1
|
Elmaidomy AH, Abdelmohsen UR, Sayed AM, Altemani FH, Algehainy NA, Soost D, Paululat T, Bringmann G, Mohamed EM. Antiplasmodial potential of phytochemicals from Citrus aurantifolia peels: a comprehensive in vitro and in silico study. BMC Chem 2024; 18:60. [PMID: 38555456 PMCID: PMC10981828 DOI: 10.1186/s13065-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Phytochemical investigation of Key lime (Citrus aurantifolia L., F. Rutaceae) peels afforded six metabolites, known as methyl isolimonate acetate (1), limonin (2), luteolin (3), 3`-hydroxygenkwanin (4), myricetin (5), and europetin (6). The structures of the isolated compounds were assigned by 1D NMR. In the case of limonin (2), further 1- and 2D NMR experiments were done to further confirm the structure of this most active metabolite. The antiplasmodial properties of the obtained compounds against the pathogenic NF54 strain of Plasmodium falciparum were assessed in vitro. According to antiplasmodial screening, only limonin (2), luteolin (3), and myricetin (5) were effective (IC50 values of 0.2, 3.4, and 5.9 µM, respectively). We explored the antiplasmodial potential of phytochemicals from C. aurantifolia peels using a stepwise in silico-based analysis. We first identified the unique proteins of P. falciparum that have no homolog in the human proteome, and then performed inverse docking, ΔGBinding calculation, and molecular dynamics simulation to predict the binding affinity and stability of the isolated compounds with these proteins. We found that limonin (2), luteolin (3), and myricetin (5) could interact with 20S a proteasome, choline kinase, and phosphocholine cytidylyltransferase, respectively, which are important enzymes for the survival and growth of the parasite. According to our findings, phytochemicals from C. aurantifolia peels can be considered as potential leads for the development of new safe and effective antiplasmodial agents.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Denisa Soost
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Esraa M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, MUST, Giza, 12566, Egypt
| |
Collapse
|
2
|
Sousa TF, de Araújo Júnior MB, Peres EG, Souza MP, da Silva FMA, de Medeiros LS, de Souza ADL, de Souza AQL, Yamagishi MEB, da Silva GF, Koolen HHF, De Queiroz MV. Discovery of dual PKS involved in sclerotiorin biosynthesis in Penicillium meliponae using genome mining and gene knockout. Arch Microbiol 2023; 205:75. [PMID: 36708387 DOI: 10.1007/s00203-023-03414-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Fungi of the genus Penicillium section Sclerotiora have as their main characteristic the presence of orange-pigmented mycelium, which is associated with sclerotiorin, a chlorinated secondary metabolite of the azaphilone subclass of polyketides. Sclerotiorin presents anti-diabetes, antioxidant, anti-inflammatory, anti-Alzheimer, antiviral, and antimicrobial activities, which has always attracted the attention of researchers worldwide. During our ongoing search for azaphilone-producing Amazonian fungi, the strain of Penicillium MMSRG-058 was isolated as an endophyte from the roots of Duguetia stelechantha and showed great capacity for producing sclerotiorin-like metabolites. Using multilocus phylogeny, this strain was identified as Penicillium meliponae. Moreover, based on the genome mining of this strain through the reverse approach, a cluster of putative biosynthetic genes (BGC) responsible for the biosynthesis of sclerotiorin-like metabolites (scl cluster) was identified. The knockout of the sclA (highly reducing PKS) and sclI (non-reducing PKS) genes resulted in mutants with loss of mycelial pigmentation and terminated the biosynthesis of sclerotiorin-like metabolites: geumsanol B, chlorogeumsanol B, 7-deacetylisochromophilone VI, isochromophilone VI, ochrephilone, isorotiorin, and sclerotiorin. Based on these results, a biosynthetic pathway was proposed considering the homology of BGC scl genes with the azaphilone BGCs that have already been functionally characterized.
