the KI combined MB-mediated antimicrobial PDT process was also detected. In vivo experiments were developed using a Balb/c mouse paw infection model with F. monophora and treated with PBS, 10 mM KI, 2 mM MB +100 J/cm² and 10 mM KI+2 mM MB +100 J/cm² respectively. Inflammatory swelling, fungal load and histopathological analyses of the mouse footpads were assessed. RESULTS KI enhanced the killing effect of MB-mediated antimicrobial PDT on the conidial spores of F. monophora at the cell and infected animal model level. During the process, the main antimicrobial agents in KI combined with MB- mediated antimicrobial PDT could produce stronger toxic active species including free I2 and H2O2. CONCLUSION: KI combined with MB-mediated antimicrobial PDT could be an effective adjunct therapy for treating CBM.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Clinical College of Dermatology, Anhui Medical University, Hefei, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Liu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinjin Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yangxia Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zeyu Liu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qiulin Xie
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, D.C., USA
| | - Liyan Xi
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Judun Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Hongfang Liu
- Guangdong Clinical College of Dermatology, Anhui Medical University, Hefei, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
José Habib Moraes F, Torres Coimbra de Sá Balbina F, Procópio Alves L, Uchoa Fernandes A, Munin E. Avalanche-assisted transient optical phenomenon in aggregated toluidine blue dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124291. [PMID: 38643559 DOI: 10.1016/j.saa.2024.124291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Pulse-modulated CW laser heat deposition modulates the darkness or the transparency of an aggregated medium in the high signal optical regimen. A recently reported work found that transient optical responses of molecular aggregates can be different depending on whether the sample is excited with a laser wavelength tuned within the absorption band of the monomer or within the absorption band of the aggregates. The different transient responses were attributed to different dynamic processes during the laser-induced disassembling of the molecular aggregates and may have implications in the field of organic electronics and optical devices, such as optical logical gates, optical power limiters and all-optical switching. In this paper laser beams with wavelengths of 663 nm and 532 nm were used to produce sudden changes in the thermodynamic equilibrium of the aggregation states of the ortho-toluidine blue dye, which allowed to observe the occurrence of the avalanche - mediated transient phenomenon in the laser-induced disassembling of ortho-toluidine blue (TBO) aggregates. A double exponential model was adjusted to the registered transient data. The obtained values for the fast components of the transient time responses of ortho-toluidine blue dye, for the studied concentrations, ranged from ∼ 6.5 to 9.5 ms at 532 nm, and from ∼ 43 to 48 ms at 663 nm. A single beam experiment was employed to evaluate the performance of the ortho-toluidine blue dye in a beam power-damping device, driven by the simultaneous and cooperative actions of the laser induced disassembling of aggregated dye units and the thermal lensing effect. It was found that the phenomenon of laser-induced dye disassembling of TBO, acting cooperatively with the thermal lensing effect, damps the laser beam power faster than the thermal lensing phenomenon alone. In addition, the results showed that the speed of the laser beam power-damping is dye dependent.
Collapse
Affiliation(s)
- Fernando José Habib Moraes
- Center for Biomedical Engineering, Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil
| | | | - Leandro Procópio Alves
- Center for Biomedical Engineering, Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil; Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil
| | - Adjaci Uchoa Fernandes
- Center for Biomedical Engineering, Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil; Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil
| | - Egberto Munin
- Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil.
| |
Collapse
|
3
|
Nunes IPF, de Jesus RS, Almeida JA, Costa WLR, Malta M, Soares LGP, de Almeida PF, Pinheiro ALB. Evaluation of 1,9-Dimethyl-Methylene Blue nanoencapsulation using rhamnolipid nanoparticles to potentiate the Photodynamic Therapy technique in Candida albicans: In vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112943. [PMID: 38788534 DOI: 10.1016/j.jphotobiol.2024.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
With the rapid development of nanotechnology, various functional nanomaterials have shown exciting potential in biomedical areas such as drug delivery, antitumor, and antibacterial therapy. These nanomaterials improve the stability and selectivity of loaded drugs, reduce drug-induced side effects, realize controlled and targeted drug release, and increase therapeutic efficacy. The increased resistance to antifungal microbicides in medical practice and their side effects stimulate interest in new therapies, such as Photodynamic Therapy (PDT), which do not generate resistance in microorganisms and effectively control the pathology. The present study aimed to evaluate, in vitro, the efficacy of photodynamic therapy on Candida albicans using 1,9-Dimethyl-Methylene Blue (DMMB) as photosensitizer, red LED (λ630), and nanoencapsulation of DMMB (RL-NPs/DMMB) using rhamnolipids produced by Pseudomonas aeruginosa to evaluate if there is better performance of DMMB + RL particles compared to DMMB alone via the characterization of DMMB + RL and colony forming count. The tests were carried out across six experimental groups (Control, DMMB, RL-NPs, RL-NPs/DMMB, PDT and PDT + RL-NPs/DMMB) using in the groups with nanoparticles, DMMB (750 ng/mL) encapsulated with rhamnolipids in a 1:1 ratio, the light source consisted of a prototype built with a set of red LEDs with an energy density of 20 J/cm2. The results showed that applying PDT combined with encapsulation (RL-NPs/DMMB) was a more practical approach to inhibit Candida albicans (2 log reduction) than conventional applications, with a possible clinical application protocol.
Collapse
Affiliation(s)
- Iago P F Nunes
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Romário S de Jesus
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Jeovana Amorim Almeida
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - Wellington L R Costa
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - Marcos Malta
- Laboratory of Biotechnology and Chemistry of Microorganisms, Institute of Chemistry, Federal University of Bahia, Rua Barão de Geremoabo, 147, Ondina, Salvador, Bahia CEP: 40.170-115, Brazil.
| | - Luiz G P Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Paulo F de Almeida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Antônio L B Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
4
|
Adnan RO, Jawad HA. Antimicrobial photodynamic therapy using a low-power 650 nm laser to inhibit oral Candida albicans activity: an in vitro study. J Med Life 2024; 17:28-34. [PMID: 38737667 PMCID: PMC11080508 DOI: 10.25122/jml-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 05/14/2024] Open
Abstract
This study assessed the efficacy of antimicrobial photodynamic therapy (PDT) using a 650 nm diode laser combined with methylene blue (MB) as a photosensitizer to inhibit the growth of Candida albicans (C. albicans). Oral samples were collected from 75 patients diagnosed with oral thrush. C. albicans was isolated and identified using traditional methods and the VITEK 2 YST system. Samples (n = 25) were divided into five groups: Group 1 (control, n = 5) consisted of C. albicans suspensions in saline; Group 2 (n = 5) treated with nystatin; Group 3 (n = 5) exposed to a 650 nm diode laser in continuous mode at 200 mW for 300 seconds; Group 4 (n = 5) treated with 650 nm laser and MB as a photosensitizer; Group 5 (n = 5) exposed to the laser in combination with nystatin. Statistical analysis using ANOVA, Dunnett's t-test (P = 0.05), and LSD (P = 0.001) revealed significant differences in C. albicans counts pre- and post-treatment. Group 5 showed the most significant reduction in C. albicans, followed by Group 4, while Groups 2 and 3 showed the least variation. The findings suggest that PDT using a 650 nm diode laser with methylene blue (in continuous mode at 200 mW for 300 seconds) effectively reduced the prevalence of C. albicans.
Collapse
Affiliation(s)
- Roaa Osamah Adnan
- Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
| | - Hussein Ali Jawad
- Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Leferman CE, Stoica L, Tiglis M, Stoica BA, Hancianu M, Ciubotaru AD, Salaru DL, Badescu AC, Bogdanici CM, Ciureanu IA, Ghiciuc CM. Overcoming Drug Resistance in a Clinical C. albicans Strain Using Photoactivated Curcumin as an Adjuvant. Antibiotics (Basel) 2023; 12:1230. [PMID: 37627652 PMCID: PMC10451318 DOI: 10.3390/antibiotics12081230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The limited antifungal drugs available and the rise of multidrug-resistant Candida species have made the efforts to improve antifungal therapies paramount. To this end, our research focused on the effect of a combined treatment between chemical and photodynamic therapy (PDT) towards a fluconazole-resistant clinical Candida albicans strain. The co-treatment of PDT and curcumin in various doses with fluconazole (FLC) had an inhibitory effect on the growth of the FLC-resistant hospital strain of C. albicans in both difusimetric and broth microdilution methods. The proliferation of the cells was inhibited in the presence of curcumin at 3.125 µM and FLC at 41 µM concentrations. The possible involvement of oxidative stress was analyzed by adding menadione and glutathione as a prooxidant and antioxidant, respectively. In addition, we examined the photoactivated curcumin effect on efflux pumps, a mechanism often linked to drug resistance. Nile Red accumulation assays were used to evaluate efflux pumps activity through fluorescence microscopy and spectrofluorometry. The results showed that photoactivated curcumin at 3.125 µM inhibited the transport of the fluorescent substrate that cells usually expel, indicating its potential in combating drug resistance. Overall, the findings suggest that curcumin, particularly when combined with PDT, can effectively inhibit the growth of FLC-resistant C. albicans, addressing the challenge of yeast resistance to azole antifungals through upregulating multidrug transporters.
Collapse
Affiliation(s)
- Carmen-Ecaterina Leferman
- Department of Pharmacology, Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.-E.L.)
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Stoica
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Bogdan Alexandru Stoica
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica Hancianu
- Department of Pharmacognosy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Dumitru Ciubotaru
- Department of Pharmacology, Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.-E.L.)
