1
|
Dos Santos Jorge Sousa K, de Souza A, de Almeida Cruz M, de Lima LE, do Espirito Santo G, Amaral GO, Granito RN, Renno AC. 3D printed scaffolds of biosilica and spongin from marine sponges: analysis of genotoxicity and cytotoxicity for bone tissue repair. Bioprocess Biosyst Eng 2024; 47:1483-1498. [PMID: 38869621 DOI: 10.1007/s00449-024-03042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.
Collapse
Affiliation(s)
- Karolyne Dos Santos Jorge Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil.
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Ana Claudia Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| |
Collapse
|
2
|
Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl Biochem Biotechnol 2024; 196:5563-5603. [PMID: 38133881 DOI: 10.1007/s12010-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Assisted reproductive technologies are key to solving the problems of aging and organ defects. Collagen is compatible with living tissues and has many different chemical properties; it has great potential for use in reproductive medicine and the engineering of reproductive tissues. It is a natural substance that has been used a lot in science and medicine. Collagen is a substance that can be obtained from many different animals. It can be made naturally or created using scientific methods. Using pure collagen has some drawbacks regarding its physical and chemical characteristics. Because of this, when collagen is processed in various ways, it can better meet the specific needs as a material for repairing tissues. In simpler terms, collagen can be used to help regenerate bones, cartilage, and skin. It can also be used in cardiovascular repair and other areas. There are different ways to process collagen, such as cross-linking it, making it more structured, adding minerals to it, or using it as a carrier for other substances. All of these methods help advance the field of tissue engineering. This review summarizes and discusses the current progress of collagen-based materials for reproductive medicine.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran.
| | - Mina Shafiee
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Farideh Afshari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
4
|
Dos Santos Jorge Sousa K, Parisi JR, de Souza A, Cruz MDA, Erbereli R, de Araújo Silva J, do Espirito Santo G, do Amaral GO, Martignago CCS, Fortulan CA, Granito RN, Renno ACM. 3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:259-271. [PMID: 36892731 DOI: 10.1007/s10126-023-10202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/18/2023] [Indexed: 05/06/2023]
Abstract
The inorganic part of marine sponges, called Biosilica (BS), presents an osteogenic potential and the ability of consolidating fractures. Moreover, 3D printing technique is highly effective for manufacturing scaffolds for tissue engineering proposals. Thus, the aims of this study were to characterize the 3D rinted scaffolds, to evaluate the biological effects in vitro and to investigate the in vivo response using an experimental model of cranial defects in rats. The physicochemical characteristics of 3D printed BS scaffolds were analyzed by FTIR, EDS, calcium assay, evaluation of mass loss and pH measurement. For in vitro analysis, the MC3T3-E1 and L929 cells viability was evaluated. For the in vivo evaluation, histopathology, morphometrical and immunohistochemistry analyses were performed in a cranial defect in rats. After the incubation, the 3D printed BS scaffolds presented lower values in pH and mass loss over time. Furthermore, the calcium assay showed an increased Ca uptake. The FTIR analysis indicated the characteristic peaks for materials with silica and the EDS analysis demonstrated the main presence of silica. Moreover, 3D printed BS demonstrated an increase in MC3T3-E1 and L929 cell viability in all periods analyzed. In addition, the histological analysis demonstrated no inflammation in days 15 and 45 post-surgery, and regions of newly formed bone were also observed. The immunohistochemistry analysis demonstrated increased Runx-2 and OPG immunostaining. Those findings support that 3D printed BS scaffolds may improve the process of bone repair in a critical bone defect as a result of stimulation of the newly formed bone.
