1
|
Wang C, Pei J, Li H, Zhu X, Zhang Y, Wang Y, Li W, Wang Z, Liu K, Du B, Jiang J, Zhao D. Mechanisms on salt tolerant of Paenibacillus polymyxa SC2 and its growth-promoting effects on maize seedlings under saline conditions. Microbiol Res 2024; 282:127639. [PMID: 38354626 DOI: 10.1016/j.micres.2024.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Soil salinity negatively affects microbial communities, soil fertility, and agricultural productivity and has become a major agricultural problem worldwide. Plant growth-promoting rhizobacteria (PGPR) with salt tolerance can benefit plant growth under saline conditions and diminish the negative effects of salt stress on plants. In this study, we aimed to understand the salt-tolerance mechanism of Paenibacillus polymyxa at the genetic and metabolic levels and elucidate the mechanism of strain SC2 in promoting maize growth under saline conditions. Under salt stress, we found that strain SC2 promoted maize seedling growth, which was accompanied by a significant upregulation of genes encoding for the biosynthesis of peptidoglycan, polysaccharide, and fatty acid, the metabolism of purine and pyrimidine, and the transport of osmoprotectants such as trehalose, glycine betaine, and K+ in strain SC2. To further enhance the salt resistance of strain SC2, three mutants (SC2-11, SC2-13, and SC2-14) with higher capacities for salt resistance and exopolysaccharide synthesis were obtained via atmospheric and room-temperature plasma mutagenesis. In saline-alkaline soil, the mutants showed better promoting effect on maize seedlings than wild-type SC2. The fresh weight of maize seedlings was increased by 68.10% after treatment with SC2-11 compared with that of the control group. The transcriptome analysis of maize roots demonstrated that SC2 and SC2-11 could induce the upregulation of genes related to the plant hormone signal transduction, starch and sucrose metabolism, reactive oxygen species scavenging, and auxin and ethylene signaling under saline-alkaline stress. In addition, various transcription factors, such as zinc finger proteins, ethylene-responsive-element-binding protein, WRKY, myeloblastosis proteins, basic helix-loop-helix proteins, and NAC proteins, were up-regulated in response to abiotic stress. Moreover, the microbial community composition of maize rhizosphere soil after inoculating with strain SC2 was varied from the one after inoculating with mutant SC2-11. Our results provide new insights into the various genes involved in the salt resistance of strain SC2 and a theoretical basis for utilizing P. polymyxa in saline-alkaline environments.
Collapse
Affiliation(s)
- Chengqiang Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Jian Pei
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Li
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuling Zhu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanan Zhang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjun Wang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjie Li
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Zhongyue Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
2
|
Qiao L, Gao X, Jia Z, Liu X, Wang H, Kong Y, Qin P, Yang B. Identification of adult resistant genes to stripe rust in wheat from southwestern China based on GWAS and WGCNA analysis. PLANT CELL REPORTS 2024; 43:67. [PMID: 38341832 DOI: 10.1007/s00299-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE In this study, genome-wide association studies combined with transcriptome data analysis were utilized to reveal potential candidate genes for stripe rust resistance in wheat, providing a basis for screening wheat varieties for stripe rust resistance. Wheat stripe rust, which is caused by the wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) is one of the world's most devastating diseases of wheat. Genetic resistance is the most effective strategy for controlling diseases. Although wheat stripe rust resistance genes have been identified to date, only a few of them confer strong and broad-spectrum resistance. Here, the resistance of 335 wheat germplasm resources (mainly wheat landraces) from southwestern China to wheat stripe rust was evaluated at the adult stage. Combined genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) based on RNA sequencing from stripe rust resistant accession Y0337 and susceptible accession Y0402, five candidate resistance genes to wheat stripe rust (TraesCS1B02G170200, TraesCS2D02G181000, TraesCS4B02G117200, TraesCS6A02G189300, and TraesCS3A02G122300) were identified. The transcription level analyses showed that these five genes were significantly differentially expressed between resistant and susceptible accessions post inoculation with Pst at different times. These candidate genes could be experimentally transformed to validate and manipulate fungal resistance, which is beneficial for the development of the wheat cultivars resistant to stripe rust.