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Aida Corina Badescu
- Department of Microbiology (Bacteriology, Virology) and Parasitology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Ioan-Adrian Ciureanu
- Department of Medical Informatics and Biostatistics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina-Mihaela Ghiciuc
- Department of Pharmacology, Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.-E.L.)
| |
Collapse
|
6
|
Zheng M, Zhou X, Pang J, Yang Z, Zou Y, Zhang L, Xu Y, Yin R. New methylene blue-mediated photodynamic inactivation of multidrug-resistant Fonsecaea nubica infected chromoblastomycosis in vitro. Braz J Microbiol 2023; 54:873-883. [PMID: 37145297 PMCID: PMC10234991 DOI: 10.1007/s42770-023-00974-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Chromoblastomycosis is a fungal disease presented with local warty papule, plaque, and verrucous nodules. In addition, the incidence and drug resistance of chromoblastomycosis are increasing each year worldwide. Photodynamic therapy is a promising method to treat mycoses. The purpose of this study was to evaluate the effect of new methylene blue (NMB)-induced PDT on multidrug-resistant chromoblastomycosis in vitro. We isolated one wild-type strain pathogen from one clinical patient diagnosed with chromoblastomycosis for over 27 years. The pathogen was identified by histopathology, the morphology of fungal culture, and genetic testing. Drug susceptibility testing was performed on the isolate. It was cultured with logarithmic growth phase spore in vitro and incubated with different concentrations of NMB for 30 min, and received illumination by red light-emitted diode with different light doses. After photodynamic treatment, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted. The pathogen was Fonsecaea nubica, and it was resistant to itraconazole, terbinafine, amphotericin B, voriconazole andcaspofungin. At the same NMB concentration, the sterilization efficiency of NMB-photodynamic therapy (PDT) on F. nubica increased with increasing light intensity; F. nubica was completely killed at 25 µmol/L NMB with a light dose of 40 J/cm2 or 50 µmol/L NMB and light doses of ≥ 30 J/cm2. SEM and TEM observed ultrastructural changes after PDT. NMB-PDT inactivates the survival of multidrug-resistant F. nubica in vitro; it therefore has the potential to become an alternative or adjuvant treatment for refractory chromoblastomycosis.
Collapse
Affiliation(s)
- Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqing Zhou
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiayin Pang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yongzhen Zou
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lian Zhang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Xu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Alberdi E, Gómez C. Urea versus fractional Er:YAG laser pretreatment of methylene blue photodynamic therapy in the treatment of moderate toenail onychomycosis: short- and medium-term effects. Arch Dermatol Res 2023; 315:787-794. [PMID: 36316511 PMCID: PMC10085931 DOI: 10.1007/s00403-022-02448-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
Abstract
Keratolytic properties of urea 40% have long time used for the treatment of onychomycosis. Fractional ablative lasers enhance the delivery of topically applied photosensitizers improving photodynamic therapy (PDT) efficacy. The aim of this study was to compare the short- and medium-term efficacy of a pretreatment with urea 40% and fractional Er:YAG (Fr Er:YAG) laser radiation before PDT mediated by methylene blue (MB) for moderate toenail onychomycosis. Twenty-first-toe toenails were randomized to receive either urea 40% (Group I) or Fr Er:YAG laser (Group II) pretreatment and 9 sessions of MB/PDT over the course of 16 weeks. At baseline, 28- and 40-week follow-ups, clinical efficacy was assessed by digital photographs [allowing determination of the onychomycosis severity index (OSI)], whereas mycological efficacy was assessed by histological examination and fungal culture. Details of the side effects and patients' satisfaction were also recorded. In both groups, a significant decrease in OSI values was observed at the 28-week follow-up and a slight rebound at the 40-week follow-up. The percentage of nail involvement decreased significantly in both groups at the 28-week follow-up, to continue declining gently in Group I at 40 weeks, in contrast to the rebound observed during this period in Group II. The mycological cure rate was 20% and 30% at 28-week follow-up and 70% and 40% at 40-week follow-up, in Group I and II, respectively. Patients reported being fairly satisfied, and no side effects were detected in any groups. Although both pretreatments favor the action of PDT for the treatment of onychomycosis, the use of urea at 40% is more effective in the medium term.
Collapse
Affiliation(s)
- Enrique Alberdi
- Private Clinic of Dr. Alberdi, Aviador Zorita 25, 28020, Madrid, Spain
| | - Clara Gómez
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, CSIC, C/ Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
8
|
Wang M, Gu K, Wan M, Gan L, Chen J, Zhao W, Shi H, Li J. Hydrogen peroxide enhanced photoinactivation of Candida albicans by a novel boron-dipyrromethene (BODIPY) derivative. Photochem Photobiol Sci 2023:10.1007/s43630-023-00408-2. [PMID: 37022583 DOI: 10.1007/s43630-023-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Photodynamic inactivation (PDI) has received increasing attention as a promising approach to combat Candida albicans infections. This study aimed to evaluate the synergistic effect of a new BODIPY (4,4-difluoro-boradiazaindacene) derivative and hydrogen peroxide on C. albicans. BDP-4L in combination with H2O2 demonstrated enhanced photokilling efficacy. In suspended cultures of C. albicans, the maximum decrease was 6.20 log and 2.56 log for PDI using BDP-4L (2.5 μM) with or without H2O2, respectively. For mature C. albicans biofilms, 20 μM BDP-4L plus H2O2 eradicated C. albicans, causing an over 6.7 log count reduction in biofilm-associated cells, while only a reduction of ~ 1 log count was observed when H2O2 was omitted. Scanning electron microscopy analysis and LIVE/DEAD assays suggested that PDI using BDP-4L plus H2O2 induced more damage to the cell membrane. Correspondingly, amplification of nucleic acids release was observed in biofilms treated with the combined PDI. Additionally, we also discovered that the addition of hydrogen peroxide potentiated the generation of 1O2 in PDI using the singlet oxygen sensor green probe. Collectively, BDP-4L combined with H2O2 presents a promising approach in the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Mengran Wang
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Kedan Gu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, No.150, Rd. Fucheng, Hangzhou, 310000, China
| | - Miyang Wan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Lu Gan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Jingtao Chen
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| | - Hang Shi
- Department of Stomatology, Huashan Hospital, Fudan University, No.12, Rd. Wulumuqi, Shanghai, 200000, China.
| | - Jiyang Li
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| |
Collapse
|
9
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
10
|
Nunes IPF, Crugeira PJL, Sampaio FJP, de Oliveira SCPS, Azevedo JM, Santos CLO, Soares LGP, Samuel IDW, Persheyev S, de Ameida PF, Pinheiro ALB. Evaluation of dual application of photodynamic therapy-PDT in Candida albicans. Photodiagnosis Photodyn Ther 2023; 42:103327. [PMID: 36773756 DOI: 10.1016/j.pdpdt.2023.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to evaluate, in vitro, the efficacy of photodynamic therapy - PDT using dimethyl methylene blue zinc chloride double salt (DMMB) and red LED light on planktonic cultures of Candida albicans. The tests were performed using the ATCC 90,028 strain grown at 37 °C for 24 h, according to a growth curve of C. albicans. The colonies were resuspended in sterile saline adjusted to a concentration of 2 × 108 cells / mL, with three experimental protocols being tested (Protocol 1, 2 and 3) with a fixed concentration of 750 ɳg/mL obtained through the IC50, and energy density 20 J/cm2. Protocol 1 was carried out using conventional PDT, Protocol 2 was applied double PDT in a single session, and Protocol 3 was applied double PDT in two sessions with a 24 h interval. The results showed logarithmic reductions of 3 (4.252575 ± 0.068526) and 4 logs (2.669533 ± 0.058592) of total fungal load in protocols 3 and 2 respectively in comparison to the Control (6.633547 ± 0.065384). Our results indicated that double application in a single session of PDT was the most effective approach for inhibiting the proliferation of Candida albicans (99.991% inhibition).
Collapse
Affiliation(s)
- Iago P F Nunes
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Pedro J L Crugeira
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Fernando J P Sampaio
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Susana C P S de Oliveira
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; School of Dentistry, Ruy Barbosa Wyden University Center University (UniRuy Wyden), Av. Luís Viana Filho, 3172 - Paralela, Salvador - BA CEP: 41720-200, Brazil
| | - Juliana M Azevedo
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; Department of Biology, Feira de Santana State University, Feira de Santa, BA 44036-900, Brazil
| | - Caio L O Santos
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Luiz G P Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Saydulla Persheyev
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Paulo F de Ameida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Antônio L B Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
11
|
Yang Z, Liu C, Xiong H, Shi D. Photodynamic therapy, a promising treatment approach for cutaneous infectious granulomas. Photodiagnosis Photodyn Ther 2022; 39:102952. [PMID: 35691563 DOI: 10.1016/j.pdpdt.2022.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Cutaneous infectious granulomas are mainly caused by fungi and bacteria. Antibiotics are the primary therapeutic choices for the diseases, but the drug-resistant pathogens become increasingly prevalent. Thus, there is an urgent need to explore novel approaches to treating cutaneous infectious granulomas. Photodynamic therapy (PDT) is widely used as an alternative treatment for various kinds of skin diseases, and evidence has been accumulating that PDT is also effective for the treatment of cutaneous infectious granulomas. In this narrative review, we sought to summarize the recent literature concerning the applications and mechanisms of PDT in the treatment of cutaneous infectious granulomas. Clinical and basic research has demonstrated that PDT is an effective approach in treating fungal infections such as sporotrichosis and chromoblastomycosis. In addition, PDT is also used to treat atypical mycobacterial infections such as Mycobacterium marinum. PDT can significantly shorten the duration of antibiotics treatment, resulting in diminishment of adverse effects. The potential mechanisms of PDT are to kill the pathogens directly or elicit modulatory effects on the immune microenvironments. We conclude that PDT is a promising therapeutic choice for the treatment of cutaneous infectious granulomas.
Collapse
Affiliation(s)
- Zhiya Yang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, Shandong, China.
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China; Department of Dermatology, Jining No.1 People's Hospital, Jining 272001, Shandong, China.
| |
Collapse
|
12
|
Wang M, Gu K, Ding W, Wan M, Zhao W, Shi H, Li J. Antifungal effect of a new photosensitizer derived from BODIPY on Candida albicans biofilms. Photodiagnosis Photodyn Ther 2022; 39:102946. [PMID: 35660011 DOI: 10.1016/j.pdpdt.2022.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been recognized as an alternative treatment of Candida albicans (C. albicans) infections. The aim of this study was to investigate the antifungal effect of PDT mediated by a new photosensitizer (PS) derived from BODIPY (BDP-4L) on C. albicans biofilms. METHODS C. albicans biofilms were incubated with BDP-4L of different concentrations and then irradiated at the light doses of 1.8, 3.6, 5.4, 7.2 and 9.0 J/cm2. XTT reduction assay was conducted to determine the PS concentration and PDT parameters. Confocal light scanning microscopy (CLSM) and scanning electron microscope (SEM) were used to visualize and quantify the effect of BDP-4L on C. albicans biofilms after PDT. RESULTS C. albicans biofilms were inactivated in light dose-dependent and PS concentration-dependent manners using BDP-4L as PS. Without irradiation, no inactivation effect was observed when PS concentrations varied from 5 μM to 80 μM. 40 μM PS with 3.6 J/cm2 irradiation resulted in a significant reduction of 83.8% in biofilm metabolic activities. CLSM assay demonstrated that cell viability was obviously inhibited by 82.6%. SEM images revealed ruptured and rough cell surface, indicating increased cell membrane permeability after PDT. CONCLUSIONS Our results suggested that BDP-4L mediated PDT exhibited a favorable antifungal effect on C. albicans biofilms.