Collapse
Affiliation(s)
- Karolyne Dos Santos Jorge Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil.
| | - Júlia Risso Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glycerio Avenue, 11045002, Santos, SP, Brazil
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Rogério Erbereli
- Department of Mechanic Engineering, University of São Paulo (USP), 400 Trabalhador São-Carlense Avenue, 13566-590, São Carlos, SP, Brazil
| | - Jonas de Araújo Silva
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Gustavo Oliva do Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | | | - Carlos Alberto Fortulan
- Department of Mechanic Engineering, University of São Paulo (USP), 400 Trabalhador São-Carlense Avenue, 13566-590, São Carlos, SP, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| |
Collapse
|
5
|
Kido HW, Gabbai-Armelin PR, Magri A, Fernandes KR, Cruz MA, Santana AF, Caliari HM, Parisi JR, Avanzi IR, Daguano J, Granito RN, Fortulan CA, Rennó A. Bioglass/collagen scaffolds combined with bone marrow stromal cells on bone healing in an experimental model in cranial defects in rats. J Biomater Appl 2023; 37:1632-1644. [PMID: 36916869 DOI: 10.1177/08853282231163752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This study aimed to develop bone regenerative therapeutic strategies, based on the addition of bone marrow stromal cells (BMSC) on bioglass/collagen (BG/COL) scaffolds. For this purpose, an in vivo study was conducted using tissue response of the BG/COL scaffolds combined with BMSC in a critical-size defects. Wistar rats were submitted to the surgical procedure to perform the cranial critical size bone defects and distributed in four groups (20 animals per group): Control Group (CG) (rats submitted to the cranial bone defect surgery without treatment), Bioglass Group (BG) (rats treated with BG), BG/COL Group (rats treated with BG/COL) and Bioglass/Collagen and BMSC Group (BG/COL/BMSC) (rats treated with BG/COL scaffolds enriched with BMSCs). Animals were euthanized 15 and 30 days after surgery. Scanning electron microscopy, histopathological and immunohistochemistry analysis were used. SEM analysis demonstrated that porous scaffolds were obtained, and Col fibers were successfully impregnated to BG matrices. The implantation of the BMSC on BG/COL based scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair. These results highlight the potential of BG/COL scaffolds and BMSCs to be used as a therapeutic approach for bone regeneration.
Collapse
Affiliation(s)
- H W Kido
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Amp Magri
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,University Center of the Guaxupé Educational Foundation (UNIFEG), Guaxupé, Brazil
| | - K R Fernandes
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - M A Cruz
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A F Santana
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - H M Caliari
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - J R Parisi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - I R Avanzi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Jkmb Daguano
- Center for Engineering, Modeling and Applied Social Sciences, 74362Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - R N Granito
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, 28133University of São Paulo (USP) São Carlos, São Carlos, Brazil
| | - Acm Rennó
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
6
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
7
|
Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers (Basel) 2021; 13:polym13223868. [PMID: 34833168 PMCID: PMC8620403 DOI: 10.3390/polym13223868] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen, an abundant extracellular matrix protein, has been found to have a lot of pharmaceuticals, medicine, food, and cosmetics applications. Increased knowledge of collagen sources, extraction techniques, structure, and properties in the last decades has helped develop more collagen-based products and tissue engineering biomaterials. Collagen products have been playing an important role in benefiting the health of the human body, especially for aging people. In this paper, the effects of collagen treatment in different clinical studies including skin regeneration, bone defects, sarcopenia, wound healing, dental therapy, gastroesophageal reflux, osteoarthritis, and rheumatoid arthritis have been reviewed. The collagen treatments were significant in these clinical studies. In addition, the associations between these diseases were discussed. The comorbidity of these diseases might be closely related to collagen deficiency, and collagen treatment might be a good choice when a patient has more than one of these diseases, including the coronavirus disease 2019 (COVID-19). It concludes that collagen-based medication is useful in treating comorbid diseases and preventing complications.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