Collapse
Affiliation(s)
- Thiago F Sousa
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil.,Embrapa Amazônia Ocidental, Manaus, 69010-970, Brazil.,Laboratório de Genética Molecular e de Microrganismos, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Moysés B de Araújo Júnior
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil.,Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, 69103-128, Brazil
| | - Eldrinei G Peres
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil.,Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Mayane P Souza
- Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Felipe M A da Silva
- Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Lívia S de Medeiros
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, 09972-270, Brazil
| | - Afonso D L de Souza
- Departamento de Química, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | - Antonia Q L de Souza
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, 69067-005, Brazil
| | | | | | - Hector H F Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, 690065-130, Brazil
| | - Marisa V De Queiroz
- Laboratório de Genética Molecular e de Microrganismos, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.
| |
Collapse
|
3
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Ali HSHM, Altayb HN, Firoz A, Bayoumi AAM, El Omri A, Chaieb K. Inhibitory activity of marine sponge metabolites on SARS-CoV-2 RNA dependent polymerase: virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 2022; 40:10191-10202. [PMID: 34151745 DOI: 10.1080/07391102.2021.1940283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Marine species are known as rich sources of metabolites involved mainly in the pharmaceutical industry. This study aimed to evaluate the effect of biologically active compounds in the marine sponge on the SARS-CoV-2 RNA-dependent-RNA polymerase protein (RdRp) using the in-silico method. A total of 51 marine compounds were checked for their possible interaction with SARS-CoV-2 RdRp using Maestro interface for molecular docking, molecular dynamic (MD) simulation, and MM/GBSA method to estimate compounds binding affinities. Among the 51 compounds screened in this study, two (mycalamide A, and nakinadine B) exhibited the lowest docking energy and best interaction. Among these compounds, mycalamide A was identified as a potent inhibitor of SARS-CoV-2 RdRp that showed the best and stable interaction during molecular dynamic simulation, with residues (Asp760 and Asp761) found in the catalytic domain of RdRp. The analysis through MM/GBSA for molecular dynamic simulation results revealed binding energy -59.7 ± 7.18 for Mycalamide A and -56 ± 10.55 for Nakinadine B. These results elucidate the possible use of mycalamide A for treating coronavirus disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hani S H Mohammed Ali
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N Altayb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Firoz
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Abdelfatteh El Omri
- Center of Excellence in Bio-nanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamel Chaieb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory of Analysis, Treatment, and valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| |
Collapse
|
5
|
Abstract
Organic extracts of marine invertebrates, mainly sponges, from seas all over the world are well known for their high in vitro anticancer and antibiotic activities which make them promising sources of compounds with potential use as pharmaceutical leads. Most of the structures discovered so far have a peculiar structural feature in common: a 1,2-dioxane ring. This is a highly reactive heterocycle that can be considered as an endoperoxide function. Together with other structural features, this group could be responsible for the strong biological activities of the substances present in the extracts. Numerous research programs have focused on their structural elucidation and total synthesis since the seventies. As a consequence, the number of established chiral centres and the similarity between different naturally occurring substances is increasingly higher. Most of these compounds have a terpenoid nature, mainly diterpene and sesterterpene, with several peculiar structural features, such as the loss of one carbon atom. Although there are many reviews dealing with the occurrence of marine peroxides, their activities, or potential pharmaceutical uses, no one has focused on those having a terpene origin and the endoperoxide function. We present here a comprehensive review of these compounds paying special attention to their structural features and their biological activity.
