1
|
Yan W, Sharif R, Sohail H, Zhu Y, Chen X, Xu X. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors. Int J Mol Sci 2024; 25:5199. [PMID: 38791235 PMCID: PMC11121501 DOI: 10.3390/ijms25105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change-induced weather events, such as extreme temperatures, prolonged drought spells, or flooding, pose an enormous risk to crop productivity. Studies on the implications of multiple stresses may vary from those on a single stress. Usually, these stresses coincide, amplifying the extent of collateral damage and contributing to significant financial losses. The breadth of investigations focusing on the response of horticultural crops to a single abiotic stress is immense. However, the tolerance mechanisms of horticultural crops to multiple abiotic stresses remain poorly understood. In this review, we described the most prevalent types of abiotic stresses that occur simultaneously and discussed them in in-depth detail regarding the physiological and molecular responses of horticultural crops. In particular, we discussed the transcriptional, posttranscriptional, and metabolic responses of horticultural crops to multiple abiotic stresses. Strategies to breed multi-stress-resilient lines have been presented. Our manuscript presents an interesting amount of proposed knowledge that could be valuable in generating resilient genotypes for multiple stressors.
Collapse
Affiliation(s)
- Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Wang D, Yang Z, Feng M, Yang W, Qu R, Nie S. The overexpression of SlBRI1 driven by Atrd29A promoter-transgenic plants improves the chilling stress tolerance of tomato. PLANTA 2023; 259:11. [PMID: 38047928 DOI: 10.1007/s00425-023-04288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
MAIN CONCLUSION Overexpression of SlBRI1 driven by the Atrd29A promoter could increase the cold resistance of tomato plants during chilling stress but did not improve the expression of SlBRI1 and plant growth under normal conditions. Low temperature is the main limiting factor severely affecting tomato plant development, growth, and fruit quality in winter and spring. Brassinosteroids (BRs) and key BR signaling genes positively regulate tomato plant development and response to chilling stress. Brassinosteroid-insensitive 1 (BRI1) is a major BR receptor that initiates BR signaling. Our results showed that overexpression of SlBRI1 driven by the Atrd29A promoter in transgenic plants did not increase the expression of SlBRI1 under normal conditions but rapidly induced the expression of SlBRI1 during chilling stress. The degree of wilting was lower in Atrd29A promoter-transgenic plants than in wild-type (WT) plants after chilling stress. Atrd29A promoter-transgenic plants exhibited low relative electrolyte leakage and reactive oxygen species (ROS) accumulation under chilling stress. Transgenic plants showed higher photosynthetic ability and antioxidant enzyme activity than WT plants under chilling stress. The BR content and expression levels of key genes involved in BR biosynthesis in Atrd29A-promoter transgenic plants were significantly lower than those in WT plants during chilling stress. The abscisic acid (ABA) content and expression levels of key ABA biosynthesis genes in the Atrd29A promoter-transgenic plants were significantly higher than those in the WT plants during chilling stress. In addition, Atrd29A promoter-transgenic plants positively enhanced the expression levels of ICE-CBF-COR cold-responsive pathway genes. Therefore, the overexpression of SlBRI1 driven by the Atrd29A promoter in transgenic plants can be a valuable tool for reducing chilling stress.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, Sichuan, China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, Sichuan, China
| | - Mengying Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, Sichuan, China
| | - Wenwen Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, Sichuan, China
| | - Rui Qu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, Sichuan, China
| | - Shuming Nie
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, Sichuan, China.
