1
|
Poutoglidou F, Pourzitaki C, Manthou ME, Samoladas E, Saitis A, Malliou F, Kouvelas D. The inhibitory effect of tocilizumab on systemic bone loss and tendon inflammation in a juvenile Collagen-Induced arthritis rat model. Connect Tissue Res 2022; 63:577-589. [PMID: 35175165 DOI: 10.1080/03008207.2022.2042275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Reduced Bone Mineral Density (BMD) is a prevalent comorbidity in Juvenile Idiopathic Arthritis (JIA). Enthesitis and other tendon abnormalities, such as tenosynovitis, tendinitis and tendon ruptures are, also, common extra-articular manifestations of the disease. The aim of the present study was to investigate the effect of tocilizumab, an antibody that binds the Interleukin-6 (IL-6) Receptor, on inflammation-related bone loss and tendon inflammation in an animal model of JIA. MATERIALS AND METHODS The Collagen-Induced Arthritis (CIA) model was induced in male rats followed by intraperitoneal administration of tocilizumab for 8 weeks. Methotrexate, the most widely used Disease-Modifying Antirheumatic Drug in the management of JIA, was, also, administered, either as a monotherapy or as an add-on therapy to tocilizumab. BMD was evaluated with Micro-Computed Tomography (Micro-CT) and histopathological examination. Tendon damage was, also, assessed histologically. Finally, two pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNF-a) and Interleukin-23 (IL-23) were quantified in tendon tissues by ELISA analysis. RESULTS Tocilizumab-treated animals exhibited a significantly improved trabecular microarchitecture on micro-CT analysis and histological examination. Tendon morphology was also improved. Anti-IL-6 treatment led to a significant decrease in TNF-a and IL-23 expression in tendon tissue. CONCLUSIONS The results of the present study provide evidence that tocilizumab reduces inflammation-related bone loss and suppresses tendon inflammation in a juvenile CIA rat model. These findings offer perspectives for the management of osteoporosis and enthesitis in JIA.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, School of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Efthimios Samoladas
- Orthopaedics Division, "Genimatas" Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| |
Collapse
|
2
|
Poutoglidou F, Pourzitaki C, Manthou ME, Samoladas E, Saitis A, Malliou F, Kouvelas D. Infliximab prevents systemic bone loss and suppresses tendon inflammation in a collagen-induced arthritis rat model. Inflammopharmacology 2021; 29:661-672. [PMID: 33982199 DOI: 10.1007/s10787-021-00815-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
Reduced Bone Mineral Density (BMD) and tendon abnormalities, such as tenosynovitis and enthesitis, are prevalent comorbidities in patients with rheumatoid arthritis (RA). The aim of the present study was to investigate the effect of chronic treatment with infliximab on BMD and tendon inflammation in an animal model of inflammatory arthritis. Collagen-Induced Arthritis (CIA) was induced in rats, followed by long-term intraperitoneal administration of infliximab. Two additional groups of animals received methotrexate either as a monotherapy or as a co-treatment to infliximab. BMD was evaluated by Micro-Computed Tomography (Micro-CT) and bone histological examination. Tendon inflammation was assessed histologically and by quantitative ELISA analysis of pro-inflammatory cytokines in tendon tissues. Both methotrexate and infliximab treatment alleviated joint inflammation and reduced paw edema. Infliximab-treated animals exhibited an improved trabecular microarchitecture on micro-CT and histological analysis compared to both non-treated and methotrexate-treated animals. Infliximab almost reversed the pathological changes in tendons induced by CIA. Finally, we observed statistically significant declines in tendon TNF-a and IL-23 levels after infliximab treatment. Our study provides evidence that infliximab prevents arthritis-related osteoporosis and suppresses tendon inflammation in an animal model of inflammatory arthritis, in addition to controlling disease activity. These findings offer perspectives for the management of osteoporosis and enthesitis in RA.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Efthimios Samoladas
- Orthopeadics Division of Gennimatas Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| |
Collapse
|
3
|