Collapse
|
6
|
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
7
|
Thawabteh AM, Thawabteh A, Lelario F, Bufo SA, Scrano L. Classification, Toxicity and Bioactivity of Natural Diterpenoid Alkaloids. Molecules 2021; 26:4103. [PMID: 34279443 PMCID: PMC8271992 DOI: 10.3390/molecules26134103] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Diterpenoid alkaloids are natural compounds having complex structural features with many stereo-centres originating from the amination of natural tetracyclic diterpenes and produced primarily from plants in the Aconitum, Delphinium, Consolida genera. Corals, Xenia, Okinawan/Clavularia, Alcyonacea (soft corals) and marine sponges are rich sources of diterpenoids, despite the difficulty to access them and the lack of availability. Researchers have long been concerned with the potential beneficial or harmful effects of diterpenoid alkaloids due to their structural complexity, which accounts for their use as pharmaceuticals as well as their lousy reputation as toxic substances. Compounds belonging to this unique and fascinating family of natural products exhibit a broad spectrum of biological activities. Some of these compounds are on the list of clinical drugs, while others act as incredibly potent neurotoxins. Despite numerous attempts to prepare synthetic products, this review only introduces the natural diterpenoid alkaloids, describing 'compounds' structures and classifications and their toxicity and bioactivity. The purpose of the review is to highlight some existing relationships between the presence of substituents in the structure of such molecules and their recognised bioactivity.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Samih Darwazah Institute for Pharmaceutical Industries, Faculty of Pharmacy Nursing and Health Professions, Birzeit University, Bir Zeit 71939, Palestine
| | - Alà Thawabteh
- Medical Imaging Department, Faculty of Health Profession, Al-Quds University, Jerusalem 20002, Palestine
| | - Filomena Lelario
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Sabino Aurelio Bufo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European Cultures (DICEM), University of Basilicata, 75100 Matera, Italy
| |
Collapse
|
8
|
Egieyeh S, Malan SF, Christoffels A. Cheminformatics techniques in antimalarial drug discovery and development from natural products 2: Molecular scaffold and machine learning approaches. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Abstract
A large number of natural products, especially those used in ethnomedicine of malaria, have shown varying in-vitro antiplasmodial activities. Cheminformatics involves the organization, integration, curation, standardization, simulation, mining and transformation of pharmacology data (compounds and bioactivity) into knowledge that can drive rational and viable drug development decisions. This chapter will review the application of two cheminformatics techniques (including molecular scaffold analysis and bioactivity predictive modeling via Machine learning) to natural products with in-vitro and in-vivo antiplasmodial activities in order to facilitate their development into antimalarial drug candidates and design of new potential antimalarial compounds.
Collapse
Affiliation(s)
- Samuel Egieyeh
- School of Pharmacy , University of the Western Cape Faculty of Natural Science , Belville , South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute , University of the Western Cape Faculty of Natural Science , Belville , South Africa
| | - Sarel F. Malan
- School of Pharmacy , University of the Western Cape Faculty of Natural Science , Belville , South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute , University of the Western Cape Faculty of Natural Science , Belville , South Africa
| |
Collapse
|
9
|
Saraiva RG, Dimopoulos G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat Prod Rep 2021; 37:338-354. [PMID: 31544193 DOI: 10.1039/c9np00042a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Covering: up to 2019 Secondary metabolites of microbial origin have long been acknowledged as medically relevant, but their full potential remains largely unexploited. Of the countless natural compounds discovered thus far, only 5-10% have been isolated from microorganisms. At the same time, while whole-genome sequencing has demonstrated that bacteria and fungi often encode natural products, only a few genera have yet been mined for new compounds. This review explores the contributions of bacterial natural products to combatting infection by malaria parasites, filarial worms, and arboviruses such as dengue, Zika, Chikungunya, and West Nile. It highlights how molecules isolated from microorganisms ranging from marine cyanobacteria to mosquito endosymbionts can be exploited as antimicrobials and antivirals. Pursuit of this mostly untapped source of chemical entities will potentially result in new interventions against these tropical diseases, which are urgently needed to combat the increase in the incidence of resistance.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
10
|
Chen T, Huang Y, Hong J, Wei X, Zeng F, Li J, Ye G, Yuan J, Long Y. Preparation, COX-2 Inhibition and Anticancer Activity of Sclerotiorin Derivatives. Mar Drugs 2020; 19:md19010012. [PMID: 33383842 PMCID: PMC7823724 DOI: 10.3390/md19010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
The latest research has indicated that anti-tumor agents with COX-2 inhibitory activity may benefit their anti-tumor efficiency. A series of sclerotiorin derivatives have been synthesized and screened for their cytotoxic activity against human lung cancer cells A549, breast cancer cells MDA-MB-435 using the MTT method. Among them, compounds 3, 7, 12, 13, 15, 17 showed good cytotoxic activity with IC50 values of 6.39, 9.20, 9.76, 7.75, 9.08, and 8.18 μM, respectively. In addition, all compounds were tested in vitro the COX-2 inhibitory activity. The results disclosed compounds 7, 13, 25 and sclerotiorin showed moderate to good COX-2 inhibition with the inhibitory ratios of 58.7%, 51.1%, 66.1% and 56.1%, respectively. Notably, compound 3 displayed a comparable inhibition ratio (70.6%) to the positive control indomethacin (78.9%). Furthermore, molecular docking was used to rationalize the potential of the sclerotiorin derivatives as COX2 inhibitory agents by predicting their binding energy, binding modes and optimal orientation at the active site of the COX-2. Additionally, the structure-activity relationships (SARS) have been addressed.