8
|
Potential Biomedical Applications of Collagen Filaments derived from the Marine Demosponges Ircinia oros (Schmidt, 1864) and Sarcotragus foetidus (Schmidt, 1862). Mar Drugs 2021; 19:md19100563. [PMID: 34677462 PMCID: PMC8540060 DOI: 10.3390/md19100563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023] Open
Abstract
Collagen filaments derived from the two marine demosponges Ircinia oros and Sarcotragus foetidus were for the first time isolated, biochemically characterised and tested for their potential use in regenerative medicine. SDS-PAGE of isolated filaments revealed a main collagen subunit band of 130 kDa in both of the samples under study. DSC analysis on 2D membranes produced with collagenous sponge filaments showed higher thermal stability than commercial mammalian-derived collagen membranes. Dynamic mechanical and thermal analysis attested that the membranes obtained from filaments of S. foetidus were more resistant and stable at the rising temperature, compared to the ones derived from filaments of I. oros. Moreover, the former has higher stability in saline and in collagenase solutions and evident antioxidant activity. Conversely, their water binding capacity results were lower than that of membranes obtained from I. oros. Adhesion and proliferation tests using L929 fibroblasts and HaCaT keratinocytes resulted in a remarkable biocompatibility of both developed membrane models, and gene expression analysis showed an evident up-regulation of ECM-related genes. Finally, membranes from I. oros significantly increased type I collagen gene expression and its release in the culture medium. The findings here reported strongly suggest the biotechnological potential of these collagenous structures of poriferan origin as scaffolds for wound healing.
Collapse
|
9
|
Akbari M, Jafari H, Rostami M, Mahdavinia GR, Sobhani nasab A, Tsurkan D, Petrenko I, Ganjali MR, Rahimi-Nasrabadi M, Ehrlich H. Adsorption of Cationic Dyes on a Magnetic 3D Spongin Scaffold with Nano-Sized Fe 3O 4 Cores. Mar Drugs 2021; 19:512. [PMID: 34564174 PMCID: PMC8467319 DOI: 10.3390/md19090512] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
The renewable, proteinaceous, marine biopolymer spongin is yet the focus of modern research. The preparation of a magnetic three-dimensional (3D) spongin scaffold with nano-sized Fe3O4 cores is reported here for the first time. The formation of this magnetic spongin-Fe3O4 composite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA) (TGA-DTA), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analyses. Field emission scanning electron microscopy (FE-SEM) confirmed the formation of well-dispersed spherical nanoparticles tightly bound to the spongin scaffold. The magnetic spongin-Fe3O4 composite showed significant removal efficiency for two cationic dyes (i.e., crystal violet (CV) and methylene blue (MB)). Adsorption experiments revealed that the prepared material is a fast, high-capacity (77 mg/g), yet selective adsorbent for MB. This behavior was attributed to the creation of strong electrostatic interactions between the spongin-Fe3O4 and MB or CV, which was reflected by adsorption mechanism evaluations. The adsorption of MB and CV was found to be a function of pH, with maximum removal performance being observed over a wide pH range (pH = 5.5-11). In this work, we combined Fe3O4 nanoparticles and spongin scaffold properties into one unique composite, named magnetic spongin scaffold, in our attempt to create a sustainable absorbent for organic wastewater treatment. The appropriative mechanism of adsorption of the cationic dyes on a magnetic 3D spongin scaffold is proposed. Removal of organic dyes and other contaminants is essential to ensure healthy water and prevent various diseases. On the other hand, in many cases, dyes are used as models to demonstrate the adsorption properties of nanostructures. Due to the good absorption properties of magnetic spongin, it can be proposed as a green and uncomplicated adsorbent for the removal of different organic contaminants and, furthermore, as a carrier in drug delivery applications.
Collapse
Affiliation(s)
- Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan 8719657891, Iran;
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 5518183111, Iran; (H.J.); (G.R.M.)