Photobiomodulation therapy on expression of HSP70 protein and tissue repair in experimental acute Achilles tendinitis. Lasers Med Sci 2020; 36:1201-1208. [PMID: 33037560 DOI: 10.1007/s10103-020-03155-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate the effects of photobiomodulation (PBM) therapy on the expression of heat shock protein 70 (HSP70) and tissue repair in an experimental model of collagenase-induced Achilles tendinitis. Thirty Wistar rats (aged 12 weeks) were randomly distributed among control group (n = 8), tendinitis group (n = 11), and LED group (n = 11). Tendinitis was induced in the tendinitis and LED groups through a peritendinous injection of collagenase (100 μl). The LED group animals received the first irradiation 1 h after injury. A 630 ± 20 nm, 300-mW continuous wave light-emitting diode (LED), spot size 1 cm2, was placed in contact with the skin. One point over the tendon was irradiated for 30 s, delivering 9 J (9 J/cm2). LED irradiation was performed once daily for 7 days, with the total energy delivered being 63 J. The tendons were surgically removed and expression of the HSP70 protein was calculated using semi-quantitative analyses of immunohistochemistry (HSCORE). Number of fibroblasts and amount of collagen were measured using histological and histochemical analyses. An increase in the mean HSCORE for HSP70, in the number of fibroblasts, and in the amount of collagen were found in the LED group compared with those in the tendinitis and control group (P ≤ 0.05). PBM therapy increased the expression of the HSP70, number of fibroblasts, and amount of collagen in the acute Achilles tendinitis in rats.
Collapse
|
4
|
Hanna R, Dalvi S, Sălăgean T, Bordea IR, Benedicenti S. Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review. Antioxidants (Basel) 2020; 9:E875. [PMID: 32947974 PMCID: PMC7555229 DOI: 10.3390/antiox9090875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic has taken the entire globe by storm. The pathogenesis of this virus has shown a cytokine storm release, which contributes to critical or severe multi-organ failure. Currently the ultimate treatment is palliative; however, many modalities have been introduced with effective or minimal outcomes. Meanwhile, enormous efforts are ongoing to produce safe vaccines and therapies. Phototherapy has a wide range of clinical applications against various maladies. This necessitates the exploration of the role of phototherapy, if any, for COVID-19. This critical review was conducted to understand COVID-19 disease and highlights the prevailing facts that link phototherapy utilisation as a potential treatment modality for SARS-CoV-2 viral infection. The results demonstrated phototherapy's efficacy in regulating cytokines and inflammatory mediators, increasing angiogenesis and enhancing healing in chronic pulmonary inflammatory diseases. In conclusion, this review answered the following research question. Which molecular and cellular mechanisms of action of phototherapy have demonstrated great potential in enhancing the immune response and reducing host-viral interaction in COVID-19 patients? Therefore, phototherapy is a promising treatment modality, which needs to be validated further for COVID-19 by robust and rigorous randomised, double blind, placebo-controlled, clinical trials to evaluate its impartial outcomes and safety.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 441110, India
| | - Tudor Sălăgean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
| |
Collapse
|
5
|
Nascimento LDES, Nicolau RA, Maia Filho ALM, Nascimento KFES, Santos JZLV, Sousa RCD, Carvalho LFM, Viana VGF. Effect of low intensity photobiomodulation associated with norbixin-based poly (hydroxybutyrate) membrane on post-tenotomy tendon repair. In vivo study. Acta Cir Bras 2020; 35:e202000303. [PMID: 32490900 PMCID: PMC7357841 DOI: 10.1590/s0102-865020200030000003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/15/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose: To evaluate the in vivo response of photobiomodulation therapy associated with norbixin-based poly(hydroxybutyrate) membrane (PHB) in tenotomized calcaneal tendon. Methods: Thirty rats were randomly allocated to six groups (n=5 each): LED groups (L1, L2 and L3) and membrane + LED groups (ML1, ML2 and ML3). The right calcaneal tendons of all animals were sectioned transversely and were irradiated with LED daily, one hour after surgery every 24 hours, until the day of euthanasia. At the end of the experiments the tendons were removed for histological analysis. Results: The histological analysis showed a significant reduction in inflammatory cells in the ML1, ML2 and ML3 groups (p=0.0056, p=0.0018 and p<0.0001, respectively) compared to those in the LED group. There was greater proliferation of fibroblasts in the ML1 (p<0.0001) and L3 (p<0.0001) groups. A higher concentration of type I collagen was also observed in the ML1 group (p=0.0043) replacing type III collagen. Conclusion: Photobiomodulation in association with norbixin-based PHB membrane led to control of the inflammatory process. However, it did not favor fibroblast proliferation and did not optimize type I collagen formation in the expected stage of the repair process.