Collapse
Affiliation(s)
- Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhiqiang Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xingchen Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
3
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
4
|
Jiang H, Zhou C, Ma J, Qu S, Liu F, Sun H, Zhao X, Han Y. Weighted gene co-expression network analysis identifies genes related to HG Type 0 resistance and verification of hub gene GmHg1. FRONTIERS IN PLANT SCIENCE 2023; 13:1118503. [PMID: 36777536 PMCID: PMC9911859 DOI: 10.3389/fpls.2022.1118503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The soybean cyst nematode (SCN) is a major disease in soybean production thatseriously affects soybean yield. At present, there are no studies on weighted geneco-expression network analysis (WGCNA) related to SCN resistance. METHODS Here, transcriptome data from 36 soybean roots under SCN HG Type 0 (race 3) stresswere used in WGCNA to identify significant modules. RESULTS AND DISCUSSION A total of 10,000 differentially expressed genes and 21 modules were identified, of which the module most related to SCN was turquoise. In addition, the hub gene GmHg1 with high connectivity was selected, and its function was verified. GmHg1 encodes serine/threonine protein kinase (PK), and the expression of GmHg1 in SCN-resistant cultivars ('Dongnong L-204') and SCN-susceptible cultivars ('Heinong 37') increased significantly after HG Type 0 stress. Soybean plants transformed with GmHg1-OX had significantly increased SCN resistance. In contrast, the GmHg1-RNAi transgenic soybean plants significantly reduced SCN resistance. In transgenic materials, the expression patterns of 11 genes with the same expression trend as the GmHg1 gene in the 'turquoise module' were analyzed. Analysis showed that 11genes were co-expressed with GmHg1, which may be involved in the process of soybean resistance to SCN. Our work provides a new direction for studying the Molecular mechanism of soybean resistance to SCN.
Collapse
Affiliation(s)
- Haipeng Jiang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Changjun Zhou
- Soybean Molecular Breeding Faculty Daqing Branch, Heilongjiang Academy of Agricultrual Science, Daqing, China
| | - Jinglin Ma
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Shuo Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Haowen Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Duan C, Tian FH, Yao L, Lv JH, Jia CW, Li CT. Comparative transcriptome and WGCNA reveal key genes involved in lignocellulose degradation in Sarcomyxa edulis. Sci Rep 2022; 12:18379. [PMID: 36319671 PMCID: PMC9626453 DOI: 10.1038/s41598-022-23172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The developmental transcriptomes of Sarcomyxa edulis were assessed to explore the molecular mechanisms underlying lignocellulose degradation. Six stages were analyzed, spanning the entire developmental process: growth of mycelium until occupying half the bag (B1), mycelium under low-temperature stimulation after occupying the entire bag (B2), appearance of mycelium in primordia (B3), primordia (B4), mycelium at the harvest stage (B5), and mature fruiting body (B6). Samples from all six developmental stages were used for transcriptome sequencing, with three biological replicates for all experiments. A co-expression network of weighted genes associated with extracellular enzyme physiological traits was constructed using weighted gene co-expression network analysis (WGCNA). We obtained 19 gene co-expression modules significantly associated with lignocellulose degradation. In addition, 12 key genes and 8 kinds of TF families involved in lignocellulose degradation pathways were discovered from the four modules that exhibited the highest correlation with the target traits. These results provide new insights that advance our understanding of the molecular genetic mechanisms of lignocellulose degradation in S. edulis to facilitate its utilization by the edible mushroom industry.
Collapse
Affiliation(s)
- Chao Duan
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China ,grid.412545.30000 0004 1798 1300Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, 044000 Shanxi Province China
| | - Feng-hua Tian
- grid.443382.a0000 0004 1804 268XDepartment of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XInstitute of Edible Fungi, Guizhou University, Guiyang, China
| | - Lan Yao
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Jian-Hua Lv
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chuan-Wen Jia
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chang-Tian Li
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
6
|
Wang Y, Wang Y, Liu X, Zhou J, Deng H, Zhang G, Xiao Y, Tang W. WGCNA Analysis Identifies the Hub Genes Related to Heat Stress in Seedling of Rice (Oryza sativa L.). Genes (Basel) 2022; 13:genes13061020. [PMID: 35741784 PMCID: PMC9222641 DOI: 10.3390/genes13061020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Frequent high temperature weather affects the growth and development of rice, resulting in the decline of seed–setting rate, deterioration of rice quality and reduction of yield. Although some high temperature tolerance genes have been cloned, there is still little success in solving the effects of high temperature stress in rice (Oryza sativa L.). Based on the transcriptional data of seven time points, the weighted correlation network analysis (WGCNA) method was used to construct a co–expression network of differentially expressed genes (DEGs) between the rice genotypes IR64 (tolerant to heat stress) and Koshihikari (susceptible to heat stress). There were four modules in both genotypes that were highly correlated with the time points after heat stress in the seedling. We further identified candidate hub genes through clustering and analysis of protein interaction network with known–core genes. The results showed that the ribosome and protein processing in the endoplasmic reticulum were the common pathways in response to heat stress between the two genotypes. The changes of starch and sucrose metabolism and the biosynthesis of secondary metabolites pathways are possible reasons for the sensitivity to heat stress for Koshihikari. Our findings provide an important reference for the understanding of high temperature response mechanisms and the cultivation of high temperature resistant materials.
Collapse
Affiliation(s)
- Yubo Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Jieqiang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
- Correspondence: (Y.X.); (W.T.)