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran 1983969411, Iran;
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 5518183111, Iran; (H.J.); (G.R.M.)
| | - Ali Sobhani nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan 8719657891, Iran;
- Core Research Lab, Kashan University of Medical Sciences, Kashan 8719657891, Iran
| | - Dmitry Tsurkan
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
| | - Iaroslav Petrenko
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1983969411, Iran;
- Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1983969411, Iran
| | - Mehdi Rahimi-Nasrabadi
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
| | - Hermann Ehrlich
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
10
|
Xu N, Peng XL, Li HR, Liu JX, Cheng JSY, Qi XY, Ye SJ, Gong HL, Zhao XH, Yu J, Xu G, Wei DX. Marine-Derived Collagen as Biomaterials for Human Health. Front Nutr 2021; 8:702108. [PMID: 34504861 PMCID: PMC8421607 DOI: 10.3389/fnut.2021.702108] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Collagen is a kind of biocompatible protein material, which is widely used in medical tissue engineering, drug delivery, cosmetics, food and other fields. Because of its wide source, low extraction cost and good physical and chemical properties, it has attracted the attention of many researchers in recent years. However, the application of collagen derived from terrestrial organisms is limited due to the existence of diseases, religious beliefs and other problems. Therefore, exploring a wider range of sources of collagen has become one of the main topics for researchers. Marine-derived collagen (MDC) stands out because it comes from a variety of sources and avoids issues such as religion. On the one hand, this paper summarized the sources, extraction methods and characteristics of MDC, and on the other hand, it summarized the application of MDC in the above fields. And on the basis of the review, we found that MDC can not only be extracted from marine organisms, but also from the wastes of some marine organisms, such as fish scales. This makes further use of seafood resources and increases the application prospect of MDC.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Shao-Jie Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jiangming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Araújo TAT, de Souza A, Santana AF, Braga ARC, Custódio MR, Simões FR, Araújo GM, Miranda A, Alves F, Granito RN, Yu N, Renno ACM. Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges ( Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In Vitro Biological Analysis. MEMBRANES 2021; 11:membranes11070522. [PMID: 34357172 PMCID: PMC8304306 DOI: 10.3390/membranes11070522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to compare different protocols (Protocol 1: P1; Protocol 2: P2; Protocol 3: P3; Protocol 4: P4) for the extraction of spongin-like collagen (SC) from marine sponges. The SEM micrographs demonstrated a fibrillar structure for the extracts from Chondrilla caribensis and the nodular/particulate aggregates for Aplysina fulva. FTIR showed for all samples peaks similar to collagen for both species. For C. caribensis, the extracts obtained using P2, P3, and P4 protocols presented higher values of extraction yield, TPQ, and GAGs. P2 and P4 showed higher values of SC concentration and for antioxidant analysis. For A. fulva, P2, P3, and P4 provided a higher extraction yield besides an increase in the antioxidant assay. For both species, no difference was observed for Col quantification and TPQ analysis; also, higher values of GAGs were found using P2 and P4. Fibroblast proliferation observed for C. caribensis was lower for P1 on day 1 and for P2 and P3 on day 3 (for 50%) compared to the control group. There was a significant reduction in fibroblast cell proliferation for all A. fulva extracts evaluated. It can be concluded that protocols P2 and P4 were more efficient for extracting SC from C. caribensis.
Collapse
Affiliation(s)
- Tiago A. T. Araújo
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
- Correspondence: ; Tel.: +55-1398848-9279
| | - Amanda de Souza
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Alan F. Santana
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Anna Rafaela C. Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Márcio R. Custódio
- Laboratory of Marine Invertebrates Cell Biology, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil;
| | - Fábio R. Simões
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), Santos 11070-100, SP, Brazil; (F.R.S.); (G.M.A.)
| | - Gabriela M. Araújo
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), Santos 11070-100, SP, Brazil; (F.R.S.); (G.M.A.)
| | - Antônio Miranda
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil; (A.M.); (F.A.)
| | - Flávio Alves
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil; (A.M.); (F.A.)
| | - Renata N. Granito
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Na Yu
- National Dental Centre Singapore, 5 Second Hospital Avenue, Singapore 168938, Singapore;
| | - Ana Claudia M. Renno
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| |
Collapse
|
12
|
Fassini D, Wilkie IC, Pozzolini M, Ferrario C, Sugni M, Rocha MS, Giovine M, Bonasoro F, Silva TH, Reis RL. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021; 22:1815-1834. [PMID: 33835787 DOI: 10.1021/acs.biomac.1c00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.