Collapse
Affiliation(s)
- Tao Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Yun Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junxian Hong
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Xikang Wei
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Fang Zeng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Jialin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Geting Ye
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Jie Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: (J.Y.); (Y.L.)
| | - Yuhua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
- Correspondence: (J.Y.); (Y.L.)
| |
Collapse
|
11
|
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
12
|
Cheminformatics techniques in antimalarial drug discovery and development from natural products 1: basic concepts. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
Abstract
A large number of natural products, especially those used in ethnomedicine of malaria, have shown varying in vitro antiplasmodial activities. Facilitating antimalarial drug development from this wealth of natural products is an imperative and laudable mission to pursue. However, limited manpower, high research cost coupled with high failure rate during preclinical and clinical studies might militate against the pursuit of this mission. These limitations may be overcome with cheminformatic techniques. Cheminformatics involves the organization, integration, curation, standardization, simulation, mining and transformation of pharmacology data (compounds and bioactivity) into knowledge that can drive rational and viable drug development decisions. This chapter will review the application of cheminformatics techniques (including molecular diversity analysis, quantitative-structure activity/property relationships and Machine learning) to natural products with in vitro and in vivo antiplasmodial activities in order to facilitate their development into antimalarial drug candidates and design of new potential antimalarial compounds.
Collapse
|
13
|
Rivas L, Rojas V. Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Arch Biochem Biophys 2019; 664:24-39. [PMID: 30707942 DOI: 10.1016/j.abb.2019.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Parasites are scarcely addressed target for antimicrobial peptides despite their big impact in health and global economy. The notion of antimicrobial peptides is frequently associated to the innate immune defense of vertebrates and invertebrate vectors, as the ultimate recipients of the parasite infection. These antiparasite peptides are produced by ribosomal synthesis, with few post-translational modifications, and their diversity come mostly from their amino acid sequence. For many of them permeabilization of the cell membrane of the targeted pathogen is crucial for their microbicidal mechanism. In contrast, cyanobacterial peptides are produced either by ribosomal or non-ribosomal biosynthesis. Quite often, they undergo heavy modifications, such as the inclusion of non-proteinogenic amino acids, lipid acylation, cyclation, Nα-methylation, or heterocyclic rings. Furthermore, the few targets identified for cyanobacterial peptides in parasites are intracellular. Some cyanobacterial antiparasite peptides are active at picomolar concentrations, whereas those from higher eukaryotes usually work in the micromolar range. In all, cyanobacterial peptides are an appealing target to develop new antiparasite therapies and a challenge in the invention of new synthetic methods for peptides. This review aims to provide an updated appraisal of antiparasite cyanobacterial peptides and to establish a side-by -side comparison with those antiparasite peptides from higher eukaryotes.
Collapse
Affiliation(s)
- Luis Rivas
- Centro de Investigaciones Biológicas (C.S.I.C), c/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Campus Curauma, Curauma, Valparaíso, Chile.
| |
Collapse
|
14
|
Adachi M, Miyasaka T, Hashimoto H, Nishikawa T. One-Step Transformation of Trichloroacetamide into Isonitrile. Org Lett 2016; 19:380-383. [PMID: 28032769 DOI: 10.1021/acs.orglett.6b03583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
A one-step transformation of trichloroacetamide, a protective group for the amine function, into isonitrile was successfully developed. The substrate scope and functional group tolerance of this procedure are also described.