| |
Collapse
|
3
|
Ali A, Dindhoria K, Kumar R. Acinetobacter oleivorans IRS14 alleviates cold stress in wheat by regulating physiological and biochemical factors. J Appl Microbiol 2023; 134:lxad176. [PMID: 37550224 DOI: 10.1093/jambio/lxad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
AIMS Climate change is responsible for extreme cold winters, causing a significant loss in crop yield and productivity due to chilling stress. This study aims to investigate the potential of psychrotrophic plant growth-promoting rhizobacteria (PGPR) strain to promote wheat growth under cold stress and explore the adaptive responses of wheat. METHODS AND RESULTS Wheat seeds and seedlings were inoculated with the psychrotrophic strain IRS14 and the plants were cultivated for five weeks at 6°C ± 2°C. The genetic, biochemical, physiological, and molecular analysis of the bacterium and plant was done to evaluate the effect of the PGPR strain in alleviating chilling stress. IRS14 possesses antioxidant activity and produced multiple phytohormones, which enhanced seed germination (∼50%) and plant growth (∼50%) during chilling stress. CONCLUSIONS Here, we reported that the application of IRS14 helps to regulate the biochemical and metabolic pathways in wheat plants. It alleviates chilling stress and increases plant growth rate and biomass. Strain IRS14 in wheat effectively increased chlorophyll content, antioxidants, carotenoid, proline, and endogenous phytohormones compared with untreated wheat.
Collapse
Affiliation(s)
- Ashif Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Dang K, Gong X, Liang H, Guo S, Zhang S, Feng B. Phosphorous fertilization alleviates shading stress by regulating leaf photosynthesis and the antioxidant system in mung bean (Vigna radiata L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1111-1121. [PMID: 36931210 DOI: 10.1016/j.plaphy.2023.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Shading can limit photosynthesis and plant growth. Understanding how phosphorus (P) application mitigates the effects of shading stress on morphology and physiology of mung beans (Vigna radiata L.) is of great significance for the establishment of efficient planting structures and optimizing P-use management. The effects of various light environments (non-shading stress, S0; low light stress, S1; severe shading stress, S2) on the growth of two mung bean cultivars (Xilv1 and Yulv1) and the role of P application (0 kg ha-1, P0; 90 kg ha-1, P1; 150 kg ha-1, P2) in such responses were investigated in a field experiment. Our results demonstrated that shading decreased the dry matter accumulation of mung bean markedly by limiting photosynthesis capacity and disrupting agronomic traits. For the leaf areas of the two cultivars, chlorophyll a+b, the net photosynthetic and electron transport rates were increased by 16.8%, 20.0%, 15.5%, and 12.5% under P1 treatment, and by 32.4%, 40.3%, 16.3% and 12.8% under P2 treatment, respectively, when compared to those for the non-fertilized plants under shading stress. These responses resulted in increased light capture and weak light utilization. Moreover, the activities of superoxide dismutase and peroxidase were enhanced by 20.9% and 43.7%, respectively; malondialdehyde and superoxide anion contents were reduced by 18.6% and 14.1%, respectively, under P application. These findings suggest that P application moderately mitigates the damage caused by shading stress and enhances tolerance by regulating mung bean growth. In addition, Xilv1 was more sensitive to P under shading stress than Yulv1.
Collapse
Affiliation(s)
- Ke Dang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiangwei Gong
- College of Agronomy, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, PR China
| | - Haofeng Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shuqing Guo
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Suiqi Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
5
|
Soliman S, Wang Y, Han Z, Pervaiz T, El-kereamy A. Strigolactones in Plants and Their Interaction with the Ecological Microbiome in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3499. [PMID: 36559612 PMCID: PMC9781102 DOI: 10.3390/plants11243499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Phytohormones play an essential role in enhancing plant tolerance by responding to abiotic stresses, such as nutrient deficiency, drought, high temperature, and light stress. Strigolactones (SLs) are carotenoid derivatives that occur naturally in plants and are defined as novel phytohormones that regulate plant metabolism, growth, and development. Strigolactone assists plants in the acquisition of defensive characteristics against drought stress by initiating physiological responses and mediating the interaction with soil microorganisms. Nutrient deficiency is an important abiotic stress factor, hence, plants perform many strategies to survive against nutrient deficiency, such as enhancing the efficiency of nutrient uptake and forming beneficial relationships with microorganisms. Strigolactone attracts various microorganisms and provides the roots with essential elements, including nitrogen and phosphorus. Among these advantageous microorganisms are arbuscular mycorrhiza fungi (AMF), which regulate plant metabolic activities through phosphorus providing in roots. Bacterial nodulations are also nitrogen-fixing microorganisms found in plant roots. This symbiotic relationship is maintained as the plant provides organic molecules, produced in the leaves, that the bacteria could otherwise not independently generate. Related stresses, such as light stress and high-temperature stress, could be affected directly or indirectly by strigolactone. However, the messengers of these processes are unknown. The most prominent connector messengers have been identified upon the discovery of SLs and the understanding of their hormonal effect. In addition to attracting microorganisms, these groups of phytohormones affect photosynthesis, bridge other phytohormones, induce metabolic compounds. In this article, we highlighted the brief information available on SLs as a phytohormone group regarding their common related effects. In addition, we reviewed the status and described the application of SLs and plant response to abiotic stresses. This allowed us to comprehend plants' communication with the ecological microbiome as well as the strategies plants use to survive under various stresses. Furthermore, we identify and classify the SLs that play a role in stress resistance since many ecological microbiomes are unexplained.