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Correspondence: (Y.X.); (W.T.)
| |
Collapse
|
7
|
He J, Liu C, Du M, Zhou X, Hu Z, Lei A, Wang J. Metabolic Responses of a Model Green Microalga Euglena gracilis to Different Environmental Stresses. Front Bioeng Biotechnol 2021; 9:662655. [PMID: 34354984 PMCID: PMC8329484 DOI: 10.3389/fbioe.2021.662655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Euglena gracilis, a green microalga known as a potential candidate for jet fuel producers and new functional food resources, is highly tolerant to antibiotics, heavy metals, and other environmental stresses. Its cells contain many high-value products, including vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon as metabolites, which change contents in response to various extracellular environments. However, mechanism insights into the cellular metabolic response of Euglena to different toxic chemicals and adverse environmental stresses were very limited. We extensively investigated the changes of cell biomass, pigments, lipids, and paramylon of E. gracilis under several environmental stresses, such as heavy metal CdCl2, antibiotics paromomycin, and nutrient deprivation. In addition, global metabolomics by Ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to study other metabolites and potential regulatory mechanisms behind the differential accumulation of major high-valued metabolites. This study collects a comprehensive update on the biology of E. gracilis for various metabolic responses to stress conditions, and it will be of great value for Euglena cultivation and high-value [154mm][10mm]Q7metabolite production.
Collapse
Affiliation(s)
- Jiayi He
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - ChenChen Liu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mengzhe Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xiyi Zhou
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
New insights into the function of the proteins IsiC and IsiD from Synechocystis sp. PCC 6803 under iron limitation. Appl Microbiol Biotechnol 2021; 105:4693-4707. [PMID: 34019114 DOI: 10.1007/s00253-021-11347-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 10/25/2022]
Abstract
Iron is a common cofactor in biological processes such as respiration, photosynthesis, and nitrogen fixation. The genes isiC and isiD encode unknown proteins, and the growth of ΔisiC and ΔisiD mutants is inhibited under iron-deficient conditions. To study the regulatory mechanisms of IsiC and IsiD during iron starvation, we carried out transcriptome and metabolome sequencing. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the photosynthesis, nitrogen metabolism, and ABC transporter pathways play a vital role in regulating iron deficiency. Upon iron repletion, IsiC and IsiD also have a regulatory effect on these pathways. Additionally, KEGG analysis of the differential metabolites of wild type (WT) and mutants showed that they were all enriched in starch and sucrose metabolism after iron limitation. Weighted gene co-expression network analysis (WGCNA) constructed a co-expression network of differentially expressed genes with phenotypes and metabolites, and finally identified five modules. The turquoise module was positively correlated with iron deficiency. In contrast, the WT and blue module exhibited a negative correlation, and the mutants ΔisiC and ΔisiD were positively correlated with the gray and brown modules, respectively. WGCNA also analyzed the relationship between metabolites and phenotypes, and the green module was related to iron starvation. The co-expression network determined the hub genes and metabolites of each module. This study lays a foundation for a better understanding of cyanobacteria in response to iron deficiency. KEY POINTS: • Nitrogen metabolism and ABC transporters are involved in iron regulation. • Starch and sucrose metabolism is related to the regulation of iron deficiency. • WGCNA analyzes the correlation between genes and metabolites.
Collapse
|
9
|
Cui J, Sun T, Chen L, Zhang W. Salt-Tolerant Synechococcus elongatus UTEX 2973 Obtained via Engineering of Heterologous Synthesis of Compatible Solute Glucosylglycerol. Front Microbiol 2021; 12:650217. [PMID: 34084156 PMCID: PMC8168540 DOI: 10.3389/fmicb.2021.650217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The recently isolated cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is characterized by a faster growth rate and greater tolerance to high temperature and high light, making it a good candidate chassis for autotrophic photosynthetic microbial cell factories. However, Syn2973 is sensitive to salt stress, making it urgently important to improve the salt tolerance of Syn2973 for future biotechnological applications. Glucosylglycerol, a compatible solute, plays an important role in resisting salt stress in moderate and marine halotolerant cyanobacteria. In this study, the salt tolerance of Syn2973 was successfully improved by introducing the glucosylglycerol (GG) biosynthetic pathway (OD750 improved by 24% at 60 h). In addition, the salt tolerance of Syn2973 was further enhanced by overexpressing the rate-limiting step of glycerol-3-phosphate dehydrogenase and downregulating the gene rfbA, which encodes UDP glucose pyrophosphorylase. Taken together, these results indicate that the growth of the end-point strain M-2522-GgpPS-drfbA was improved by 62% compared with the control strain M-pSI-pSII at 60 h under treatment with 0.5 M NaCl. Finally, a comparative metabolomic analysis between strains M-pSI-pSII and M-2522-GgpPS-drfbA was performed to characterize the carbon flux in the engineered M-2522-GgpPS-drfbA strain, and the results showed that more carbon flux was redirected from ADP-GLC to GG synthesis. This study provides important engineering strategies to improve salt tolerance and GG production in Syn2973 in the future.