Collapse
Affiliation(s)
- Mengran Wang
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Kedan Gu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, No.150, Rd. Fucheng, Hangzhou, 310000, China
| | - Wenxin Ding
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Miyang Wan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| | - Hang Shi
- Department of Stomatology, Huashan Hospital North, Fudan University, No.108, Rd. Luxiang, Huashan Hospital North, Shanghai, 200000, China.
| | - Jiyang Li
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| |
Collapse
|
13
|
de Paiva ADCM, Ferreira MDC, da Fonseca ADS. Photodynamic therapy for treatment of bacterial keratitis. Photodiagnosis Photodyn Ther 2022; 37:102717. [PMID: 35021106 DOI: 10.1016/j.pdpdt.2022.102717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
Microbial keratitis is the main cause of corneal opacification and the fourth leading cause of blindness worldwide, with bacteria the major infectious agent. Recently, bacterial keratitis has become a serious threat due to routine use of antibiotics leading to selection of resistant and multidrug-resistant bacteria strains. New approaches for treatment of bacterial keratitis are necessary to outcome the increasing antibiotic resistance. Antimicrobial photodynamic therapy is based on three agents: photosensitizer, oxygen, and light radiation. This therapy has been successful for treatment of infections in different tissues and organs as well as against different type of infectious agents and no resistance development. Also, new photosensitizers are being developed that has increased the spectrum of therapeutic protocols for treatment of a number of infectious diseases. Thus, antimicrobial photodynamic therapy has an extraordinary potential for treatment of those bacterial keratitis cases that actually are not solved by traditional antibiotic therapy.
Collapse
Affiliation(s)
- Alexandre de Carvalho Mendes de Paiva
- Hospital Universitário Gaffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rua Mariz e Barros, 775, Maracanã, Rio de Janeiro 20270002, Brazil
| | - Michelle da Costa Ferreira
- Faculdade de Odontologia, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 157, Vila Isabel, Rio de Janeiro 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211040, Brazil; Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, 4º andar, Vila Isabel, Rio de Janeiro 20551030, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro 25964004, Brazil.
| |
Collapse
|
14
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Recent Advances in Photodynamic Therapy against Fungal Keratitis. Pharmaceutics 2021; 13:pharmaceutics13122011. [PMID: 34959293 PMCID: PMC8709008 DOI: 10.3390/pharmaceutics13122011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Fungal keratitis is a serious clinical infection on the cornea caused by fungi and is one of the leading causes of blindness in Asian countries. The treatment options are currently limited to a few antifungal agents. With the increasing incidence of drug-resistant infections, many patients fail to respond to antibiotics. Riboflavin-mediated corneal crosslinking (similar to photodynamic therapy (PDT)) for corneal ectasia was approved in the US in the early 2000s. Current evidence suggests that PDT could have the potential to inhibit fungal biofilm formation and overcome drug resistance by using riboflavin and rose bengal as photosensitizers. However, only a few clinical trials have been initiated in anti-fungal keratitis PDT treatment. Moreover, the removal of the corneal epithelium and repeated application of riboflavin and rose bengal are required to improve drug penetration before and during PDT. Thus, an improvement in trans-corneal drug delivery is mandatory for a successful and efficient treatment. In this article, we review the studies published to date using PDT against fungal keratitis and aim to enhance the understanding and awareness of this research area. The potential of modifying photosensitizers using nanotechnology to improve the efficacy of PDT on fungal keratitis is also briefly reviewed.
Collapse
|
16
|
Ziental D, Mlynarczyk DT, Czarczynska-Goslinska B, Lewandowski K, Sobotta L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. NANOMATERIALS 2021; 11:nano11112883. [PMID: 34835655 PMCID: PMC8621466 DOI: 10.3390/nano11112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Superficial and systemic fungal infections are essential problems for the modern health care system. One of the challenges is the growing resistance of fungi to classic antifungals and the constantly increasing cost of therapy. These factors force the scientific world to intensify the search for alternative and more effective methods of treatment. This paper presents an overview of new fungal inactivation methods using Photodynamic Antimicrobial Chemotherapy (PACT). The results of research on compounds from the groups of phenothiazines, xanthanes, porphyrins, chlorins, porphyrazines, and phthalocyanines are presented. An intensive search for a photosensitizer with excellent properties is currently underway. The formulation based on the existing ones is also developed by combining them with nanoparticles and common antifungal therapy. Numerous studies indicate that fungi do not form any specific defense mechanism against PACT, which deems it a promising therapeutic alternative.
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Konrad Lewandowski
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
- Correspondence:
| |
Collapse
|
17
|
Sharab L, Baier RE, Ciancio S, Mang T. Influence of Photodynamic Therapy on Bacterial Attachment to Titanium Surface. J ORAL IMPLANTOL 2021; 47:427-435. [PMID: 33031506 DOI: 10.1563/aaid-joi-d-19-00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lina Sharab
- Division of Orthodontics, Department of Oral Health Science, College of Dentistry, University of Kentucky, Lexington, Ken
| | - Robert E Baier
- Biomaterials Graduate Program, Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, NY
| | - Sebastian Ciancio
- Department of Periodontics and Endodontics, School of Dental Medicine, State University of New York at Buffalo, NY
| | - Thomas Mang
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, State University of New York at Buffalo, NY
| |
Collapse
|
18
|
In Vitro Effect of Photodynamic Therapy with Different Lights and Combined or Uncombined with Chlorhexidine on Candida spp. Pharmaceutics 2021; 13:pharmaceutics13081176. [PMID: 34452140 PMCID: PMC8398142 DOI: 10.3390/pharmaceutics13081176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Candidiasis is very common and complicated to treat in some cases due to increased resistance to antifungals. Antimicrobial photodynamic therapy (aPDT) is a promising alternative treatment. It is based on the principle that light of a specific wavelength activates a photosensitizer molecule resulting in the generation of reactive oxygen species that are able to kill pathogens. The aim here is the in vitro photoinactivation of three strains of Candida spp., Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258, using aPDT with different sources of irradiation and the photosensitizer methylene blue (MB), alone or in combination with chlorhexidine (CHX). Irradiation was carried out at a fluence of 18 J/cm2 with a light-emitting diode (LED) lamp emitting in red (625 nm) or a white metal halide lamp (WMH) that emits at broad-spectrum white light (420–700 nm). After the photodynamic treatment, the antimicrobial effect is evaluated by counting colony forming units (CFU). MB-aPDT produces a 6 log10 reduction in the number of CFU/100 μL of Candida spp., and the combination with CHX enhances the effect of photoinactivation (effect achieved with lower concentration of MB). Both lamps have similar efficiencies, but the WMH lamp is slightly more efficient. This work opens the doors to a possible clinical application of the combination for resistant or persistent forms of Candida infections.
Collapse
|
19
|
Photodynamic Therapy Combined with Antibiotics or Antifungals against Microorganisms That Cause Skin and Soft Tissue Infections: A Planktonic and Biofilm Approach to Overcome Resistances. Pharmaceuticals (Basel) 2021; 14:ph14070603. [PMID: 34201530 PMCID: PMC8308592 DOI: 10.3390/ph14070603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it could make the selection of resistant microorganisms more difficult.
Collapse
|
20
|
Wei C, Zhang F, Song L, Chen X, Meng X. Photosensitization effect of curcumin for controlling plant pathogen Botrytis cinerea in postharvest apple. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Photodynamic antimicrobial chemotherapy through photosensitizers loaded poly-l-glycolic acid on Candida albicans in denture lining material: Release, biological and hardness study. Photodiagnosis Photodyn Ther 2020; 33:102134. [PMID: 33307237 DOI: 10.1016/j.pdpdt.2020.102134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
AIM The aim of this in-vitro study was to formulate poly-l-glycolic acid nanoparticles loaded with methylene blue (PLGA-MB) and to characterize their physicochemical features, photosensitizer-release kinetics and antimicrobial efficacy against Candida albicans (C. albicans) after incorporating in polymethyl methacrylate (PMMA) denture lining materials. MATERIAL AND METHODS MB-PLGA nanoparticles were synthesized according to the modified nanoprecipitation method. The morphological characterization of the nanoparticles was studied under scanning and transmission electron microscope. Particle size, surface charge, polydispersity index (PDI) and MB release were evaluated. The effect of 660 nm semiconductor AlGaInP diode laser on C. albicans was studied in vitro. The PMMA was weighed and PLGA free and PLGA-MB were added in the lining material according to the weight percentage as 2.0 wt.% and 5.0 wt.% and tested for the diameter of the inhibition zones of C. albicans growth and shore A hardness. RESULTS Homogenous spherical nanoparticles with round morphology with size ranging between 60-80 nm were observed while PLGA-MB were seen to have irregular structure within the nanoparticle under TEM. PLGA-Free was larger in size than the loaded PLGA (∼62 nm) that evidenced reduction in size by adding the MB photosensitizer. PDI recordings reduced from 0.198 for the PLGA-Free nanoparticles to 0.164 for the PLGA-MB nanoparticles. The entrapment efficiency of MB inside PLGA showed an average percentage of ∼75 % uptake that resulted in the overall loading of ∼15 %. An overall inhibition of 78 %, 41 % and 28 % of C. albicans growth was seen with a concentration of 0.1, 0.5 and 1.0 μg/mL, respectively. The application of PLGA nanoparticles loaded with MB evidenced >75 % of C. albicans. MB incorporation did not lead to a clinically relevant change on shore A hardness. CONCLUSION PLGA loaded with MB is believed to have promising target therapy against C. albicans in denture soft lining materials in terms of PACT in vitro. The synergistic association between PLGA and MB proved enhanced antifungal activity. PLGA-MB could be an important tool in nanobiotechnology and photodynamic therapy for novel formulations with higher antimicrobial efficacy and improved drug delivery from denture soft lining materials.