Collapse
Affiliation(s)
- Sabry Soliman
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Yi Wang
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Zhenhai Han
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Ashraf El-kereamy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Li J, Xie J, Yu J, Lyv J, Zhang J, Ding D, Li N, Zhang J, Bakpa EP, Yang Y, Niu T, Gao F. Melatonin enhanced low-temperature combined with low-light tolerance of pepper ( Capsicum annuum L.) seedlings by regulating root growth, antioxidant defense system, and osmotic adjustment. FRONTIERS IN PLANT SCIENCE 2022; 13:998293. [PMID: 36247609 PMCID: PMC9554354 DOI: 10.3389/fpls.2022.998293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT) is an important biologically active hormone that plays a vital role in plant growth and development. In particular, it has been investigated for its roles in abiotic stress management. In this study, pepper seedlings were subjected to low-temperature combined with low-light stress (LL) (15/5°C, 100 μmol m-2s-1) prior to a foliar spray of 200mM MT for 168h to investigate the protective role of MT in pepper seedlings. Our results demonstrated that LL stress negatively affected root growth, and accelerated the accumulation of reactive oxygen species (ROS), including H2O2 and O 2 - , changed the osmolytes contents, and antioxidative system. However, these were reversed by exogenous MT application. MT effectively promoted the root growth as indicated by significant increase in root length, surface area, root volume, tips, forks, and crossings. In addition, MT reduced the burst of ROS and MDA contents induced by LL, enhanced the activities of SOD, CAT, POD, APX, DHAR, and MDHAR resulted by upregulated expressions of CaSOD, CaPOD, CaCAT, CaAPX, CaDHAR, and CaMDHAR, and elevated the contents of AsA and GSH, declined DHA and GSSH contents, which prevented membrane lipid peroxidation and protected plants from oxidative damages under LL stress. Furthermore, seedlings treated with MT released high contents of soluble sugar and soluble protein in leave, which might enhance LL tolerance by maintaining substance biosynthesis and maintaining cellular homeostasis resulted by high levels of osmolytes and carbohydrate in the cytosol. Our current findings confirmed the mitigating potential of MT application for LL stress by promoting pepper root growth, improving antioxidative defense system, ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junfeng Zhang
- Institution of Vegetable, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Wang D, Yang Z, Wu M, Wang W, Wang Y, Nie S. Enhanced brassinosteroid signaling via the overexpression of SlBRI1 positively regulates the chilling stress tolerance of tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111281. [PMID: 35643607 DOI: 10.1016/j.plantsci.2022.111281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroids (BRs) regulate plant development and response to stress. BRASSINOSTEROID INSENSITIVE 1 (BRI1) is a BR receptor that activates BR signaling. Although the function of the tomato BR receptor SlBRI1 in regulating growth and drought resistance has been examined, that of SlBRI1 in cold tolerance is unclear. This study indicated that the expression of SlBRI1 in tomato was rapidly induced and reached its highest level at 3 h under chilling treatment and then decreased. The overexpression of SlBRI1 displayed low relative electrolyte leakage, malondialdehyde content, and reactive oxygen species (ROS) accumulation under chilling stress. The proline content and activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in SlBRI1OE plants were higher than those in the wild-type (WT) plants after chilling stress. The transcript abundances of five cold-responsive genes were higher in SlBRI1OE plants than in WT plants during chilling