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Jaiswal D, Wangikar PP. Dynamic Inventory of Intermediate Metabolites of Cyanobacteria in a Diurnal Cycle. iScience 2020; 23:101704. [PMID: 33196027 PMCID: PMC7644974 DOI: 10.1016/j.isci.2020.101704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are gaining importance both as hosts for photoautotrophic production of chemicals and as model systems for studies of diurnal lifestyle. The proteome and transcriptome of cyanobacteria have been closely examined under diurnal growth, whereas the downstream effects on the intermediary metabolism have not received sufficient attention. The present study focuses on identifying the cellular metabolites whose inventories undergo dramatic changes in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. We identified and quantified 67 polar metabolites, whose inventory changes significantly during diurnal growth, with some metabolites changing by 100-fold. The Calvin-Benson-Bassham cycle intermediates peak at midday to support fast growth. The hitherto unexplored γ-glutamyl peptides act as reservoirs of amino acids. Interestingly, several storage molecules or their precursors accumulate during the dark phase, dispelling the notion that all biosynthetic activity takes place in the light phase. Our results will guide metabolic modeling and strain engineering of cyanobacteria. We identify and quantify 67 polar intermediate metabolites in cyanobacteria via LC-MS A number of metabolites show large variations during the diurnal cycle Intermediates of the CBB cycle peak at midday, coinciding with peak in growth rate Gamma-glutamyl dipeptides identified as new storage compounds that peak at dawn
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020; 43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Photosynthetic cyanobacteria are capable of utilizing sunlight and CO2 as sole energy and carbon sources, respectively. With genetically modified cyanobacteria being used as a promising chassis to produce various biofuels and chemicals in recent years, future large-scale cultivation of cyanobacteria would have to be performed in seawater, since freshwater supplies of the earth are very limiting. However, high concentration of salt is known to inhibit the growth of cyanobacteria. This review aims at comparing the mechanisms that different cyanobacteria respond to salt stress, and then summarizing various strategies of developing salt-tolerant cyanobacteria for seawater cultivation, including the utilization of halotolerant cyanobacteria and the engineering of salt-tolerant freshwater cyanobacteria. In addition, the challenges and potential strategies related to further improving salt tolerance in cyanobacteria are also discussed.
Collapse
|
12
|
Hu L, He J, Dong M, Tang X, Jiang P, Lei A, Wang J. Divergent metabolic and transcriptomic responses of Synechocystis sp. PCC 6803 to salt stress after adaptive laboratory evolution. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Mavroudakis L, Valsami EA, Grafanaki S, Andreadaki TP, Ghanotakis DF, Pergantis SA. The effect of nitrogen starvation on membrane lipids of Synechocystis sp. PCC 6803 investigated by using easy ambient sonic-spray ionization mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183027. [DOI: 10.1016/j.bbamem.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/30/2023]
|
14
|
Li L, Liu M, Shi K, Yu Z, Zhou Y, Fan R, Shi Q. Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in Eucommia ulmoides. Int J Mol Sci 2019; 20:E4030. [PMID: 31426587 PMCID: PMC6721751 DOI: 10.3390/ijms20164030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/02/2022] Open
Abstract
Eucommia ulmoides Oliver is widely distributed in China. This species has been used mainly in medicine due to the high concentration of chlorogenic acid (CGA), flavonoids, lignans, and other compounds in the leaves and barks. However, the categories of metabolites, dynamic changes in metabolite accumulation and overall molecular mechanisms involved in metabolite biosynthesis during E. ulmoides leaf growth and development remain unknown. Here, a total of 515 analytes, including 127 flavonoids, 46 organic acids, 44 amino acid derivatives, 9 phenolamides, and 16 vitamins, were identified from four E. ulmoides samples using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) (for widely targeted metabolites). The accumulation of most flavonoids peaked in growing leaves, followed by old leaves. UPLC-MS analysis indicated that CGA accumulation increased steadily to a high concentration during leaf growth and development, and rutin showed a high accumulation level in leaf buds and growing leaves. Based on single-molecule long-read sequencing technology, 69,020 transcripts and 2880 novel loci were identified in E. ulmoides. Expression analysis indicated that isoforms in the flavonoid biosynthetic pathway and flavonoid metabolic pathway were highly expressed in growing leaves and old leaves. Co-expression network analysis suggested a potential direct link between the flavonoid and phenylpropanoid biosynthetic pathways via the regulation of transcription factors, including MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic/helix-loop-helix). Our study predicts dynamic metabolic models during leaf growth and development and will support further molecular biological studies of metabolite biosynthesis in E. ulmoides. In addition, our results significantly improve the annotation of the E. ulmoides genome.