Collapse
|
22
|
de Oliveira EF, Yang X, Basnayake N, Huu CN, Wang L, Tikekar R, Nitin N. Screening of antimicrobial synergism between phenolic acids derivatives and UV-A light radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112081. [PMID: 33239223 DOI: 10.1016/j.jphotobiol.2020.112081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/15/2020] [Accepted: 11/08/2020] [Indexed: 01/27/2023]
Abstract
The objective of this study was to investigate synergistic antibacterial activity based on a combination of UV-A light and three classes of food grade compounds: benzoic acid derivatives, cinnamic acid derivatives, and gallates. By using Escherichia coli O157:H7 as the model strain, it was observed that three cinnamic acid derivatives (ferulic acid, coumaric acid, and caffeic acid) and one benzoic acid derivative (2,5-dihydroxybenzoic acid) presented strong synergistic antibacterial activity with UV-A light radiation, where 1 mM levels of these compounds plus with 15 min of UV-A light (total light dose of 6.1 cm-2) led to more than 7-log CFU mL-1 of bacterial inactivation. In contrast, synergistic antibacterial activity between UV-A light and most benzoic acid derivatives (benzoic acid, gallic acid, vanillic acid, and 2,5-dimethoxybenzoic acid) were only observed after higher concentrations of these compounds were applied (10 mM). Lastly, from the three gallates tested (methyl gallate, ethyl gallate, and propyl gallate), only propyl gallate showed strong antibacterial synergism with UV-A light, where 10 mM of propyl gallate plus 15 min of UV-A light led to approximately 6.5-log of bacterial reduction. Presence of antioxidant compounds mitigated the light-mediated antibacterial activity of gallic acid, 2,5-dihydroxybenzoic acid, and propyl gallate. Similarly, the light-mediated antibacterial activity of these compounds was significantly (P < 0.05) reduced against metabolic-inhibited bacterial cells (sodium azide pretreatment). On the other hand, the antibacterial synergism between ferulic acid and UV-A light was not affected by the presence of antioxidants or the metabolic state of the bacterial cells. Due to the increasing concerns of antimicrobial resistant (AMR) pathogens, the study also investigated the proposed synergistic treatment on AMR Salmonella. Combinations of 1 mM of ferulic acid or 1 mM of 2,5-dihydroxybenzoic acid with UV-A light radiation was able to inactivate more than 6-log of a multi-drug resistant Salmonella Typhimurium strain.
Collapse
Affiliation(s)
- Erick F de Oliveira
- Department of Food Science and Technology, University of California, Davis, CA, USA; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Xu Yang
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Nikeshala Basnayake
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Cuong Nguyen Huu
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Rohan Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Lan Y, Lu S, Zheng B, Tang Z, Li J, Zhang J. Combinatory Effect of ALA-PDT and Itraconazole Treatment for Trichosporon asahii. Lasers Surg Med 2020; 53:722-730. [PMID: 33164224 DOI: 10.1002/lsm.23343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Trichosporiosis is an opportunistic infection that includes superficial infections, white piedra, hypersensitivity pneumonitis, and invasive trichosporonosis. The effect of antifungal agents against these infections is largely weakened by drug resistance and biofilms-related virulence. Photodynamic therapy (PDT) is a new therapeutic approach developed not only to combat cancerous lesions but also to treat infectious diseases such as fungal infections. However, there are few studies on the antimicrobial mechanism of 5-aminolevulinic acid PDT (ALA-PDT) in treating Trichosporon. In this work, we explored the possibility of combining ALA-PDT with an antifungal agent to enhance the therapeutic efficacy of Trichosporon asahii (T. asahii) in a clinical setting and in vitro. STUDY DESIGN/MATERIALS AND METHODS The biofilms of T. asahii were constructed by a 96-well plate-based method in vitro. The planktonic and adherent T. asahii were exposed to different concentrations of photosensitizers and different light doses. After PDT treatment, counting colony-forming units and tetrazolium (XTT) reduction assay were used to estimate the antifungal efficacy. The minimal inhibitory concentration of itraconazole before and after PDT treatment was determined by the broth dilution method, and XTT viability assay was used to detect and evaluate the synergistic potential of ALA-PDT and itraconazole combinations in inhibiting biofilms. Scanning electron microscopy (SEM) was performed to assess the disruption of biofilms. RESULTS Using combination therapy, we have successfully treated a patient who had a T. asahii skin infection. Further in vitro studies showed that the antifungal effect of ALA-PDT on planktonic and adherent T. asahii was dependent on the concentration of ALA and light dosages used. We also found that the sensitivity of both planktonic and biofilm cells to itraconazole were increased after ALA-PDT. Synergistic effect were observed for biofilms in ALA-PDT and itraconazole-combined treatment. The disruption of biofilms was confirmed by SEM, suggesting that ALA-PDT effectively damaged the biofilms and the destruction was further enhanced by ALA-PDT combination of antifungal agents. CONCLUSIONS In conclusion, these data suggest that ALA-PDT could be an alternative strategy for controlling infections caused by Trichosporon. The combination therapy of ALA-PDT with itraconazole could result in increased elimination of planktonic cells and biofilms compared with single therapy. All these findings indicate that it could be a promising treatment against trichosporonosis. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Yu Lan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Road Central, Shenzhen, 518033, China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Bowen Zheng
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zengqi Tang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Jiahao Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Junmin Zhang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| |
Collapse
|
24
|
Wang Y, Song J, Zhang F, Zeng K, Zhu X. Antifungal Photodynamic Activity of Hexyl-Aminolevulinate Ethosomes Against Candida albicans Biofilm. Front Microbiol 2020; 11:2052. [PMID: 33042036 PMCID: PMC7518189 DOI: 10.3389/fmicb.2020.02052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023] Open
Abstract
Biofilm formation is responsible for the development of chronic and recurrent Candida albicans infections. The generation of biofilms is commonly accompanied by high resistance to conventional antifungal drugs, which can increase up to 1,000-fold. Fortunately, antimicrobial photodynamic therapy (aPDT) has shown excellent potential to treat biofilm infections. However, the current most commonly used photosensitizer (PS), aminolevulinic acid (ALA), is hydrophilic, unstable, and has low permeability, leading to unsatisfactory effects on biofilm eradication. To solve these problems, more stable lipophilic PSs and more effective permeability carriers could be considered as two effective solutions. Hexyl-aminolevulinate (HAL) has good bioavailability as a PS, and we proved in a previous study that ethosomes (ES), lipid-based nanocarriers, promote percutaneous drug penetration. In our previous study, a HAL-ES system presented superior photodynamic effects compared to those of ALA or HAL alone. Therefore, here, we aim to evaluate the biological effects of HAL-ES-mediated aPDT on C. albicans biofilm. An XTT sodium salt assay showed that aPDT using 0.5% HAL decreased C. albicans biofilm activity by 69.71 ± 0.43%. Moreover, aPDT with 0.5% HAL-ES further decreased biofilm activity by 92.95 ± 0.16% and inhibited growth of 25.71 ± 1.61% within 48 h, mostly via its effect on the hyphae growth, which correlated with a three-fold increase in C. albicans plasma membrane permeabilization. Notably, HAL-ES-mediated aPDT significantly reduced the sessile minimum inhibitory concentration 50 (SMIC50) of fluconazole to <2.0 μg/ml, and the 21-day survival rate of C. albicans biofilm-infected mice increased from 6.7 to 73.3%. It also significantly reduced the drug resistance and in vivo pathogenicity of C. albicans biofilm. These results demonstrate that HAL-ES-mediated aPDT could be an effective therapy for C. albicans biofilm infections; while also serving as a particularly promising effective treatment for cutaneous or mucocutaneous candidiasis and the prevention of progression to systemic candidiasis.
Collapse
Affiliation(s)
- Yingzhe Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinru Song
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyin Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Vecchi CF, Said Dos Santos R, Bassi da Silva J, Rosseto HC, Sakita KM, Svidzinski TIE, Bonfim-Mendonça PDS, Bruschi ML. Development and in vitro evaluation of buccal mucoadhesive films for photodynamic inactivation of Candida albicans. Photodiagnosis Photodyn Ther 2020; 32:101957. [PMID: 32818649 DOI: 10.1016/j.pdpdt.2020.101957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Candidiasis is one of the most common diseases that occur in the oral cavity, caused mainly by the species Candida albicans. Methylene blue (MB) has a potential for microbial photoinactivation and can cause the destruction of fungi when applied in Photodynamic Therapy (PDT). Mucoadhesive films are increasingly being studied as a platform for drug application due to their advantages when compared to other pharmaceutical forms. The aim of this work was to develop mucoadhesive buccal film containing poloxamer 407 (P407), alcohol polyvinyl (PVA) and polyvinylpyrrolidone (PVP) for the release of MB aiming the photoinactivation of Candida albicans in buccal infections. Different amounts of P407 were added to the binary polymeric blends composed PVA and PVP. Formulations were characterized as morphology, thickness, density, bending strength, mechanical properties, water vapor transmission, disintegration time, mucoadhesion, DSC, ATR-FTIR, in vitro drug release profile and photodynamic inactivation. The films displayed physicochemical characteristics dependent of polymeric composition, mucoadhesive properties, fast MB release and were effective in photo inactivate the local growth of Candida albicans isolates. The formulation containing the lowest PVA and P407 amounts displayed the best performance. Therefore, data obtained from the film system show its potentially useful role as a platform for buccal MB delivery in photoinactivation of C. albicans, showing its potential for in vivo evaluation.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Rafaela Said Dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Hélen Cassia Rosseto
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Karina Mayumi Sakita
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | | | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil.
| |
Collapse
|
26
|
Abdallah M, Abu-Ghali MM, El-Sayed MT, Soltan MY. Fractional CO 2-assisted photodynamic therapy improves the clinical outcome and patient's satisfaction in toenail onychomycosis treatment: an intra-patient comparative single-center study. J DERMATOL TREAT 2020; 33:542-549. [PMID: 32419540 DOI: 10.1080/09546634.2020.1771252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Device-based therapies have been used for onychomycosis patients with intolerance to systemic treatments. Photodynamic therapy (PDT) improves onychomycosis, while fractional carbon dioxide (FrCO2) augments the topical drug delivery. Comparative studies between PDT alone and laser-assisted one are lacking.Objective: We aimed to evaluate the efficacy of PDT alone versus FrCO2-assisted PDT for treatment of onychomycosis.Methods: Twenty-one patients with bilateral onychomycosis of toenails with nearly the same degree of affection were enrolled in this prospective intra-patient-controlled study. The right affected toenail was treated via PDT alone. The left toenail was treated via a FrCO2 followed immediately by PDT. The sessions were bimonthly for a total of six sessions. Direct microscopy, fungal cultures, clinical evaluation, onychomycosis severity index scoring, and patient's satisfaction were assessed before and 12 weeks after the last session.Results: Both treatments reduced significantly the onychomycosis severity index (p < .05) without significant difference between them. The improvement in nail appearance and patient's satisfaction were higher in laser-assisted PDT than PDT alone (p < .05).Conclusion: Both treatments effectively reduced the severity of onychomycosis with a high degree of safety and tolerability. Fractional CO2-assisted PDT enhanced the clinical outcome via improving the nail appearance and patient's satisfaction.Key messagePhotodynamic therapy has a good success rate in clearing onychomycosis. Addition of fractional CO2 to photodynamic therapy improves the nail appearance and induces better satisfaction to treatment.