Collapse
Affiliation(s)
- Dario Fassini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iain C Wilkie
- Institute of Biodiversity Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miguel S Rocha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
13
|
Lin Z, Tao Y, Huang Y, Xu T, Niu W. Applications of marine collagens in bone tissue engineering. Biomed Mater 2021; 16:042007. [PMID: 33793421 DOI: 10.1088/1748-605x/abf0b6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For decades, collagen has been among the most widely used biomaterials with several biomedical applications. Recently, researchers have shown a keen interest in collagen obtained from marine sources because of its biocompatibility, biodegradability, ease of extractability, safety, low immunogenicity, and low production costs. A wide variety of marine collagen-based scaffolds have been developed for bone tissue engineering, and these scaffolds display excellent biological effects. This review aims to provide an overview of the biological effects of marine collagen in bone engineering, such as promoting osteogenesis and collagen synthesis, inhibiting inflammation, inducing the differentiation of cartilage, and improving bone mineral density. Marine collagen holds great promise as a biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China. East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Cruz MA, Araujo TA, Avanzi IR, Parisi JR, de Andrade ALM, Rennó ACM. Collagen from Marine Sources and Skin Wound Healing in Animal Experimental Studies: a Systematic Review. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:1-11. [PMID: 33404918 DOI: 10.1007/s10126-020-10011-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Collagen (Col) from marine organisms has been emerging as an important alternative for commercial Col and it has been considered highly attractive by the industry. Despite the positive effects of Col from marine origin, there is still limited understanding of the effects of this natural biomaterial in the process of wound healing in animal studies. In this context, the purpose of this study was to perform a systematic review of the literature to examine the effects of Col from different marine species in the process of skin tissue healing using experimental models of skin wound. The search was carried out according to the orientations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), and the descriptors of the Medical Subject Headings (MeSH) were defined: "marine collagen," "spongin," "spongin," "skin," and "wound." A total of 42 articles were retrieved from the databases PubMed and Scopus. After the eligibility analyses, this review covers the different marine sources of Col reported in 10 different papers from the beginning of 2011 through the middle of 2019. The results were based mainly on histological analysis and it demonstrated that Col-based treatment resulted in a higher deposition of granulation tissue, stimulation of re-epitalization and neoangiogenesis and increased amount of Col of the wound, culminating in a more mature morphological aspect. In conclusion, this review demonstrates that marine Col from different species presented positive effects on the process of wound skin healing in experimental models used, demonstrating the huge potential of this biomaterial for tissue engineering proposals.
Collapse
Affiliation(s)
- Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Tiago Akira Araujo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
- São Paulo State Faculty of Technology (FATEC), 350 Senador Feijó Avenue, Santos, SP, 11015502, Brazil
| | - Julia Risso Parisi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), km 235 Washington Luís Road, São Carlos, SP, 13565905, Brazil
| | - Ana Laura Martins de Andrade
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), km 235 Washington Luís Road, São Carlos, SP, 13565905, Brazil
| | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil.