Collapse
Affiliation(s)
- Long Li
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Minhao Liu
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Kan Shi
- Northwest Agriculture and Forestry University, College of Enology, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Zhijing Yu
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Ying Zhou
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Ruishen Fan
- Northwest Agriculture and Forestry University, College of Forestry, Taicheng Road No. 3, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- Northwest Agriculture and Forestry University, College of Landscape Architecture and Arts, Taicheng Road No. 3, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Mavrakis E, Mavroudakis L, Lydakis-Simantiris N, Pergantis SA. Investigating the Uptake of Arsenate by Chlamydomonas reinhardtii Cells and its Effect on their Lipid Profile using Single Cell ICP–MS and Easy Ambient Sonic-Spray Ionization–MS. Anal Chem 2019; 91:9590-9598. [DOI: 10.1021/acs.analchem.9b00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emmanouil Mavrakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Leonidas Mavroudakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Nikos Lydakis-Simantiris
- Laboratory of Environmental Chemistry and of Biochemical Processes, Department of Agriculture, Hellenic Mediterranean University, Chania 73133, Greece
| | - Spiros A. Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| |
Collapse
|
16
|
Wang A, Shu X, Niu X, Zhao W, Ai P, Li P, Zheng A. Comparison of gene co-networks analysis provide a systems view of rice (Oryza sativa L.) response to Tilletia horrida infection. PLoS One 2018; 13:e0202309. [PMID: 30372430 PMCID: PMC6205584 DOI: 10.1371/journal.pone.0202309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The biotrophic soil-borne fungus Tilletia horrida causes rice kernel smut, an important disease affecting the production of rice male sterile lines in most hybrid rice growing regions of the world. There are no successful ways of controlling this disease and there has been little study of mechanisms of resistance to T. horrida. Based on transcriptional data of different infection time points, we found 23, 782 and 23, 718 differentially expressed genes (fragments per kilobase of transcript sequence per million, FPKM >1) in Jiangcheng 3A (resistant to T. horrida) and 9311A (susceptible to T. horrida), respectively. In order to illuminate the differential responses of the two rice male sterile lines to T. horrida, we identified gene co-expression modules using the method of weighted gene co-expression network analysis (WGCNA) and compared the different biological functions of gene co-expression networks in key modules at different infection time points. The results indicated that gene co-expression networks in the two rice genotypes were different and that genes contained in some modules of the two groups may play important roles in resistance to T. horrida, such as DTH8 and OsHop/Sti1a. Furthermore, these results provide a global view of the responses of two different phenotypes to T. horrida, and assist our understanding of the regulation of expression changes after T. horrida infection.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xinyue Shu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xianyu Niu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| |
Collapse
|
17
|
Cui L, Liu Y, Yang Y, Ye S, Luo H, Qiu B, Gao X. The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant. Genes (Basel) 2018; 9:genes9090441. [PMID: 30181517 PMCID: PMC6162714 DOI: 10.3390/genes9090441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023] Open
Abstract
Environmental abiotic stresses are limiting factors for less tolerant organisms, including soil plants. Abiotic stress tolerance-associated genes from prokaryotic organisms are supposed to have a bright prospect for transgenic application. The drought-adapted cyanobacterium Nostoc flagelliforme is arising as a valuable prokaryotic biotic resource for gene excavation. In this study, we evaluated the salt-tolerant function and application potential of a candidate gene drnf1 from N. flagelliforme, which contains a P-loop NTPase (nucleoside-triphosphatase) domain, through heterologous expression in two model organisms Synechocystis sp. PCC 6803 and Arabidopsis thaliana. It was found that DRNF1 could confer significant salt tolerance in both transgenic organisms. In salt-stressed transgenic Synechocystis, DRNF1 could enhance the respiration rate; slow-down the accumulation of exopolysaccharides; up-regulate the expression of salt tolerance-related genes at a higher level, such as those related to glucosylglycerol synthesis, Na+/H+ antiport, and sugar metabolism; and maintain a better K+/Na+ homeostasis, as compared to the wild-type strain. These results imply that DRNF1 could facilitate salt tolerance by affecting the respiration metabolism and indirectly regulating the expression of important salt-tolerant genes. Arabidopsis was employed to evaluate the salt tolerance-conferring potential of DRNF1 in plants. The results show that it could enhance the seed germination and shoot growth of transgenic plants under saline conditions. In general, a novel prokaryotic salt-tolerant gene from N. flagelliforme was identified and characterized in this study, enriching the candidate gene pool for genetic engineering in plants.
Collapse
Affiliation(s)
- Lijuan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yinghui Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yiwen Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Shuifeng Ye
- Shanghai Agrobiological Gene Center, Shanghai 201106, China.