stress. RNA sequence analysis showed that the expression of the majority of genes encoding photosystem I and II were downregulated. The degree of suppression in SlBRI1OE plants was weaker than that in WT plants. Additionally, the Pn and Fv/Fm of SlBRI1OE plants were significantly higher than those of WT plants under chilling stress. We identified several genes encoding key enzymes in BRs; indole acetic acid (IAA), gibberellin (GA), and abscisic acid (ABA) biosynthesis or signaling were upregulated or downregulated during chilling stress. Chilling stress decreased the BRs and GA3 content, and increased IAA and ABA content. The contents were lower or higher in SlBRI1OE than in WT plants. Furthermore, chilling stress regulated the expression levels of 43 transcription factors. The expression of seven cold-regulated protein genes was higher or lower in SlBRI1OE plants than in WT plants under chilling stress. These results suggest that SlBRI1 positively regulates chilling tolerance mainly through ICE1-CBF-COR pathway in tomato.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Meiqi Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Wei Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Yue Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Shuming Nie
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
8
|
Xu Q, Wei Q, Kong Y, Zhu L, Tian W, Huang J, Pan L, Jin Q, Zhang J, Zhu C. Unearthing the Alleviatory Mechanisms of Brassinolide in Cold Stress in Rice. Life (Basel) 2022; 12:life12060833. [PMID: 35743864 PMCID: PMC9225285 DOI: 10.3390/life12060833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cold stress inhibits rice germination and seedling growth. Brassinolide (BR) plays key roles in plant growth, development, and stress responses. In this study, we explored the underlying mechanisms whereby BR helps alleviate cold stress in rice seedlings. BR application to the growth medium significantly increased seed germination and seedling growth of the early rice cultivar “Zhongzao 39” after three days of cold treatment. Specifically, BR significantly increased soluble protein and soluble sugar contents after three days of cold treatment. Moreover, BR stimulated the activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase; thereby alleviating cold-induced damage and increasing glutathione content and the GSH/GSSG ratio while concomitantly reducing H2O2 content. BR upregulated the expression levels of cold-response-related genes, including OsICE1, OsFer1, OsCOLD1, OsLti6a, OsSODB, OsMyb, and OsTERF2, and downregulated that of OsWRKY45, overall alleviating cold stress symptoms. Thus, BR not only upregulated cellular osmotic content and the antioxidant enzyme system to maintain the physiological balance of reactive oxygen species under cold but, additionally, it regulated the expression of cold-response-related genes to alleviate cold stress symptoms. These results provide a theoretical basis for rice breeding for cold resistance using young seedlings.
Collapse
Affiliation(s)
- Qingshan Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
| | - Qianqian Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
- School of Resources and Environmental Engineering, Anhui University, Hefei 230039, China
| | - Yali Kong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
| | - Lianfeng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
| | - Wenhao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
| | - Jing Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
| | - Lin Pan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang 230039, China
| | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
- Correspondence: (J.Z.); (C.Z.)
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (Q.X.); (Q.W.); (Y.K.); (L.Z.); (W.T.); (J.H.); (L.P.); (Q.J.)
- Correspondence: (J.Z.); (C.Z.)