Collapse
|
6
|
Lopes Silva RSD, Pessoa DR, Mariano RR, Castro ABS, de Oliveira RA, Ferraresi C. Systematic Review of Photobiomodulation Therapy (PBMT) on the Experimental Calcaneal Tendon Injury in Rats. Photochem Photobiol 2020; 96:981-997. [PMID: 32191817 DOI: 10.1111/php.13262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
This systematic review analyzed the light parameters and the effects of photobiomodulation therapy (PBMT) through low-level laser therapy (LLLT) and/or LED (light-emitting diode) on tendon repair of rats submitted to calcaneal injury. This study was conducted in accordance with the guidelines of the Preferred Reporting Items for Meta-Analysis, and PubMed and MEDLINE databases were accessed to search eligible studies published in English. The search terms were as follows: "Achilles tendon" or "Calcaneal tendon" or "tendon injuries" or "soft tissue injuries" and "tendinopathy" or "tendinitis" and "low-level light therapy" or "low-level laser therapy" or "low intensity power therapy" or "light-emitting diode" or photobiomodulation." The SYRCLE (SYstematic Review Center for Laboratory animal Experimentation) risks of bias was used to assess the risk of bias for selected studies. A total of 225 studies were found based on the descriptors used, and only 33 studies were eligible. Light parameters identified per point of irradiation were approximately 60 mW (continuous mode at infrared spectra), 2 W cm-2 , 2 J and 45 J cm-2 . Light parameters at red spectra, continuous versus pulsed mode, and PBMT combined or compared with other therapies such as ultrasound, and studies using unhealthy rats (ovariectomized and/or diabetic models) were also identified and grouped according to these similarities. The main effects found were decreased inflammatory markers and signs of inflammatory process. PBMT (laser/LED) has positive effects in reducing the inflammatory and time for tissue repair in animal models of tendon injury and/or tendinitis using parameters identified.
Collapse
Affiliation(s)
- Rauena Souto Diogo Lopes Silva
- Health Sciences Center, Universidade Estadual do Piaui, Teresina, Brazil.,Post-graduation program in Biomedical Engineering, Universidade Brasil, Sao Paulo, Brazil
| | | | | | | | | | - Cleber Ferraresi
- Post-graduation program in Biomedical Engineering, Universidade Brasil, Sao Paulo, Brazil
| |
Collapse
|
7
|
de Oliveira AR, da Silva FS, Bortolin RH, Marques DEDS, Ramos GV, Marqueti RC, da Silva NB, Medeiros KCDP, Corrêa MA, Lima JPMS, de Rezende AA, Ackermann PW, Abreu BJ, de Brito Vieira WH. Effect of photobiomodulation and exercise on early remodeling of the Achilles tendon in streptozotocin-induced diabetic rats. PLoS One 2019; 14:e0211643. [PMID: 30716140 PMCID: PMC6361457 DOI: 10.1371/journal.pone.0211643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to compare the treatment effects of laser photobiomodulation (LPBM) therapy and aerobic exercise on the biomechanical properties, tissue morphology and the expression of tendon matrix molecules during early remodeling of Achilles tendon (AT) injury in diabetic rats. Animals were randomly assigned to five groups: injured non diabetic (I, n = 15), injured diabetic (ID, n = 15), injured diabetic plus LPBM (IDL, n = 16), injured diabetic plus aerobic exercise (IDE, n = 16) and injured diabetic plus aerobic exercise and LPBM (IDEAL, n = 17). Type 1 diabetes was induced via a single intravenous injection of Streptozotocin at a dose of 40 mg/kg. A partial tenotomy was performed in the right AT. LPBM was performed with an indium-gallium-aluminum-phosphide 660 nm 10 mW laser device (spot size 0.04 cm2, power density 250 mW/cm2, irradiation duration 16 s, energy 0.16 J, energy density 4 J/cm2) on alternate days for a total of 9 sessions over 3 weeks (total energy 1.44 J), using a stationary contact technique to a single point over the dorsal aspect of the AT. Moderate aerobic exercise was performed on a motorized treadmill (velocity 9 m/min for 60 