| | - Hongyi Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Baosheng Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Xiang Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
18
|
Zhang J, Zhao W, Fu R, Fu C, Wang L, Liu H, Li S, Deng Q, Wang S, Zhu J, Liang Y, Li P, Zheng A. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection. Funct Integr Genomics 2018; 18:545-557. [PMID: 29730773 PMCID: PMC6097106 DOI: 10.1007/s10142-018-0607-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Rong Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chenglin Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
19
|
Wang C, Huang D, Liang S. Identification and metabolomic analysis of chemical elicitors for tacrolimus accumulation in Streptomyces tsukubaensis. Appl Microbiol Biotechnol 2018; 102:7541-7553. [DOI: 10.1007/s00253-018-9177-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
|
20
|
Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL, Waters CM, Montgomery BL. Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Front Microbiol 2018; 9:1121. [PMID: 29896182 PMCID: PMC5986932 DOI: 10.3389/fmicb.2018.01121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Second messengers are intracellular molecules regulated by external stimuli known as first messengers that are used for rapid organismal responses to dynamic environmental changes. Cyclic di-AMP (c-di-AMP) is a relatively newly discovered second messenger implicated in cell wall homeostasis in many pathogenic bacteria. C-di-AMP is synthesized from ATP by diadenylyl cyclases (DAC) and degraded by specific c-di-AMP phosphodiesterases (PDE). C-di-AMP DACs and PDEs are present in all sequenced cyanobacteria, suggesting roles for c-di-AMP in the physiology and/or development of these organisms. Despite conservation of these genes across numerous cyanobacteria, the functional roles of c-di-AMP in cyanobacteria have not been well-investigated. In a unique feature of cyanobacteria, phylogenetic analysis indicated that the broadly conserved DAC, related to CdaA/DacA, is always co-associated in an operon with genes critical for controlling cell wall synthesis. To investigate phenotypes regulated by c-di-AMP in cyanobacteria, we overexpressed native DAC (sll0505) and c-di-AMP PDE (slr0104) genes in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) to increase and decrease intracellular c-di-AMP levels, respectively. DAC- and PDE-overexpression strains, showed abnormal aggregation phenotypes, suggesting functional roles for regulating c-di-AMP homeostasis in vivo. As c-di-AMP may be implicated in osmotic responses in cyanobacteria, we tested whether sorbitol and NaCl stresses impacted expression of sll0505 and slr0104 or intracellular c-di-AMP levels in Synechocystis. Additionally, to determine the range of cyanobacteria in which c-di-AMP may function, we assessed c-di-AMP levels in two unicellular cyanobacteria, i.e., Synechocystis and Synechococcus elongatus PCC 7942, and two filamentous cyanobacteria, i.e., Fremyella diplosiphon and Anabaena sp. PCC 7120. C-di-AMP levels responded differently to abiotic stress signals in distinct cyanobacteria strains, whereas salt stress uniformly impacted another second messenger cyclic di-GMP in cyanobacteria. Together, these results suggest regulation of c-di-AMP homeostasis in cyanobacteria and implicate a role for the second messenger in maintaining cellular fitness in response to abiotic stress.
Collapse
Affiliation(s)
- Marco Agostoni
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Alshaé R Logan-Jackson
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Emily R Heinz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Eric L Bruger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Christopher M Waters
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Li X, Yuan Y, Cheng D, Gao J, Kong L, Zhao Q, Wei W, Sun Y. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. BIORESOURCE TECHNOLOGY 2018; 250:495-504. [PMID: 29197772 DOI: 10.1016/j.biortech.2017.11.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 05/10/2023]
Abstract
Enhancement of stress tolerance to high concentration of salt and CO2 is beneficial for CO2 capture by microalgae. Adaptive evolution was performed for improving the tolerance of a freshwater strain, Chlorella sp. AE10, to 30 g/L salt. A resulting strain denoted as Chlorella sp. S30 was obtained after 46 cycles (138 days). The stress tolerance mechanism was analyzed by comparative transcriptomic analysis. Although the evolved strain could tolerate 30 g/L salt, high salinity caused loss to photosynthesis, oxidative phosphorylation, fatty acid biosynthesis and tyrosine metabolism. The related genes of antioxidant enzymes, CO2 fixation, amino acid biosynthesis, central carbon metabolism and ABC transporter proteins were up-regulated. Besides the up-regulation of several genes in Calvin-Benson cycle, they were also identified in C4 photosynthetic pathway and crassulacean acid metabolism pathway. They were essential for the survival and CO2 fixation of Chlorella sp. S30 under 30 g/L salt and 10% CO2.
Collapse
Affiliation(s)
- Xuyang Li
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Yizhong Yuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Dujia Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Juan Gao
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Lingzhao Kong
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Quanyu Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| | - Wei Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuhan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
22
|
Combining metabolomics and network analysis to improve tacrolimus production in Streptomyces tsukubaensis using different exogenous feedings. ACTA ACUST UNITED AC 2017; 44:1527-1540. [DOI: 10.1007/s10295-017-1974-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Abstract
Tacrolimus is widely used as an immunosuppressant in the treatment of various autoimmune diseases. However, the low fermentation yield of tacrolimus has thus far restricted its industrial applications. To solve this problem, the time-series response mechanisms of the intracellular metabolism that were highly correlated with tacrolimus biosynthesis were investigated using different exogenous feeding strategies in S. tsukubaensis. The metabolomic datasets, which contained 93 metabolites, were subjected to weighted correlation network analysis (WGCNA), and eight distinct metabolic modules and seven hub metabolites were identified to be specifically associated with tacrolimus biosynthesis. The analysis of metabolites within each metabolic module suggested that the pentose phosphate pathway (PPP), shikimate and aspartate pathway might be the main limiting factors in the rapid synthesis phase of tacrolimus accumulation. Subsequently, all possible key-limiting steps in the above metabolic pathways were further screened using a genome-scale metabolic network model (GSMM) of S. tsukubaensis. Based on the prediction results, two newly identified targets (aroC and dapA) were overexpressed experimentally, and both of the engineered strains showed higher tacrolimus production. Moreover, the best strain, HT-aroC/dapA, that was engineered to simultaneously enhanced chorismate and lysine biosynthesis was able to produce 128.19 mg/L tacrolimus, 1.64-fold higher than control (78.26 mg/L). These findings represent a valuable addition to our understanding of tacrolimus accumulation in S. tsukubaensis, and pave the way to further production improvements.