Collapse
Affiliation(s)
- Masaatsu Adachi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Tadachika Miyasaka
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Honoka Hashimoto
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
15
|
Hu DX, Withall DM, Challis GL, Thomson RJ. Structure, Chemical Synthesis, and Biosynthesis of Prodiginine Natural Products. Chem Rev 2016; 116:7818-53. [PMID: 27314508 PMCID: PMC5555159 DOI: 10.1021/acs.chemrev.6b00024] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
The prodiginine family of bacterial alkaloids is a diverse set of heterocyclic natural products that have likely been known to man since antiquity. In more recent times, these alkaloids have been discovered to span a wide range of chemical structures that possess a number of interesting biological activities. This review provides a comprehensive overview of research undertaken toward the isolation and structural elucidation of the prodiginine family of natural products. Additionally, research toward chemical synthesis of the prodiginine alkaloids over the last several decades is extensively reviewed. Finally, the current, evidence-based understanding of the various biosynthetic pathways employed by bacteria to produce prodiginine alkaloids is summarized.
Collapse
Affiliation(s)
- Dennis X. Hu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David M. Withall
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gregory L. Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Schnermann MJ, Shenvi RA. Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. Nat Prod Rep 2015; 32:543-77. [PMID: 25514696 DOI: 10.1039/c4np00109e] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
Isocyanoterpenes (ICTs) are marine natural products biosynthesized through an unusual pathway that adorns terpene scaffolds with nitrogenous functionality derived from cyanide. The appendage of nitrogen functional groups - isonitriles in particular - onto stereochemically-rich carbocyclic ring systems provides enigmatic, bioactive molecules that have required innovative chemical syntheses. This review discusses the challenges inherent to the synthesis of this diverse family and details the development of the field. We also present recent progress in isolation and discuss key aspects of the remarkable biological activity of these compounds.
Collapse
Affiliation(s)
- Martin J Schnermann
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21701, USA.
| | | |
Collapse
|
17
|
Loganathan K, Kumar G, Kirthi AV, Rao KVB, Rahuman AA. Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods. Parasitol Res 2013; 112:3951-9. [PMID: 24013340 DOI: 10.1007/s00436-013-3585-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022]
Abstract
A novel approach to control strategies for integrated blood-feeding parasite management is in high demand, including the use of biological control agents. The present study aims to determine the efficacy of optimized crude extract of actinomycetes strain LK1 as biological control agent against the fourth-instar larvae of Anopheles stephensi and Culex tritaeniorhynchus (Diptera: Culicidae) and adults of Haemaphysalis bispinosa, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), and Hippobosca maculata (Diptera: Hippoboscidae). Antiparasitic activity was optimized using the Plackett-Burman method, and the design was developed using the software Design-Expert version 8.0.7.1. The production of the optimized crude actinomycetes LK1 strain extract was performed using response surface methodology to optimize the process parameters of protease inhibitor activity of marine actinobacteria for the independent variables like pH, temperature, glucose, casein, and NaCl at two levels (-1 and +1). The potential actinomycetes strain was identified as Saccharomonas spp., and the metamodeling surface simulation procedure was followed. It was studied using a computer-generated experimental design, automatic control of simulation experiments, and sequential optimization of the metamodels fitted to a simulation response surface function. The central composite design (CCD) used for the analysis of treatment showed that a second-order polynomial regression model was in good agreement with the experimental results at R (2) = 0.9829 (p < 0.05). The optimized values of the variables for antioxidant production were pH 6.00, glucose 1.3%, casein 0.09%, temperature 31.23 °C, and NaCl 0.10%. The LK1 strain-optimized crude extract was purified using reversed-phase high-pressure liquid chromatography, and the isolated protease inhibitor showed antiparasitic activity. The antiparasitic activity of optimized crude extract of LK1 was tested against larvae of A. stephensi (LC₅₀ = 31.82 ppm; r(2) = 0.818) and C. tritaeniorhynchus (LC₅₀ = 26.62 ppm; r(2) = 0.790) and adults of H. bispinosa (LC₅₀ = 106.58 ppm; r(2) = 0.871), R. (B.) microplus (LC₅₀ = 92.96 ppm; r(2) = 0.913), and H. maculata (LC₅₀ = 84.90 ppm; r(2) = 0.857).