minutes). At 3 weeks post-injury, biomechanical analyzes as well as assessment of fibroblast number and orientation were performed. Collagen 1 (Col1) and 3 (Col3) and matrix metalloproteinases (MMPs) -3 and 13 protein distributions were studied by immunohistochemistry; while Col1 and Col3 and MMP-2 and 9 gene expression were assessed by quantitative RT-PCR (qRT-PCR). IDEAL exhibited significant increases in several biomechanical parameters in comparison to the other groups. Moreover, IDEAL presented stronger Col1 immunoreactivity when compared to ID, and weaker Col3 immunoreactivity than IDE. Both IDL and IDEAL demonstrated weaker expression of MMP-3 in comparison to I, while IDL presented no expression of MMP-13 when compared to ID. ID, IDL and IDE showed an increased number of fibroblasts in comparison to I, while IDEAL decreased the number of these cells in comparison to ID and IDE. IDL and IDEAL groups exhibited decreased angular dispersion among the fibroblasts when compared to I. The gene expression results showed that IDE demonstrated a downregulation in Col1 mRNA expression in comparison to I and ID. IDEAL demonstrated upregulation of Col1 mRNA expression when compared to IDL or IDE alone and increased MMP-2 expression when compared to IDL and IDE. MMP-9 expression was upregulated in IDEAL when compared to I, IDL and IDE. Our results suggest a beneficial interaction of combining both treatment strategies i.e., aerobic exercise and LPBM, on the biomechanical properties, tissue morphology and the expression of matrix molecules in diabetic tendons.
Collapse
MESH Headings
- Achilles Tendon/metabolism
- Achilles Tendon/physiopathology
- Animals
- Collagen Type I/metabolism
- Collagen Type III/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Fibroblasts/metabolism
- Low-Level Light Therapy/methods
- Male
- Metalloendopeptidases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin/pharmacology
- Tendon Injuries/etiology
- Tendon Injuries/metabolism
- Tendon Injuries/physiopathology
- Tendon Injuries/therapy
- Up-Regulation/physiology
- Wound Healing/physiology
Collapse
Affiliation(s)
| | - Flávio Santos da Silva
- Department of Health Sciences, Federal University of the Semiarid Region, Mossoró, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bento J. Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
8
|
Effects of Therapy with Light Emitting Diode (LED) in the Calcaneal Tendon Lesions of Rats: A Literature Review. ScientificWorldJournal 2019; 2019:6043019. [PMID: 30853864 PMCID: PMC6377949 DOI: 10.1155/2019/6043019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022] Open
Abstract
The objective of this review was to analyze original articles about the effects of therapy with LED in experimental models of calcaneal tendon lesions of rats. The search was performed in the period from February to May 2018, in the following electronic databases: MEDLINE, SciELO, and LILACS, besides the Google Scholar, using the descriptors “Achilles tendon”, “Rats”, “LED”, “Tendinopathy”, and “Low-level Light Therapy”, as well as their matching parts in the Portuguese and Spanish languages, related to and in association with the relevant terms to the content sought. From the descriptors used 215 works were found. After application of eligibility criteria 8 works were selected, in which positive results were found after the application of the LED. Regarding the main results found with phototherapy, we observed a significant reduction in inflammation. Only one article mentioned little reduction of inflammation. In relation to the number of sessions, there was wide variation, with an average of approximately 5 sessions every 24 hours. Studies in this review pointed out, therefore, positive results in the repair of the calcaneal tendon after therapy with irradiation LED; however, carrying out more experimental studies that help the standardization of parameters to be used in this therapy for further clinical studies becomes necessary.