Collapse
|
23
|
He G, Wu C, Huang J, Zhou R. Metabolic response of Tetragenococcus halophilus under salt stress. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0015-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics. J Proteomics 2017; 168:1-14. [DOI: 10.1016/j.jprot.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/31/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022]
|
25
|
Bao W, Greenwold MJ, Sawyer RH. Using scale and feather traits for module construction provides a functional approach to chicken epidermal development. Funct Integr Genomics 2017; 17:641-651. [PMID: 28477104 DOI: 10.1007/s10142-017-0561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.
Collapse
Affiliation(s)
- Weier Bao
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| | - Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
26
|
He G, Deng J, Wu C, Huang J. A partial proteome reference map of Tetragenococcus halophilus and comparative proteomic and physiological analysis under salt stress. RSC Adv 2017. [DOI: 10.1039/c6ra22521g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tetragenococcus halophilus, a moderately halophilic Gram-positive lactic acid bacteria, was widely existed in many food fermentation systems, where salt stress is an environmental condition commonly encountered.
Collapse
Affiliation(s)
- Guiqiang He
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| | - Jingcheng Deng
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| | - Chongde Wu
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| | - Jun Huang
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| |
Collapse
|
27
|
Schott AS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One 2016; 11:e0165504. [PMID: 27783652 PMCID: PMC5082675 DOI: 10.1371/journal.pone.0165504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jennifer Quinn
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
28
|
Li T, Zhang Y, Shi M, Pei G, Chen L, Zhang W. A putative magnesium transporter Slr1216 involved in sodium tolerance in cyanobacterium Synechocystis sp. PCC 6803. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Iijima H, Nakaya Y, Kuwahara A, Hirai MY, Osanai T. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism. Front Microbiol 2015; 6:326. [PMID: 25954257 PMCID: PMC4406197 DOI: 10.3389/fmicb.2015.00326] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/01/2015] [Indexed: 11/28/2022] Open
Abstract
Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria.
Collapse
Affiliation(s)
- Hiroko Iijima
- RIKEN Center for Sustainable Resource Science Yokohama, Japan
| | - Yuka Nakaya
- RIKEN Center for Sustainable Resource Science Yokohama, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science Yokohama, Japan
| | | | - Takashi Osanai
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Advanced Low Carbon Technology Research and Development Program (ALCA), Japan Science and Technology Agency Kawaguchi, Japan ; School of Agriculture, Meiji University Tokyo, Japan
| |
Collapse
|
30
|
Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol 2015; 99:1845-57. [DOI: 10.1007/s00253-015-6374-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
31
|
Luan G, Qi Y, Wang M, Li Z, Duan Y, Tan X, Lu X. Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:184. [PMID: 26594240 PMCID: PMC4654843 DOI: 10.1186/s13068-015-0367-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Photosynthetic production of chemicals and fuels by recycling CO2 in cyanobacteria is a promising solution facing energy shortage and resource declination. Ethanol is an attractive and demonstrative biofuel product, and ethanol synthesis in cyanobacteria has been achieved by assembling of a pathway consisting of pyruvate decarboxylase (PDCzm) and alcohol dehydrogenase II (slr1192). For enabling more powerful ethanol photosynthetic production, an optimized and balanced catalyzing route was required. In this work, we provided a paradigm for systematically characterizing and optimizing the PDCzm-slr1192 pathway from engineered cyanobacteria strains, combining in vitro reconstitution, genetic engineering and feeding-cultivation. RESULTS We reconstituted the PDCzm-slr1192 pathway in vitro and performed specific titration assays for enzymes, substrates, cofactors, and metal ions. In the in vitro system, K 50 of PDCzm was 0.326 μM, with a V max of 2.074 μM/s; while for slr1192, the values were 0.109 μM and 1.722 μM/s, respectively. Titration response discrepancy indicated that PDCzm rather than slr1192 was the rate-limiting factor for ethanol synthesis. In addition, a 4:6 concentration ratio of PDCzm-slr1192 would endow the reaction with a maximal specific catalytic activity. Titration assays for other components were also performed. K m values for NADPH, pyruvate, TPP, Mg(2+) and acetaldehyde were 0.136, 6.496, 0.011, 0.104, and 0.393 mM, respectively. We further constructed Synechocystis mutant strains with diverse PDCzm-slr1192 concentrations and ratios, and compared the growth and ethanol synthesis performances. The results revealed that activities of PDCzm indeed held control over the ethanol generation capacities. We performed pyruvate-feeding treatment with the newly developed Syn-YQ4 strain, and confirmed that improvement of pyruvate supply would direct more carbon flow to ethanol formation. CONCLUSIONS We systematically characterized and optimized the PDCzm-slr1192 pathway in engineered cyanobacteria for ethanol production. Information gained from in vitro monitoring and genetic engineering revealed that for further enhancing ethanol synthesis capacities, PDCzm activities needed enhancement, and the PDCzm-slr1192 ratio should be improved and held to about 1:1.5. Considering actual metabolites concentrations of cyanobacteria cells, enhancing pyruvate supply was also a promising strategy for further updating the current ethanol photosynthetic cell factories.