Collapse
Affiliation(s)
- Marwa Abdallah
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mustafa M Abu-Ghali
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Taha El-Sayed
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa Y Soltan
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Quiroga ED, Cordero P, Mora SJ, Alvarez MG, Durantini EN. Mechanistic aspects in the photodynamic inactivation of Candida albicans sensitized by a dimethylaminopropoxy porphyrin and its equivalent with cationic intrinsic charges. Photodiagnosis Photodyn Ther 2020; 31:101877. [PMID: 32534247 DOI: 10.1016/j.pdpdt.2020.101877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023]
Abstract
Photocytotoxic effect induced by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and 5,10,15,20-tetrakis[4-(3-N,N,N-trimethylaminepropoxy)phenyl]porphyrin (TAPP+4) was examined in Candida albicans to obtain information on the mechanism of photodynamic action and cell damage. For this purpose, the photokilling of the yeast was investigated under anoxic conditions and cell suspensions in D2O. Moreover, photoinactivation of C. albicans was evaluated in presence of reactive oxygen species scavengers, such as sodium azide and d-mannitol. The results indicated that singlet molecular oxygen was the main reactive species involved in cell damage. On the other hand, the binding and distribution of these porphyrins in the cells was observed by fluorescence microscopy. Morphological damage was studied by transmission electron microscopy (TEM), indicating modifications in the cell envelopment. Furthermore, deformed cells were observed after photoinactivation of C. albicans by toluidine blue staining. In addition, modifications in the cell envelope due to the photodynamic activity was found by scanning electron microscopy (SEM). Similar photodamage was observed with both porphyrin, which mainly produced alterations in the cell barriers that lead to the photoinactivation of C. albicans.
Collapse
Affiliation(s)
- Ezequiel D Quiroga
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Paula Cordero
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - S Jimena Mora
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - M Gabriela Alvarez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
28
|
Synergistic effect of carboxypterin and methylene blue applied to antimicrobial photodynamic therapy against mature biofilm of Klebsiella pneumoniae. Heliyon 2020; 6:e03522. [PMID: 32195387 PMCID: PMC7075992 DOI: 10.1016/j.heliyon.2020.e03522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/22/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
The control of multidrug-resistant (MDR) bacteria is a growing public health problem, and new strategies are urgently needed for the control of the infections caused by these microorganisms. Notoriously, some MDR microorganisms generate complex structures or biofilms, which adhere to surfaces and confer extraordinary resistance properties that are fundamental challenges to control infections. One of the promising strategies for the control of MDR bacteria is antimicrobial photodynamic therapy (aPDT), which takes advantage of suitable photosensitizers (PS), oxygen and radiation to eradicate microorganisms by the generation of highly reactive species, including reactive oxygen species (ROS) that cause cytotoxic damage and cell death. Habitual aPDT treatments use only methylene blue (MB), but MDR microorganism eradication is not completely achieved. The key result of this study revealed that a combination of two known PSs, 6-carboxypterin (Cap, 100 μM) and MB (2.5–10 μM) exposed to ultraviolet and visible radiation, presents a synergistic effect on the eradication of a MDR Klebsiella pneumoniae strain. Similar effect was observed when the treatment was performed either with planktonic or biofilm growing cells. Moreover, it was found that after treatment the killing action continues in the absence of irradiation leading to the eradication of the microorganisms growing in biofilm. Therefore, the combined aPDT represents a promising strategy for the management of clinical contact surfaces, disinfection of surgical instruments, biofouling and even antimicrobial wastewater treatment.
Collapse
|
29
|
Ozturk I, Tunçel A, Yurt F, Biyiklioglu Z, Ince M, Ocakoglu K. Antifungal photodynamic activities of phthalocyanine derivatives on Candida albicans. Photodiagnosis Photodyn Ther 2020; 30:101715. [PMID: 32165338 DOI: 10.1016/j.pdpdt.2020.101715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance is one of the most important causes of morbidity and mortality in the treatment of infectious diseases worldwide. Candida albicans is one of the most virulent and common species of fungi to cause invasive fungal infections on humans. Alternative treatment strategies, including photodynamic therapy, are needed for controlling these infectious diseases. The aim of this study was to investigate the antifungal photodynamic activities of phthalocyanine derivatives on C. albicans. The minimum inhibitory concentration (MIC) values of compounds were determined by the broth microdilution method. Uptake of the compounds in C. albicans and dark toxicity of the compounds were also investigated. Photodynamic inhibition of growth experiments was performed by measuring the colony-forming unit/mL (CFU/mL) of the strain. Maximum uptake into the cells was observed in the presence of 64 μg/mL concentration for each compound except for ZnPc. Compounds did not show dark toxicity/inhibitory effects at sub-MIC concentrations on C. albicans when compared to the negative control groups. Zn(II)Pc, ZnPc, and ZnPc-TiO2 showed fungicidal effect after irradiation with the light dose of 90 J/cm2 in the presence of the compounds. In addition to the fungicidal effects, SubPc, SubPc-TiO2, Es-SiPc, and Es-SubPc compounds were also found to have inhibitory effects on the growth of yeast cells after irradiation.
Collapse
Affiliation(s)
- Ismail Ozturk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, 35620, Turkey.
| | - Ayça Tunçel
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Izmir, 35100, Turkey
| | - Fatma Yurt
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Izmir, 35100, Turkey.
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Mine Ince
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Mersin, 33400, Turkey
| | - Kasim Ocakoglu
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Mersin, 33400, Turkey
| |
Collapse
|
30
|
Liu S, Mai B, Jia M, Lin D, Zhang J, Liu Q, Wang P. Synergistic antimicrobial effects of photodynamic antimicrobial chemotherapy and gentamicin on Staphylococcus aureus and multidrug-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 30:101703. [PMID: 32151763 DOI: 10.1016/j.pdpdt.2020.101703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bacterial resistance to antibiotics is generally increasing, which has become a great challenge for treating infectious diseases caused by microbes. Photodynamic antibacterial chemotherapy (PACT) has been considered as a promising method for inactivating bacteria. The combination of antimicrobial agent with PACT may provide efficient way against drug-resistant microbe. This study aims to investigate the synergistic effects of PACT mediated by toluidine blue (TB), combined with gentamicin (GEN) on common pathogens Staphylococcus aureus (S. aureus) and multidrug-resistant S. aureus (MDR S. aureus). METHODS Alkaline lysis was used to detect the uptake of TB by S. aureus and MDR S. aureus. Plate counting was applied to evaluate the inhibition efficiency of GEN alone, TB-PACT alone, and work together. Flow cytometry and fluorescence microscopy were performed to examine the permeability of bacterial membranes after different treatments. Intracellular and extracellular reactive oxygen species (ROS) were assessed with the assist of H2DCF-DA and SOSG probes. RESULTS TB-PACT combined with GEN led to more pronounced antibacterial effects in S. aureus and MDR S. aureus, as compared with either alone. TB-PACT treatment permeabilized the bacterial membranes, promoted GEN cellular accumulation and augmented the antibacterial efficiency. The intracellular ROS generation by the combination of TB-PACT and GEN was much higher than that of single treatment groups. CONCLUSIONS TB-PACT decreased the GEN cytotoxic threshold and usage, and the synergy of them significantly enhanced the sterilization of S. aureus and MDR S. aureus.
Collapse
Affiliation(s)
- Shupei Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bingjie Mai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Mengqi Jia
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Dewu Lin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingdan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
31
|
Su G, Wei Z, Wang L, Shen J, Baudouin C, Labbé A, Liang Q. Evaluation of Toluidine Blue-Mediated Photodynamic Therapy for Experimental Bacterial Keratitis in Rabbits. Transl Vis Sci Technol 2020; 9:13. [PMID: 32714639 PMCID: PMC7351589 DOI: 10.1167/tvst.9.3.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
Objective The objective of this study was to evaluate the effect of toluidine blue-mediated photodynamic therapy on experimental bacterial keratitis in rabbits. Methods Bacterial keratitis was induced in rabbits by the injection of 200 μl Staphylococcus aureus (S. aureus) solution into the anterior stroma of the right cornea. Rabbits were randomly divided into four groups: toluidine blue O and red light (TBOR), levofloxacin eye drops (LEV), the combination of TBOR and LEV (TBOR + LEV), and a control group. Clinical manifestations, histopathology, and transmission electron microscopy were analyzed at various time points. Results Conjunctival injection and surface area of the corneal ulcer in the TBOR group and the TBOR + LEV group showed significant improvement from baseline after 7 days of treatment. Compared to baseline, the depth of corneal infiltration was decreased at day 14 in the TBOR and TBOR + LEV groups. Microscopic analysis of the TBOR and TBOR + LEV groups showed that the structure of each layer was intact, and there were no inflammatory cells in the corneal stroma. Additionally, IL-1β and TNF-α were highly expressed in the LEV and control groups but were lower in the TBOR and TBOR + LEV groups. Under transmission electron microscopy, the corneas in the TBOR and TBOR + LEV groups were intact, whereas in the LEV and control groups, double-walled structures corresponding to S.aureus were found in the superficial stromal layer. Conclusions TBOR demonstrated in vivo antibacterial efficacy against S.aureus. Translational Relevance This study found in vivo antibacterial efficacy of toluidine blue-mediated photodynamic therapy on rabbit experimental bacterial keratitis, thus providing an additional new option for clinical treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Guanyu Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jing Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
- National Engineering Research Center for Ophthalmology, Beijing, China
| | - Christophe Baudouin
- Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, Paris and Versailles Saint-Quentin-en- Yvelines University, Versailles, France
- INSERM, U968, Paris, F-75012, France; UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France; CNRS, UMR_7210, Paris, France
| | - Antoine Labbé
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
- Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, Paris and Versailles Saint-Quentin-en- Yvelines University, Versailles, France
- INSERM, U968, Paris, F-75012, France; UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France; CNRS, UMR_7210, Paris, France
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
32
|
Ogasawara K, Nakajima S, Sato H, Sasaki T. Helicobacter pylori Eradication Using Laser Endoscope and Methylene Blue. Laser Ther 2020; 29:19-27. [PMID: 32904076 DOI: 10.5978/islsm.20-or-02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Background and Aims Helicobacter pylori (H. pylori) eradication has become increasingly unsuccessful due to the prevalence of antibiotic resistance. To address this global issue, a novel strategy for eradication without antibiotics must be developed. The purpose of this study was to examine the effect of methylene blue (MB) with sodium bicarbonate (NaHCO3) on H. pylori using photodynamic antimicrobial chemotherapy. Materials and Methods MB was basified using NaHCO3. The basic effect of MB with NaHCO3 was examined using an endoscope equipped with a laser light source. H. pylori was smeared on the culture media with basic MB, followed by illumination at approximately 1,100 lux for 10 and 20 seconds.After 4 days of culture, the basic effects were determined according to the bacterial growth. Results The basic effects of MB appeared at a pH from 8.6 to 9.0 and at NaHCO3 concentrations between 2% and 6.5%. MB concentrations of > 0.05% exhibited the basic effects. The duration of irradiation had no remarkable effects. Conclusions Our results showed that the laser endoscope and basic MB were effective for H. pylori eradication.