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), km 235 Washington Luís Road, São Carlos, SP, 13565905, Brazil.
| |
Collapse
|
15
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
16
|
Cruz MA, Fernandes KR, Parisi JR, Vale GCA, Junior SRA, Freitas FR, Sales AFS, Fortulan CA, Peitl O, Zanotto E, Granito RN, Ribeiro AM, Renno ACM. Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. J Bone Miner Metab 2020; 38:639-647. [PMID: 32303916 DOI: 10.1007/s00774-020-01102-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Collagen from marine esponges has been used as a promising material for tissue engineering proposals. Similarly, photobiomodulation (PBM) is able of modulating inflammatory processes after an injury, accelerating soft and hard tissue healing and stimulating neoangiogenesis. However, the effects of the associated treatments on bone tissue healing have not been studied yet. In this context, the present study aimed to evaluate the biological temporal modifications (using two experimental periods) of marine sponge collagen or sponging (SPG) based scaffold and PBM on newly formed bone using a calvaria bone defect model. MATERIAL AND METHODS Wistar rats were distributed into two groups: SPG or SPG/PBM and euthanized into two different experimental periods (15 and 45 days post-surgery). A cranial critical bone defect was used to evaluate the effects of the treatments. Histology, histomorfometry and immunohistological analysis were performed. RESULTS Histological findings demonstrated that SPG/PBM-treated animals, 45 days post-surgery, demonstrated a higher amount of connective and newly formed bone tissue at the region of the defect compared to CG. Notwithstanding, no difference among groups were observed in the histomorphometry. Interestingly, for both anti-transforming growth factor-beta (TGF-β) and anti-vascular endothelial growth factor (VEGF) immunostaining, higher values for SPG/PBM, at 45 days post-surgery could be observed. CONCLUSION It can be concluded that the associated treatment can be considered as a promising therapeutical intervention.
Collapse
Affiliation(s)
- M A Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.
| | - K R Fernandes
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - J R Parisi
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - G C A Vale
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - S R A Junior
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - F R Freitas
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A F S Sales
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - C A Fortulan
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - O Peitl
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - E Zanotto
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - R N Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A M Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
17
|
Parisi JR, Fernandes KR, de Almeida Cruz M, Avanzi IR, de França Santana A, do Vale GCA, de Andrade ALM, de Góes CP, Fortulan CA, de Sousa Trichês E, Granito RN, Rennó ACM. Evaluation of the In Vivo Biological Effects of Marine Collagen and Hydroxyapatite Composite in a Tibial Bone Defect Model in Rats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:357-366. [PMID: 32335738 DOI: 10.1007/s10126-020-09955-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
One of the most promising strategies to improve the biological performance of bone grafts is the combination of different biomaterials. In this context, the aim of this study was to evaluate the effects of the incorporation of marine spongin (SPG) into Hydroxyapatite (HA) for bone tissue engineering proposals. The hypothesis of the current study is that SPG into HA would improve the biocompatibility of material and would have a positive stimulus into bone formation. Thus, HA and HA/SPG materials were produced and scanning electron microscopy (SEM) analysis was performed to characterize the samples. Also, in order to evaluate the in vivo tissue response, samples were implanted into a tibial bone defect in rats. Histopathological, immunohistochemistry, and biomechanical analyses were performed after 2 and 6 weeks of implantation to investigate the effects of the material on bone repair. The histological analysis demonstrated that composite presented an accelerated material degradation and enhanced newly bone formation. Additionally, histomorphometry analysis showed higher values of %BV/TV and N.Ob/T.Ar for HA/SPG. Runx-2 immunolabeling was higher for the composite group and no difference was found for VEGF. Moreover, the biomechanical analysis demonstrated similar values for all groups. These results indicated the potential of SPG to be used as an additive to HA to improve the biological performance for bone regeneration applications. However, further long-term studies should be carried out to provide additional information regarding the material degradation and bone regeneration.