Collapse
Affiliation(s)
- Karthik Loganathan
- Molecular and Microbiology Research Laboratory, Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
19
|
Antimalarial activity of axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi. Mar Drugs 2013; 11:1304-15. [PMID: 23595058 PMCID: PMC3705406 DOI: 10.3390/md11041304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2013] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 11/17/2022] Open
Abstract
The marine sponge, Axinyssa djiferi, collected on mangrove tree roots in Senegal, was investigated for glycolipids. A mixture containing new glycosphingolipids, named axidjiferoside-A, -B and -C, accounted for 0.07% of sponge biomass (dry weight) and for 2.16% of total lipids. It showed a significant antimalarial activity, with a 50% inhibitory concentration (IC50) of 0.53 ± 0.2 μM against a chloroquine-resistant strain of Plasmodium falciparum. They were identified as homologous β-galactopyranosylceramides composed of 2-amino-(6E)-octadec-6-en-1,3,4-triol, and the major one, axidjiferoside-A (around 60%), contained 2-hydroxytetracosanoic acid. Cytotoxicity was studied in vitro on human cancer cell lines (multiple myeloma, colorectal adenocarcinoma, glioblastoma and two lung cancer NSCLC-N6 and A549). Results of this investigation showed that axidjiferosides are of interest, because they proved a good antiplasmodial activity, with only a low cytotoxicity against various human cell lines and no significant antitrypanosomal and antileishmanial activity. Thus, it seems that galactosylceramides with a β anomeric configuration may be suitable in searching for new antimalarial drugs.
Collapse
|
20
|
Mani L, Jullian V, Mourkazel B, Valentin A, Dubois J, Cresteil T, Folcher E, Hooper JNA, Erpenbeck D, Aalbersberg W, Debitus C. New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis Lendenfeld, 1888. Chem Biodivers 2013; 9:1436-51. [PMID: 22899605 DOI: 10.1002/cbdv.201100309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Four samples of Suberea ianthelliformis were investigated and furnished five new and 13 known brominated tyrosine-derived compounds. Two of the new compounds were identified as araplysillin N20-formamide and its N-oxide derivative. Three other new compounds, araplysillins IV, V, and VI, were isolated and identified as analogs of araplysillin II. Most of these compounds exhibit moderate inhibitory activities against chloroquine-resistant and -sensitive strains of Plasmodium falciparum, and were investigated for their PFTase inhibitory properties. The chemical content of the investigated sponges is correlated with their molecular phylogeny.
Collapse
Affiliation(s)
- Luke Mani
- UMR 152, IRD, 118, route de Narbonne, FR-31062 Toulouse cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Duffy R, Wade C, Chang R. Discovery of anticancer drugs from antimalarial natural products: a MEDLINE literature review. Drug Discov Today 2012; 17:942-53. [PMID: 22504324 DOI: 10.1016/j.drudis.2012.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2011] [Revised: 02/07/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Nature-derived antimalarials might have anticancer potential, yet no systematic reviews exist on the topic. We screened MEDLINE using an automated algorithm in a high-volume search for antimalarial agents recognized by the WHO and natural antimalarials from knowledge-resource texts and databases for reported evidence of anticancer activity. Results are reported by source (plants, fungi, marine organisms and bacteria) and anticancer mechanism. In total, 14 out of 15 nature-derived antimalarials (93%) referenced by WHO as well as 146 of 235 antimalarial natural species (62%) from our defined MEDLINE search were reported as having anticancer activity. Therefore, antimalarial natural products might provide a fertile and much needed lead in anticancer drug discovery.
Collapse
Affiliation(s)
- Robert Duffy
- Institute of East West Medicine, 102 E. 30th Street, New York, NY 10016, USA
| | | | | |
Collapse
|
22
|
Anti-amoebic properties of a Malaysian marine sponge Aaptos sp. on Acanthamoeba castellanii. World J Microbiol Biotechnol 2011; 28:1237-44. [PMID: 22805843 DOI: 10.1007/s11274-011-0927-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2010] [Accepted: 09/29/2011] [Indexed: 11/27/2022]
Abstract
Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.