Collapse
Affiliation(s)
- Kouji Ogasawara
- Sarufutsu Village National Health Insurance Hospital, Japan.,Asahikawa Medical University, Respiratory Center, Japan
| | | | - Hiroshi Sato
- Sarufutsu Village National Health Insurance Hospital
| | | |
Collapse
|
33
|
Trevisan E, Menegazzi R, Zabucchi G, Troian B, Prato S, Vita F, Rapozzi V, Grandolfo M, Borelli V. Effect of methylene blue photodynamic therapy on human neutrophil functional responses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111605. [PMID: 31473428 DOI: 10.1016/j.jphotobiol.2019.111605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) has become an emerging novel therapeutic approach for treating localized microbial infections, particularly those sustained by multidrug-resistant strains. Given the irreplaceable role played by professional phagocytes in limiting infections, such as polymorphonuclear neutrophils, any newly designed antimicrobial therapeutic approach must not interfere with their function. The present investigation presents a detailed analysis of the effect of PDT on the viability and several functional responses of human polymorphonuclear neutrophils loaded with methylene blue (MB), one of the more commonly used photosensitizers in antimicrobial PDT. Taking advantage of the use of a specifically-designed optical LED array for illuminating MB-loaded human polymorphonuclear neutrophils, a number of cell functions have been assayed under miniaturized, strictly controlled and reproducible experimental conditions. The major findings of this study are the following: (1) MB-PDT increases human neutrophils adhesion and does not modify myeloperoxidase release; (2) MB-PDT markedly enhances reactive oxygen species generation that is independent of superoxide-forming phagocytic oxidase and very likely ascribable to LED-dependent excitation of accumulated methylene blue; (3) MB-PDT almost abolishes human neutrophils candidacidal activity by hindering the engulfing machinery. This in vitro study may represent a valuable reference point for future research on PDT applications for treating localized microbial infections.
Collapse
Affiliation(s)
- Elisa Trevisan
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Renzo Menegazzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Barbara Troian
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Stefano Prato
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Francesca Vita
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Micaela Grandolfo
- International School for Advenced Studies, Neurobiology sector, Via Bonomea, 265, 34136 Trieste, Italy.
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
34
|
Rodrigues CF, Rodrigues ME, Henriques MC. Promising Alternative Therapeutics for Oral Candidiasis. Curr Med Chem 2019; 26:2515-2528. [DOI: 10.2174/0929867325666180601102333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/29/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
:Candida is the main human fungal pathogen causing infections (candidiasis), mostly in the elderly and immunocompromised hosts. Even though Candida spp. is a member of the oral microbiota in symbiosis, in some circumstances, it can cause microbial imbalance leading to dysbiosis, resulting in oral diseases. Alternative therapies are urgently needed to treat oral candidiasis (usually associated to biofilms), as several antifungal drugs’ activity has been compromised. This has occurred especially due to an increasing occurrence of drugresistant in Candida spp. strains. The overuse of antifungal medications, systemic toxicity, cross-reactivity with other drugs and a presently low number of drug molecules with antifungal activity, have contributed to important clinical limitations.:We undertook a structured search of bibliographic databases (PubMed Central, Elsevier’s ScienceDirect, SCOPUS and Springer’s SpringerLink) for peer-reviewed research literature using a focused review in the areas of alternatives to manage oral candidiasis. The keywords used were “candidiasis”, “oral candidiasis”, “biofilm + candida”, “alternative treatment”, “combination therapy + candida” and the reports from the last 10 to 15 years were considered for this review.:This review identified several promising new approaches in the treatment of oral candidiasis: combination anti-Candida therapies, denture cleansers, mouth rinses as alternatives for disrupting candidal biofilms, natural compounds (e.g. honey, probiotics, plant extracts and essential oils) and photodynamic therapy.:The findings of this review confirm the importance and the urgency of the development of efficacious therapies for oral candidal infections.
Collapse
Affiliation(s)
- Célia F. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Maria E. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Mariana C.R. Henriques
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
35
|
Ambrosio JAR, Pinto BCDS, Godoy DDS, Carvalho JA, Abreu ADS, da Silva BGM, Leonel LDC, Costa MS, Beltrame Junior M, Simioni AR. Gelatin nanoparticles loaded methylene blue as a candidate for photodynamic antimicrobial chemotherapy applications in Candida albicans growth. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1356-1373. [PMID: 31215329 DOI: 10.1080/09205063.2019.1632615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gelatin nanoparticles (GN) with an intrinsic antimicrobial activity maybe a good choice to improve the effectiveness of photodynamic antimicrobial chemotherapy (PACT). The aim of this study was to development gelatin nanoparticles loaded methylene blue (GN-MB) and investigate the effect of GN-MB in the Candida albicans growth by PACT protocols. The GN and GN-MB were prepared by two-step desolvation. The nanoparticulate systems were studied by scanning electron microscopy and steady-state techniques, the in vitro drug release was investigated, and we studied the effect of PACT on C. albicans growth. Satisfactory yields and encapsulation efficiency of GN-MB were obtained (yield = 76.0% ± 2.1 and EE = 84.0% ± 1.3). All the spectroscopic results presented here showed excellent photophysical parameters of the studied drug. Entrapment of MB in GN significantly prolongs it's in vitro release. The results of PACT experiments clearly demonstrated that the photosensitivity of C. albicans was higher when GN-MB was used. Gelatin nanoparticles loaded methylene blue-mediated photodynamic antimicrobial chemotherapy may be used against Candida albicans growth.
Collapse
Affiliation(s)
| | | | - Daniele da Silva Godoy
- a Research and Development Institute - IPD , Vale do Paraíba University - UNIVAP , São José dos Campos , Brazil
| | - Janicy Arantes Carvalho
- a Research and Development Institute - IPD , Vale do Paraíba University - UNIVAP , São José dos Campos , Brazil
| | - Alexandro da Silva Abreu
- a Research and Development Institute - IPD , Vale do Paraíba University - UNIVAP , São José dos Campos , Brazil
| | | | - Leonardo de Carvalho Leonel
- a Research and Development Institute - IPD , Vale do Paraíba University - UNIVAP , São José dos Campos , Brazil
| | - Maricilia Silva Costa
- a Research and Development Institute - IPD , Vale do Paraíba University - UNIVAP , São José dos Campos , Brazil
| | - Milton Beltrame Junior
- a Research and Development Institute - IPD , Vale do Paraíba University - UNIVAP , São José dos Campos , Brazil
| | - Andreza Ribeiro Simioni
- a Research and Development Institute - IPD , Vale do Paraíba University - UNIVAP , São José dos Campos , Brazil
| |
Collapse
|
36
|
Chen B, Sun Y, Zhang J, Chen R, Zhong X, Wu X, Zheng L, Zhao J. In vitro Evaluation of Photodynamic Effects Against Biofilms of Dermatophytes Involved in Onychomycosis. Front Microbiol 2019; 10:1228. [PMID: 31231330 PMCID: PMC6568038 DOI: 10.3389/fmicb.2019.01228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/16/2019] [Indexed: 02/01/2023] Open
Abstract
Dermatophytes are the most common cause of onychomycosis, counting for 90% fungal nail infection. Although dermatophyte pathogens are normally susceptible to antifungal agents, onychomycosis often results in refractory chronic disease, and the formation of biofilms frequently underlines the inadequate responses and resistance to standard antifungal treatment. Numerous in vitro and in vivo antimicrobial photodynamic therapy (aPDT) studies have shown biofilm eradication or substantial reduction, however, such investigation has not yet been expanded to the biofilms of dermatophytes involved in onychomycosis. To shed a light on the potential application of aPDT in the clinic management of onychomycosis, in particular with the manifestation of dermatophytoma, we investigated photodynamic effects on the viabilities and the drug susceptibilities of the biofilm of dermatophytes in vitro. Here, methylene blue at the concentration of 8, 16, and 32 μg/ml applied as photosensitizing agent and LED (635 ± 10 nm, 60 J/cm2) as light source were employed against six strains of Trichophyton rubrum, ten strains of Trichophyton mentagrophytes and three strains of Microsporum gypseum isolated from clinical specimens. Our results indicated highly efficient photodynamic inhibition, exhibiting CFU (colony forming unit) reduction up to 4.6 log10, 4.3 log10, and 4.7 log10 against the biofilms formed by T. rubrum, T. mentagrophytes, and M. gypseum, respectively. Subjected biofilms displayed considerable decreases in SMICs (sessile minimum inhibitory concentrations) to multiple antifungal agents when compared with untreated groups, indicating the biofilms of dermatophytes became more susceptible to conventional antifungal drugs after aPDT. Additionally, the obliteration of biofilm after aPDT could be observed as shattered and ruptured structures being evident in SEM (Scanning Electron Microscopy) images. These findings suggest that aPDT is an attractive alternative treatment holding great promise for combating recalcitrant onychomycosis associated with the biofilm formation.