Collapse
Affiliation(s)
- Guodong Luan
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Yunjing Qi
- />Qingdao University of Science and Technology, Qingdao, 266061 China
| | - Min Wang
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Zhimin Li
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yangkai Duan
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoming Tan
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Xuefeng Lu
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| |
Collapse
|
32
|
Sui X, Niu X, Shi M, Pei G, Li J, Chen L, Wang J, Zhang W. Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12477-84. [PMID: 25436856 DOI: 10.1021/jf503671m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The heterotrophic dinoflagellate alga Crypthecodinium cohnii is known to accumulate lipids with a high fraction of docosahexaenoic acid (DHA). In this study, we first evaluated two antioxidant compounds, butylated hydroxyanisole (BHA) and propyl gallate (PG), for their effects on lipid accumulation in C. cohnii. The results showed that antioxidant BHA could increase lipid accumulation in C. cohnii by 8.80% at a final concentration of 30 μM, while PG had no obvious effect on lipid accumulation at the tested concentrations. To decipher the molecular mechanism responsible for the increased lipid accumulation by BHA, we employed an integrated GC-MS and LC-MS metabolomic approach to determine the time-series metabolic profiles with or without BHA, and then subjected the metabolomic data to a principal component analysis (PCA) and a weighted gene coexpression network analysis (WGCNA) network analyses to identify the key metabolic modules and metabolites possibly relevant to the increased lipid accumulation. LC-MS analysis showed that several metabolites, including NADPH, could be important for the stimulation role of BHA on lipid accumulation. Meanwhile GC-MS and network analyses allowed identification of eight metabolic modules and nine hub metabolites possibly relevant to the stimulation role of BHA in C. cohnii. The study provided a metabolomics view of the BHA mode of action on lipid accumulation in C. cohnii, and the information could be valuable for a better understanding of antioxidant effects on lipid accumulation in other microalgae as well.
Collapse
Affiliation(s)
- Xiao Sui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pei G, Chen L, Wang J, Qiao J, Zhang W. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803. Front Bioeng Biotechnol 2014; 2:48. [PMID: 25405149 PMCID: PMC4217553 DOI: 10.3389/fbioe.2014.00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/17/2014] [Indexed: 12/04/2022] Open
Abstract
Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.
Collapse
Affiliation(s)
- Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Jianjun Qiao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| |
Collapse
|
34
|
Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Fact 2014; 13:151. [PMID: 25366096 PMCID: PMC4234862 DOI: 10.1186/s12934-014-0151-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system. RESULTS Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis. CONCLUSIONS The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Yaxing Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lianju Gao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| |
Collapse
|
35
|
Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. BIORESOURCE TECHNOLOGY 2014; 170:522-529. [PMID: 25164345 DOI: 10.1016/j.biortech.2014.08.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/09/2023]
Abstract
Various combinations of acetate (Ac), Fe(2+) and high light (HL) stress conditions were evaluated to maximize astaxanthin accumulation and biomass production in Haematococcus pluvialis, and then GC-MS and LC-MS based metabolomics were applied to determine molecular mechanisms responsible for enhancing astaxanthin accumulation under the stress conditions. With the optimized analytical protocols, the GC-MS and LC-MS analyses allowed identification of 93 stable and 24 unstable intracellular metabolites from H. pluvialis, respectively. In addition, a metabolic network was constructed based on GC-MS metabolomic datasets using a weighted correlation network analysis (WGCNA) approach. The network analysis uncovered 2, 1 and 1 distinguished metabolic modules highly associated with HL, Fe(2+) & HL, and Ac & Fe(2+) & HL conditions, respectively. Finally, LC-MS analysis found that AKG, Glu and R5P may be metabolites associated with the Fe(2+) & HL condition. The study provided the first metabolomic view of cell growth and astaxanthin accumulation in H. pluvialis.
Collapse
Affiliation(s)
- Yingxue Su
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Xinheng Yu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lianju Gao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China.
| |
Collapse
|