Collapse
|
23
|
Chang TT, More SV, Lu IH, Hsu JC, Chen TJ, Jen YC, Lu CK, Li WS. Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. Eur J Med Chem 2011; 46:3810-9. [DOI: 10.1016/j.ejmech.2011.05.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2010] [Revised: 05/17/2011] [Accepted: 05/21/2011] [Indexed: 01/15/2023]
|
24
|
Davis RA, Duffy S, Avery VM, Camp D, Hooper JN, Quinn RJ. (+)-7-Bromotrypargine: an antimalarial β-carboline from the Australian marine sponge Ancorina sp. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.11.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
25
|
Lebouvier N, Jullian V, Desvignes I, Maurel S, Parenty A, Dorin-Semblat D, Doerig C, Sauvain M, Laurent D. Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge Pseudoceratina sp. Mar Drugs 2009; 7:640-53. [PMID: 20098604 PMCID: PMC2810230 DOI: 10.3390/md7040640] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2009] [Revised: 11/17/2009] [Accepted: 11/23/2009] [Indexed: 11/17/2022] Open
Abstract
As part of our search for new antimalarial drugs in South Pacific marine sponges, we have looked for inhibitors of Pfnek-1, a specific protein kinase of Plasmodium falciparum. On the basis of promising activity in a preliminary screening, the ethanolic crude extract of a new species of Pseudoceratina collected in Vanuatu was selected for further investigation. A bioassay-guided fractionation led to the isolation of a derivative of homogentisic acid [methyl (2,4-dibromo-3,6-dihydroxyphenyl)acetate, 4a] which inhibited Pfnek-1 with an IC(50) around 1.8 muM. This product was moderately active in vitro against a FcB1 P. falciparum strain (IC(50) = 12 muM). From the same sponge, we isolated three known compounds [11,19-dideoxyfistularin-3 (1), 11-deoxyfistularin-3 (2) and dibromo-verongiaquinol (3)] which were inactive against Pfnek-1. Synthesis and biological evaluation of some derivatives of 4a are reported.
Collapse
Affiliation(s)
- Nicolas Lebouvier
- Laboratoire de Chimie, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, New Caledonia; E-Mails:
(I.D.);
(A.P.)
| | - Valérie Jullian
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Isabelle Desvignes
- Laboratoire de Chimie, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, New Caledonia; E-Mails:
(I.D.);
(A.P.)
| | - Séverine Maurel
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Arnaud Parenty
- Laboratoire de Chimie, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, New Caledonia; E-Mails:
(I.D.);
(A.P.)
| | - Dominique Dorin-Semblat
- INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; E-Mails:
(D.D.-S.);
(C.D.)
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Christian Doerig
- INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; E-Mails:
(D.D.-S.);
(C.D.)
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Michel Sauvain
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Dominique Laurent
- Laboratoire de Pharmacochimie des Substances Naturelles et Pharmacophores Redox, Université de Toulouse, UPS, UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France; E-Mails:
(V.J.);
(S.M.);
(M.S.);
(D.L.)
- Institut de Recherche pour le Développement (IRD); UMR 152, 118, rte de Narbonne, F-31062 Toulouse cedex 9, France
| |
Collapse
|
26
|
|
27
|
Wattanapiromsakul C, Chanthathamrongsiri N, Bussarawit S, Yuenyongsawad S, Plubrukarn A, Suwanborirux K. 8-Isocyanoamphilecta-11(20),15-diene, a new antimalarial isonitrile diterpene from the sponge Ciocalapata sp. CAN J CHEM 2009. [DOI: 10.1139/v09-030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
A new isonitrile diterpene of the amphilectane family, 8-isocyanoamphilecta-11(20),15-diene (4), was isolated from the sponge Ciocalapata sp., along with three known isonitriles, 8,15-diisocyano-11(20)-amphilectene (1), 7-isocyanoamphilecta-11(20),15-diene (2), and 8-isocyanoamphilecta-11(20),14-diene (3), and two steroidal peroxides, ergosterol peroxide (5) and 5α,9α-epidioxy-8α,14α-epoxy-(22E)-ergosta-6,22-dien-3β-ol (6). The structure of the new isonitrile was elucidated spectroscopically. In addition, anomalous multiplicities in the NMR spectra of some isolated isonitriles were observed and are reported here. The four isonitriles were strongly active against Plasmodium falciparum K1 with IC50 in a range of 0.09–1.07 μmol/L. Except for 1, which was cytotoxic against both MCF-7 and fibroblast cell lines, the other three diterpenes showed no significant cytotoxicity against either targeted cell lines. On the other hand, the steroidal peroxides 5 and 6, which were less active in the antimalarial bioassay (IC50 values of 6.28 and 7.13 µmol/L, respectively), were strongly cytotoxic against MCF-7 (IC50 values of 0.025 and 0.003 µmol/L, respectively), with very little toxicity against human fibroblasts.