Collapse
Affiliation(s)
- Borui Chen
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | | | - Ruijun Chen
- Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Xiurong Zhong
- Electron Microscopy Laboratory, Fujian Medical University, Fuzhou, China
| | - Xiaomo Wu
- Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Libao Zheng
- Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Photodynamic Antimicrobial Chemotherapy (PACT) using methylene blue inhibits the viability of the biofilm produced by Candida albicans. Photodiagnosis Photodyn Ther 2019; 26:316-323. [DOI: 10.1016/j.pdpdt.2019.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/08/2019] [Accepted: 04/26/2019] [Indexed: 11/19/2022]
|
38
|
Torres-Hurtado S, Ramírez-Ramírez J, Larios-Morales A, Ramírez-San-Juan J, Ramos-García R, Espinosa-Texis A, Spezzia-Mazzocco T. Efficient in vitro photodynamic inactivation using repetitive light energy density on Candida albicans and Trichophyton mentagrophytes. Photodiagnosis Photodyn Ther 2019; 26:203-209. [DOI: 10.1016/j.pdpdt.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
39
|
Pérez-Laguna V, Gilaberte Y, Millán-Lou MI, Agut M, Nonell S, Rezusta A, Hamblin MR. A combination of photodynamic therapy and antimicrobial compounds to treat skin and mucosal infections: a systematic review. Photochem Photobiol Sci 2019; 18:1020-1029. [PMID: 30821303 PMCID: PMC6520109 DOI: 10.1039/c8pp00534f] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) is a growing approach to treat skin and mucosal infections. Despite its effectiveness, investigators have explored whether aPDT can be further combined with antibiotics and antifungal drugs. OBJECTIVE To systematically assess the in vivo studies on the effectiveness of combinations of aPTD plus antimicrobials in the treatment of cutaneous and mucosal infections. MATERIALS AND METHODS Searches were performed in four databases (PubMed, EMBASE, Cochrane library databases, ClinicaTrials.gov) until July 2018. The pooled information was evaluated according to the PRISMA guidelines. RESULTS 11 full-text articles were finally evaluated and included. The best aPDT combinations involved 5-aminolevulinic acid or phenothiazinium dye-based aPDT. In general, the combination shows benefits such as reducing treatment times, lowering drug dosages, decreasing drug toxicity, improving patient compliance and diminishing the risk of developing resistance. The mechanism of action may be that first aPDT damages the microbial cell wall or membrane, which allows better penetration of the antimicrobial drug. LIMITATIONS The number of studies was low, the protocols used were heterogeneous, and there was a lack of clinical trials. CONCLUSIONS The additive or synergistic effect of aPDT combined with antimicrobials could be promising to manage skin and mucosal infections, helping to overcome the microbial drug resistance.
Collapse
|
40
|
Kim EJ, Choi JH, Yang HJ, Choi SS, Lee HK, Cho YC, Kim HK, Kim SW, Chae HS. Comparison of high and low molecular weight chitosan as in-vitro boosting agent for photodynamic therapy against Helicobacter pylori using methylene blue and endoscopic light. Photodiagnosis Photodyn Ther 2019; 26:111-115. [PMID: 30836214 DOI: 10.1016/j.pdpdt.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND We reported in a previous study that photodynamic therapy (PDT) of Helicobacter pylori(H. pylori) could potentiate bactericidal effect by adding chitosan. As a next step, we compared the bactericidal effects of low molecular weight (LMW) combined with Photodynamic Therapy to high molecular weight (HMW) chitosan. METHOD To perform PDT to kill H. pylori, we used endoscopic light as light source, methylene blue (MB) as a photosensitizer and chitosan (310-375, 50-190 kDa). We evaluated bacterial removal rate and its membrane damage by ethidium bromide monoazide PCR method (EMA q-PCR). 8-oxo-2'-dexoyguanosine by ELISA was measured for oxidative stress. RESULTS At a chitosan concentration of ≤0.05%, the killing effect did not differ between the two molecular weights, and 100% bacterial removal rate was observed at a light energy ≥ 6.23 mJ/cm2 powers under 0.02% MB. After 15 min irradiation, LMW chitosan with high concentration of MB (0.004%) showed highest killing effects, which were consistent with the results of EMA q-PCR but not with the level of 8-OHdG. Bactericidal effects of LMW chitosan plus PDT using 0.002 and 0.004% MB for 15 min irradiation were significantly higher than those using HMW chitosan plus PDT. CONCLUSION We found that PDT using methylene blue with LMW chitosan to kill H. pylori exerted greater bactericidal effects through bacterial membrane damage than PDT with HMW chitosan. These results suggest that it would be better to choose LMW chitosan to enhance the effect of PDT for clinical application, even at a very low concentration of PS.
Collapse
Affiliation(s)
- Eui Jin Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hye Choi
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Jung Yang
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Hae Kyung Lee
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hyung Keun Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang Woo Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hiun Suk Chae
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
41
|
Ogasawara K. Candida albicans Sterilization Using a Light-Emitting Diode and Methylene Blue. Laser Ther 2018; 27:257-263. [PMID: 31182900 DOI: 10.5978/islsm.27_18-or-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Background and aims Conventional fungal treatment using external medication requires considerable time and effort. We herein examined the basic effect of methylene blue (MB) with sodium bicarbonate (NaHCO3) on Candida albicans sterilization using photodynamic antimicrobial chemotherapy (PACT). Materials and methods NaHCO3 was added to MB to establish a basic pH. Then, C. albicans was smeared on a medium with basic MB followed by irradiation using a red light-emitting diode (LED) with a wavelength of 660 nm. The applied energy fluencies were 5, 10, 15, and 20 J/cm2. After 48 h of culture, the effects of the intervention were determined according to the fungal growth area. Results The basic effect appeared at a pH range of 8.6 to 8.9 and at 10 and 15 J/cm2, while the NaHCO3 concentration was between 1% and 2%. Conclusions Our results suggested that PACT using basic MB was effective for C. albicans sterilization.
Collapse
|
42
|
Ni N, Zhong Y, Chen S, Xia XJ, Liu ZH. In vitro aminolevulinic acid mediated-antimicrobial photodynamic therapy inactivates growth of Prototheca wickerhamii but does not change antibacterial and antifungal drug susceptibiltity profile. Photodiagnosis Photodyn Ther 2018; 25:280-284. [PMID: 30586618 DOI: 10.1016/j.pdpdt.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy(aPDT) has been used to treat localized cutaneous fungal infections that have an enhanced antifungal susceptibility profile. The aim of this study was to evaluate the effect of ALA aPDT on both the growth and the antimicrobial and antifungal susceptibility of Prototheca wickerhamii. METHODS Six isolates of P. wickerhamii were used in the present study. The inocula in sterile 6-well microtiter plates were irradiated with narrow band LED (633 ± 10 nm) at the light intensity of 100 mW/cm2 and at a distance of 1 cm for 900 s. The ALA was tested at concentrations of 1, 5, and 10 mmol/l, while 10-μl aliquots of suspensions from each group were inoculated on Sabouraud dextrose agar to test the photoinactivation. Antibiotic susceptibility was investigated by the disc-diffusion method. RESULTS Our study shows ALA aPDT induced 46% ± 24.23% reduction of the growth of all tested P. wickerhamii strains in T1 group. ALA aPDT induced 50.39% ± 19.88% reduction of the growth of all tested P. wickerhamii strains in T2 group. ALA aPDT induced 52.68 ± 20.22% reduction of the growth of all tested P. wickerhamii strains inT3 group. Single ALA aPDT induced 32.97% ± 1.6% growith reduction of three tested strains(O23d, O23e and 62,207), while repeated ALA aPDT induced 51.65 ± 2.91% reduction of the growth(P value = 0.000). There were no significant difference of the inhibitory zone diameter of both antibacterial and antifungal agents before and after ALA aPDT. CONCLUSIONS ALA aPDT can inactivate the growth of P. wickerhamii, and repeated aPDT has more photoinactivation of P. wickerhamii. ALA aPDT does not change antibacterial agents and antifungal drugs susceptibility profile of P. wickerhamii.
Collapse
Affiliation(s)
- Na Ni
- Department of Laboratory, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Yan Zhong
- Department of Dermatology, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Shi Chen
- Department of Laboratory, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Xiu-Jiao Xia
- Department of Dermatology, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China
| | - Ze-Hu Liu
- Department of Dermatology, Affiliated Third Hospital of Hangzhou, Anhui Medical University, West Lake Rd 38, Hangzhou, China.
| |
Collapse
|
43
|
Dong X, Bond AE, Pan N, Coleman M, Tang Y, Sun YP, Yang L. Synergistic photoactivated antimicrobial effects of carbon dots combined with dye photosensitizers. Int J Nanomedicine 2018; 13:8025-8035. [PMID: 30568443 PMCID: PMC6267493 DOI: 10.2147/ijn.s183086] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Carbon quantum dots (CDots) have recently been reported as a new class of visible light activated antimicrobial nanomaterials. This study reports the synergistic photoactivated antimicrobial interactions of CDots with photosensitizers on bacterial cells. METHODS The antimicrobial effects of the CDots with surface passivation molecules 2,2'-(ethylenedioxy)bis(ethylamine) in combination with photosensitizer methylene blue (MB) or toluidine blue (TB) at various concentrations were evaluated against Escherichia coli cells with and without 1-hour visible light illumination. The broth microdilution checkerboard method and isobologram analysis were used for determining if synergistic effect existed between CDots and MB or TB. RESULTS The results showed that CDots alone at a concentration of 5 μg/mL did not display antimicrobial effects, 1 μg/mL MB alone only decreased 1.86 log of viable cell numbers, but the combination treatment with 5 μg/mL CDots combined with 1 μg/mL MB completely inhibited bacteria growth, resulted in 6.2 log viable cell number reduction, suggesting synergistic interaction between the two. The antimicrobial effects of CDots/TB combination exhibited similarly synergistic effects on E. coli cells. These synergistic effects between CDots and MB or TB were further confirmed using the checkerboard microdilution methods, where the fractional inhibitory concentration index value (0.5) and the isobologram analyses. The synergistic interactions were also correlated to the increased generation of intracellular reactive oxygen species in E. coli cells upon the combination treatments of CDots/MB or CDots/TB. CONCLUSION The study demonstrated the synergistic photoactivated antimicrobial effects of CDots in combination with other photosensitizers. Such synergistic effect may open new strategies for developing highly effective antimicrobial methods.