Collapse
|
9
|
Langella LG, Casalechi HL, Tomazoni SS, Johnson DS, Albertini R, Pallotta RC, Marcos RL, de Carvalho PDTC, Leal-Junior ECP. Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty—a randomized, triple-blind, placebo-controlled clinical trial. Lasers Med Sci 2018; 33:1933-1940. [DOI: 10.1007/s10103-018-2558-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
|
10
|
Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers Med Sci 2018. [PMID: 29520686 DOI: 10.1007/s10103-018-2466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aimed to determine whether photobiomodulation therapy (PBMT) could improve the bioavailability and chondroprotective benefits of mesenchymal stem cells injected into the knees of rats used as an experimental model of osteoarthritis (OA) as well as reduce the expression of matrix metalloproteinases (MMPs) and degradation of type II collagen (COL2-1) in the cartilage. Adipose-derived stem/stromal cells (ADSCs) were collected from three male Fischer 344 rats and characterized by flow cytometry. Fifty female Fischer 344 rats were distributed into five groups of 10 animals each. These groups were as follows: control, OA, OA PBMT, OA ADSC, and OA ADSC PBMT. OA was induced in the animals using a 4% papain solution. Animals from the OA ADSC and OA ADSC PBMT groups received an intra-articular injection of 10 × 106 ADSCs and were treated with PBMT by irradiation (wavelength: 808 nm, power: 50 mW, energy: 42 J, energy density: 71.2 J/cm2, spot size: 0.028). Euthanasia was performed 7 days after the first treatment. The use of PBMT alone and the injection of ADSCs resulted in downregulation of pro-inflammatory cytokines and MPs in cartilage compared to the OA group. PBMT and ADSCs caused upregulation of tissue inhibitors of MPs 1 and 2 and mRNA and protein expression of COL2-1 in cartilage compared to the OA group. The intra-articular injection of ADSCs and PBMT prevented joint degeneration resulting from COL2-1 degradation and modulated inflammation by downregulating cytokines and MMPs in the OA group.
Collapse
|
11
|
Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Sci Rep 2017; 7:12670. [PMID: 28978926 PMCID: PMC5627274 DOI: 10.1038/s41598-017-13117-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a severe disease with a high mortality index and it is responsible for the development of acute lung injury (ALI). We evaluated the effects of light-emitting diode (LED) on ALI induced by sepsis. Balb-c mice were injected with lipopolysaccharide or saline and then irradiated or not with red LED on their tracheas and lungs for 150 s, 2 and 6 h after LPS injections. The parameters were investigated 24 h after the LPS injections. Red LED treatment reduced neutrophil influx and the levels of interleukins 1β, 17 A and, tumor necrosis factor-α; in addition to enhanced levels of interferon γ in the bronchoalveolar fluid. Moreover, red LED treatment enhanced the RNAm levels of IL-10 and IFN-γ. It also partially reduced the elevated oxidative burst and enhanced apoptosis, but it did not alter the translocation of nuclear factor κB, the expression of toll-like receptor 4 (TLR4), as well as, oedema or mucus production in their lung tissues. Together, our data has shown the beneficial effects of short treatment with LED on ALI that are caused by gram negative bacterial infections. It is suggested that LED applications are an inexpensive and non-invasive additional treatment for sepsis.