Collapse
Affiliation(s)
- Chatchai Wattanapiromsakul
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Naphatson Chanthathamrongsiri
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Somchai Bussarawit
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Supreeya Yuenyongsawad
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Anuchit Plubrukarn
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Khanit Suwanborirux
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
28
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT. Marine pharmacology in 2005-6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim Biophys Acta Gen Subj 2009; 1790:283-308. [PMID: 19303911 DOI: 10.1016/j.bbagen.2009.03.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2008] [Revised: 03/09/2009] [Accepted: 03/12/2009] [Indexed: 01/03/2023]
Abstract
BACKGROUND The review presents the 2005-2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors' 1998-2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005-2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. GENERAL SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity will probably result in novel therapeutic agents for the treatment of multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
29
|
Efange SMN, Brun R, Wittlin S, Connolly JD, Hoye TR, McAkam T, Makolo FL, Mbah JA, Nelson DP, Nyongbela KD, Wirmum CK. Okundoperoxide, a bicyclic cyclofarnesylsesquiterpene endoperoxide from Scleria striatinux with antiplasmodial activity. JOURNAL OF NATURAL PRODUCTS 2009; 72:280-283. [PMID: 19199815 PMCID: PMC2765531 DOI: 10.1021/np800338p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/27/2023]
Abstract
Okundoperoxide (1) was isolated by bioassay-guided fractionation of extracts from Scleria striatinux (syn. S. striatonux). The compound contains a cyclic endoperoxide structural moiety and possesses moderate antimalarial activity.
Collapse
Affiliation(s)
- Simon M N Efange
- Department of Chemistry, University of Buea, PO Box 63, Buea, Southwest Province, Cameroon.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Linington RG, Clark BR, Trimble EE, Almanza A, Ureña LD, Kyle DE, Gerwick WH. Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. JOURNAL OF NATURAL PRODUCTS 2009; 72:14-7. [PMID: 19161344 PMCID: PMC2760338 DOI: 10.1021/np8003529] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Abstract
As part of a continuing program to identify novel treatments for neglected parasitic diseases, the Panama International Cooperative Biodiversity Group (ICBG) program has been investigating the antimalarial potential of secondary metabolites from Panamanian marine cyanobacteria. From over 60 strains of cyanobacteria evaluated in our biological screens, the organic extract of a Schizothrix species from a tropical reef near Piedras Gallinas (Caribbean coast of Panama) showed potent initial antimalarial activity against the W2 chloroquine-resistant strain of Plasmodium falciparum. Bioassay-guided fractionation followed by 2D NMR analysis afforded the planar structure of a new and highly functionalized linear peptide, gallinamide A. Subsequent degradation and derivatization methods were used to determine the absolute configuration at most stereogenic centers in this unusual new metabolite.
Collapse
Affiliation(s)
- Roger G Linington
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 2008; 3:e2335. [PMID: 18523554 PMCID: PMC2391291 DOI: 10.1371/journal.pone.0002335] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2008] [Accepted: 04/29/2008] [Indexed: 11/19/2022] Open
Abstract
Background Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite. Methods We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage. Conclusion These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to phase I trials for the treatment of refractory multiple myeloma will need to be further explored to evaluate the safety profile for its use against malaria.
Collapse
|
32
|
Abstract
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|