Collapse
Affiliation(s)
- Xiuli Dong
- Biomanufacturing Research Institute and Technology Enterprise, Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, USA,
| | - Ambrose E Bond
- Biomanufacturing Research Institute and Technology Enterprise, Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, USA,
| | - Nengyu Pan
- Department of Chemistry, Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC, USA,
| | - Montrez Coleman
- Department of Chemistry, Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC, USA,
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC, USA
| | - Ya-Ping Sun
- Department of Chemistry, Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC, USA,
| | - Liju Yang
- Biomanufacturing Research Institute and Technology Enterprise, Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, USA,
| |
Collapse
|
44
|
Chen J, Shan J, Xu Y, Su P, Tong L, Yuwen L, Weng L, Bao B, Wang L. Polyhedral Oligomeric Silsesquioxane (POSS)-Based Cationic Conjugated Oligoelectrolyte/Porphyrin for Efficient Energy Transfer and Multiamplified Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34455-34463. [PMID: 30211531 DOI: 10.1021/acsami.8b09185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cationic quaternary ammonium (QA) groups and reactive oxygen species as two main approaches for antibacterial study have been intensively studied. Herein, we report a multifunctional antimicrobial agent (porphyrin-POSS-OPVE, PPO), which combines bacterial membrane intercalation, high density of local QA groups, efficient energy transfer, significantly reduced aggregation, and high water solubility into one single molecule. The light-harvesting PPO contains multiple donor-absorbing arms (oligo( p-phenylenevinylene) electrolytes, OPVEs) on its globular periphery and a central porphyrin acceptor in the core by using three-dimensional nanocages (polyhedral oligomeric silsesquioxanes, POSSs) as bridges. The antiaggregation ability of POSS and the highly efficient energy transfer from multiple OPVE arms to porphyrin could greatly amplify singlet oxygen generation in PPO. Particularly, OPVEs with QA terminal chains were able to intercalate into Escherichia coli membranes, which facilitated 1O2 diffusion and bacterial cell membrane disintegration by QA groups. The increased local cationic QA charges in OPVE arms can also enhance the biocidal activity of PPO. Benefiting from these satisfactory features, PPO exhibits multiamplified antibacterial efficacy under a very low concentration level and white light dose (400-700 nm, 6 mW·cm-2, 5 min, 1.8 J·cm-2) to Escherichia coli (8 μM) and Staphylococcus aureus (500 nM). Therefore, PPO shows great potential for photodynamic antimicrobial chemotherapy at a much lower irradiation light dose and photosensitizer concentration level compared to previous reports.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Jingyang Shan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Yu Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Peng Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Li Tong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Lixing Weng
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , Jiangsu , China
| |
Collapse
|
45
|
Dong S, Shi H, Zhang X, Chen X, Cao D, Mao C, Gao X, Wang L. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation. Int J Nanomedicine 2018; 13:2199-2216. [PMID: 29692614 PMCID: PMC5903486 DOI: 10.2147/ijn.s156815] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA’s phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. Methods In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. Results A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans. We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and metacaspase activation resulting from mitochondrial dysfunction was also found to be involved in C. albicans apoptosis. Conclusion PPa-JM-phage may induce C. albicans apoptosis through a caspase-dependent pathway and the results herein shed light on the potential application of phtototherapeutic nanostructures in fungal inactivation.
Collapse
Affiliation(s)
- Shuai Dong
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University.,First Hospital of Jilin University, Changchun, Jilin
| | - Hongxi Shi
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University
| | - Xintong Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University.,First Hospital of Jilin University, Changchun, Jilin
| | - Xi Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University
| | - Donghui Cao
- First Hospital of Jilin University, Changchun, Jilin
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Chemistry and Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK, USA
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University
| |
Collapse
|
46
|
Houang J, Perrone G, Mawad D, Boughton PC, Ruys AJ, Lauto A. Light treatments of nail fungal infections. JOURNAL OF BIOPHOTONICS 2018; 11:e201700350. [PMID: 29227574 DOI: 10.1002/jbio.201700350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Nail fungal infections are notoriously persistent and difficult to treat which can lead to severe health impacts, particularly in the immunocompromized. Current antifungal treatments, including systemic and topical drugs, are prolonged and do not effectively provide a complete cure. Severe side effects are also associated with systemic antifungals, such as hepatotoxicity. Light treatments of onychomycosis are an emerging therapy that has localized photodynamic, photothermal or photoablative action. These treatments have shown to be an effective alternative to traditional antifungal remedies with comparable or better cure rates achieved in shorter times and without systemic side effects. This report reviews significant clinical and experimental studies in the field, highlighting mechanisms of action and major effects related to light therapy; in particular, the impact of light on fungal genetics.
Collapse
Affiliation(s)
- Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Gabriel Perrone
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, Australia
- Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology, University of New South Wales, Sydney, NSW, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, Australia
| | - Philip C Boughton
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Ruys
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Antonio Lauto
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
47
|
Huang MC, Shen M, Huang YJ, Lin HC, Chen CT. Photodynamic Inactivation Potentiates the Susceptibility of Antifungal Agents against the Planktonic and Biofilm Cells of Candida albicans. Int J Mol Sci 2018; 19:ijms19020434. [PMID: 29389883 PMCID: PMC5855656 DOI: 10.3390/ijms19020434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022] Open
Abstract
Photodynamic inactivation (PDI) has been shown to be a potential treatment modality against Candida infection. However, limited light penetration might leave some cells alive and undergoing regrowth. In this study, we explored the possibility of combining PDI and antifungal agents to enhance the therapeutic efficacy of Candida albicans and drug-resistant clinical isolates. We found that planktonic cells that had survived toluidine blue O (TBO)-mediated PDI were significantly susceptible to fluconazole within the first 2 h post PDI. Following PDI, the killing efficacy of antifungal agents relates to the PDI dose in wild-type and drug-resistant clinical isolates. However, only a 3-log reduction was found in the biofilm cells, suggesting limited therapeutic efficacy under the combined treatment of PDI and azole antifungal drugs. Using confocal microscopic analysis, we showed that TBO-mediated PDI could partially remove the extracellular polymeric substance (EPS) of biofilm. Finally, we showed that a combination of PDI with caspofungin could result in the complete killing of biofilms compared to those treated with caspofungin or PDI alone. These results clearly indicate that the combination of PDI and antifungal agents could be a promising treatment against C. albicans infections.
Collapse
Affiliation(s)
- Mu-Ching Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Mandy Shen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Jhen Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Hsiao-Chi Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
48
|
da Silva BGM, Carvalho ML, Rosseti IB, Zamuner S, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei. Lasers Med Sci 2018; 33:983-990. [PMID: 29332258 DOI: 10.1007/s10103-017-2428-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Among non-albicans Candida species, the opportunistic pathogen Candida krusei emerges because of the high mortality related to infections produced by this yeast. The Candida krusei is an opportunistic pathogen presenting an intrinsic resistance to fluconazol. In spite of the reduced number of infections produced by C. krusei, its occurrence is increasing in some groups of patients submitted to the use of fluconazol for prophylaxis. Photodynamic antimicrobial chemotherapy (PACT) is a potential antimicrobial therapy that combines visible light and a nontoxic dye, known as a photosensitizer, producing reactive oxygen species (ROS) that can kill the treated cells. The objective of this study was to investigate the effects of PACT, using toluidine blue, as a photosensitizer on both growth and biofilm formation by Candida krusei. In this work, we studied the effect of the PACT, using TB on both cell growth and biofilm formation by C. krusei. PACT was performed using a light source with output power of 0.068 W and peak wavelength of 630 nm, resulting in a fluence of 20, 30, or 40 J/cm2. In addition, ROS production was determined after PACT. The number of samples used in this study varied from 6 to 8. Statistical differences were evaluated by analysis of variance (ANOVA) and post hoc comparison with Tukey-Kramer test. PACT inhibited both growth and biofilm formation by C. krusei. It was also observed that PACT stimulated ROS production. Comparing to cells not irradiated, irradiation was able to increase ROS production in 11.43, 6.27, and 4.37 times, in the presence of TB 0.01, 0.02, and 0.05 mg/mL, respectively. These results suggest that the inhibition observed in the cell growth after PACT could be related to the ROS production, promoting cellular damage. Taken together, these results demonstrated the ability of PACT reducing both cell growth and biofilm formation by C. krusei.
Collapse
Affiliation(s)
- Bruna Graziele Marques da Silva
- Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, São José dos Campos, CEP: 12244-000, Brazil
| | - Moisés Lopes Carvalho
- Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, São José dos Campos, CEP: 12244-000, Brazil
| | - Isabela Bueno Rosseti
- Anhanguera Educacional, Av. Doutor João Batista de Souza Soares, 4009-Jardim Morumbi, São José dos Campos, SP, Brazil
| | - Stella Zamuner
- Posgraduated Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, São José dos Campos, CEP: 12244-000, Brazil.
| |
Collapse
|
49
|
Pinto AP, Rosseti IB, Carvalho ML, da Silva BGM, Alberto-Silva C, Costa MS. Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis Photodyn Ther 2017; 21:182-189. [PMID: 29221859 DOI: 10.1016/j.pdpdt.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Candida albicans is an opportunistic fungus producing both superficial and systemic infections, especially in immunocompromised individuals. It has been demonstrated that C. albicans ability to form biofilms is a crucial process for colonization and virulence. Furthermore, a correlation between the development of drug resistance and biofilm maturation at Candida biofilms has been shown. Photodynamic Antimicrobial Chemotherapy (PACT) is a potential antimicrobial therapy that combines visible light and a non-toxic dye, known as a photosensitizer, producing reactive oxygen species (ROS) that can kill the treated cells. The objective of this study was to investigate the effects of PACT, using Toluidine Blue O (TBO) on the viability of biofilms produced by C. albicans at different stages of development. METHODS In this study, the effects of PACT on both biofilm formation and viability of the biofilm produced by C. albicans were studied. Biofilm formation and viability were determined by a metabolic assay based on the reduction of XTT assay. In addition, the morphology of the biofilm was observed using light microscopy. RESULTS PACT inhibited both biofilm formation and viability of the biofilm produced by C. albicans. Furthermore, PACT was able to decrease the number of both cells and filamentous form present in the biofilm structure. This inhibitory effect was observed in both early and mature biofilms. CONCLUSIONS The results obtained in this study demonstrated the potential of PACT (using TBO) as an effective antifungal therapy, including against infections associated with biofilms at different stages of development.
Collapse
Affiliation(s)
- Ana Paula Pinto
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, São José dos Campos, SP, Brazil
| | - Isabela Bueno Rosseti
- Anhanguera Educacional, Av. Doutor João Batista de Souza Soares, 4009 - Jardim Morumbi, São José dos Campos, SP, Brazil
| | - Moisés Lopes Carvalho
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, São José dos Campos, SP, Brazil
| | - Bruna Graziele Marques da Silva
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, São José dos Campos, SP, Brazil
| | - Carlos Alberto-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Rua Arcturus, 03, Bloco Delta, São Bernardo do Campo, SP, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, São José dos Campos, SP, Brazil.
| |
Collapse
|
50
|
Biofilm formation by Candida albicans is inhibited by photodynamic antimicrobial chemotherapy (PACT), using chlorin e6: increase in both ROS production and membrane permeability. Lasers Med Sci 2017; 33:647-653. [DOI: 10.1007/s10103-017-2344-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 01/30/2023]
|