Collapse
Affiliation(s)
- Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, Sao Carlos, SP, Brazil.
| | - Kelly Rossetti Fernandes
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, Sao Carlos, SP, Brazil
| | | | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Alan de França Santana
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Ana Laura Martins de Andrade
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, Sao Carlos, SP, Brazil
| | - Cíntia Pereira de Góes
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Carlos Alberto Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, Sao Carlos, SP, Brazil
| | - Eliandra de Sousa Trichês
- Department of Mechanical Engineering, Federal University of São Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | |
Collapse
|
18
|
Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, de Pascale D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar Drugs 2020; 18:E214. [PMID: 32326635 PMCID: PMC7230273 DOI: 10.3390/md18040214] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
| | - Isabella D’Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Salvatore Iannace
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
19
|
Application of a Promising Bone Graft Substitute in Bone Tissue Regeneration: Characterization, Biocompatibility, and In Vivo Animal Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1614024. [PMID: 31815122 PMCID: PMC6877934 DOI: 10.1155/2019/1614024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
The purpose of the present study was to investigate the effect of local hydroxyapatite (HA) combined with extracted sea cucumber (Stichopus hermanni) collagen as a promising bone graft substitute on bone remodeling. Fourier-transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and Sprague-Dawley rat model were used to characterize the microstructure, in vitro cytotoxicity, and in vivo bone-healing properties of the investigated biocomposite material. Analytical results found that the hydrothermal reaction-synthesized local HA had a hexagonal close-packed structure. The addition of extracted S. hermanni collagen did not influence the microstructure and functional groups of the local HA. Moreover, the MTT assay indicated that the investigated biocomposite material possessed a good in vitro biocompatibility. The in vivo animal study also revealed that the investigated biocomposite material exhibited the highest number of osteoblasts after 14 days of healing. Therefore, the results demonstrate that the local HA combined with extracted S. hermanni collagen could potentially enhance osteoblast formation in promoting bone healing and regeneration.
Collapse
|
20
|
Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar Drugs 2019; 17:E467. [PMID: 31405173 PMCID: PMC6723527 DOI: 10.3390/md17080467] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold-a three-dimensional (3D) structure fabricated from biomaterials-is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.
Collapse
Affiliation(s)
- Ye-Seon Lim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ye-Jin Ok
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seon-Yeong Hwang
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
21
|
Fernandes KR, Parisi JR, Magri AMP, Kido HW, Gabbai-Armelin PR, Fortulan CA, Zanotto ED, Peitl O, Granito RN, Renno ACM. Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:64. [PMID: 31127392 DOI: 10.1007/s10856-019-6266-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The combination of different biomaterials can be a promising intervention for the composites manufacture, mainly by adding functional and structural characteristics of each material and guarantee the advantages of the use of these composites. In this context, the aim of this study was to develop and evaluated the influence of the incorporation of marine spongin (SPG) into Biosilicate® (BS) in different proportions be used during bone repair. For this purpose, it was to develop and investigate different BS/SPG formulations for physico-chemical and morphological characteristics by pH, loss mass, Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis. Additionally, the influence of these composites on cell viability, proliferation, and alkaline phosphatase (ALP) activity were investigated. The results revealed that the pH values of all BS groups (with or without SPG) increased over time. A significant mass loss was observed in all composites, mainly with higher SPG percentages. Additionaly, SEM micrographies demonstrated fibers of SPG into BS and material degradation over time. Moreover, FTIR spectral analysis revealed characteristic peaks of PMMA, BS, and SPG in BS/SPG composites. BS/SPG groups demonstrated a positive effect for fibroblast proliferation after 3 and 7 days of culture. Additionally, BS and BS/SPG formulations (at 10% and 20% of SPG) presented similar values of osteoblasts viability and proliferation after 7 days of culture. Furthermore, ALP activity demonstrated no significant difference between BS and BS/SPG scaffolds, at any composition. Based on the present in vitro results, it can be concluded that the incorporation of SPG into BS was possible and produced an improvement in the physical-chemical characteristics and in the biological performance of the graft especially the formulation with 80/20 and 90/10. Future research should focus on in vivo evaluations of this novel composite.
Collapse
Affiliation(s)
- K R Fernandes
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.
| | - J R Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - A M P Magri
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - H W Kido
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, São Carlos, SP, Brazil
| | - E D Zanotto
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - O Peitl
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - R N Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|