Collapse
|
12
|
Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice. Lasers Med Sci 2017; 32:1825-1834. [PMID: 28712048 DOI: 10.1007/s10103-017-2281-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023]
Abstract
Lung fibrosis (LF) is a chronic and progressive lung disease characterized by pulmonary parenchyma progressive lesion, inflammatory infiltration, and interstitial fibrosis. It is developed by excessive collagen deposition and other cellular matrix components, resulting in severe changes in the alveolar architecture. Considering the absence of effective treatment, the aim of this study was to investigate the effect of photobiomodulation therapy (PBMT) on the development of PF. For this purpose, we used C57BL6 mice subjected to induction of LF by bleomycin administration (1.5 U/kg) by orotracheal route and, after 14 days of the induction, mice were treated with PBMT applied to the thorax 1×/day for 8 days (wavelength 660 ± 20 nm, power 100 mW, radiant exposure 5 J/cm2, irradiance 33.3 mW/cm2, spot size 2.8cm2, total energy 15 J, time of irradiation: 150 s) and inflammatory and fibrotic parameters were evaluated with or without PBMT. Our results showed that PBMT significantly reduced the number of inflammatory cells in the alveolar space, collagen production, interstitial thickening, and static and dynamic pulmonary elastance. In addition, we observed reduced levels of IL-6 e CXCL1/KC released by pneumocytes in culture as well as reduced level of CXCL1/KC released by fibroblasts in culture. We can conclude that the PBMT improves both inflammatory and fibrotic parameters showing a promising therapy which is economical and has no side effects.
Collapse
|
13
|
Marques ACDF, Albertini R, Serra AJ, da Silva EAP, de Oliveira VLC, Silva LM, Leal-Junior ECP, de Carvalho PDTC. Photobiomodulation therapy on collagen type I and III, vascular endothelial growth factor, and metalloproteinase in experimentally induced tendinopathy in aged rats. Lasers Med Sci 2016; 31:1915-1923. [PMID: 27624782 DOI: 10.1007/s10103-016-2070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/05/2016] [Indexed: 12/15/2022]
Abstract
This study investigates the effect of photobiomodulation therapy (PBMT) on collagen type I and III, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF) in experimentally induced tendinopathy in female aged rats. Tendinopathy was induced by the Achilles tendoncollagenase peritendinous. Forty-two Wistar rats (Norvegicus albinus) were used; groups consisted of 36 aged animals (18 months old; mean body weight, 517.7 ± 27.54 g) and 6 adult animals (12 weeks old; mean body weight, 266± 19.30 g). The animals were divided into three groups: control, aged tendinopathy, and aged tendinopathy PBMT; the aged groups were subdivided based on time to euthanasia: 7, 14, and 21 days. PBMT involved a gallium-arsenide-aluminum laser (Theralaser, DMC®) with active medium operating at wavelength 830 ± 10 nm, 50 mW power, 0.028 cm2 laser beam, 107 J/cm2 energy density, 1.8 W/cm2 power density, and an energy of 3 J per point. The laser was applied by direct contact with the left Achilles tendon during 60 s per point at a frequency of three times per week, until the euthanasia date (7, 14, and 21 days). VEGF, MMP-3, and MMP-9 were analyzed by immunohistochemistry, and collagen type I and III by Sirius red. PBMT increased the deposition of collagen type I and III in a gradual manner, with significant differences relative to the group aged tendonitis (p < 0.001), and in relation to VEGF (p < 0.001); decreased expression of MMP-3 and 9 were observed in group aged tendinopathy (p < 0.001). PBMT, therefore, increased the production of collagen type I and III, downregulated the expression of MMP-3 and MMP-9, and upregulated that of VEGF, with age and age-induced hormonal deficiency.
Collapse
Affiliation(s)
- Anna Cristina de Farias Marques
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | - Regiane Albertini
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | - Luciana Miatto Silva
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil.
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.
| |
Collapse
|