| |
Collapse
|
9
|
Lu T, Song Y, Yu H, Li Q, Xu J, Qin Y, Zhang G, Liu Y, Jiang W. Cold Stress Resistance of Tomato ( Solanum lycopersicum) Seedlings Is Enhanced by Light Supplementation From Underneath the Canopy. FRONTIERS IN PLANT SCIENCE 2022; 13:831314. [PMID: 35498645 PMCID: PMC9039533 DOI: 10.3389/fpls.2022.831314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Adverse environmental conditions, such as low temperature (LT), greatly limit the growth and production of tomato. Recently, light-emitting diodes (LEDs) with specific spectra have been increasingly used in horticultural production facilities. The chosen spectrum can affect plant growth, development, and resistance, but the physiological regulatory mechanisms are largely unknown. In this study, we investigated the effects of LED light supplementation (W:B = 2:1, light intensity of 100 μmol⋅m-2⋅s-1, for 4 h/day from 9:00 to 13:00) from above and below the canopy on tomato resistance under sub-LT stress (15/8°C). The results showed that supplemental lighting from underneath the canopy (USL) promoted the growth of tomato seedlings, as the plant height, stem diameter, root activity, and plant biomass were significantly higher than those under LT. The activity of the photochemical reaction center was enhanced because of the increase in the maximal photochemical efficiency (F v /F m ) and photochemical quenching (qP), which distributed more photosynthetic energy to the photochemical reactions and promoted photosynthetic performance [the maximum net photosynthetic rate (Pmax) was improved]. USL also advanced the degree of stomatal opening, thus facilitating carbon assimilation under LT. Additionally, the relative conductivity (RC) and malondialdehyde (MDA) content were decreased, while the soluble protein content and superoxide dismutase (SOD) activity were increased with the application of USL under LT, thereby causing a reduction in membrane lipid peroxidation and alleviation of stress damage. These results suggest that light supplementation from underneath the canopy improves the cold resistance of tomato seedlings mainly by alleviating the degree of photoinhibition on photosystems, improving the activity of the photochemical reaction center, and enhancing the activities of antioxidant enzymes, thereby promoting the growth and stress resistance of tomato plants.
Collapse
Affiliation(s)
- Tao Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangfan Song
- College of Horticulture, Xinjiang Agricultural University, Ürümqi, China
- Natural Resources Bureau of Hutubi County in Xinjiang Province, Changji, China
| | - Hongjun Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingcheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Ürümqi, China
| | - Guanhua Zhang
- Agriculture and Animal Husbandry Comprehensive Inspection and Testing Center of Chifeng, Chifeng, China
| | - Yuhong Liu
- Tibet Academy of Agriculture and Animal Husbandry Sciences Vegetable Research Institute, Lhasa, China
| | - Weijie Jiang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
24-epibrassinolide enhanced cold tolerance of winter turnip rape (Brassica rapa L.). Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Guedes FRCM, Maia CF, Silva BRSD, Batista BL, Alyemeni MN, Ahmad P, Lobato AKDS. Exogenous 24-Epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116992. [PMID: 33784567 DOI: 10.1016/j.envpol.2021.116992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
Lead (Pb) is an environmental pollutant that negatively affects rice plants, causing damage to the root system and chloroplast structures, as well as reducing growth. 24-Epibrasnolide (EBR) is a plant growth regulator with a high capacity to modulate antioxidant metabolism. The objective of this research was to investigate whether exogenous EBR application can mitigate oxidative damage in Pb-stressed rice plants, measure anatomical structures and evaluate physiological and biochemical responses connected with redox metabolism. The experiment was randomized with four treatments, including two lead treatments (0 and 200 μM PbCl2, described as - Pb and + Pb, respectively) and two treatments with brassinosteroid (0 and 100 nM EBR, described as - EBR and + EBR, respectively). The results revealed that plants exposed to Pb suffered significant disturbances, but the EBR alleviated the negative interferences, as confirmed by the improvements in the root structures and antioxidant system. This steroid stimulated the root structures, increasing the epidermis thickness (26%) and aerenchyma area (50%), resulting in higher protection of this tissue against Pb2+ ions. Additionally, EBR promoted significant increases in superoxide dismutase (26%), catalase (24%), ascorbate peroxidase (54%) and peroxidase (63%) enzymes, reducing oxidative stress on the photosynthetic machinery in Pb-stressed plants. This research proved that EBR mitigates the toxic effects generated by Pb in rice plants.
Collapse
Affiliation(s)
| | - Camille Ferreira Maia
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia Paragominas, Pará, Brazil
| | | | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC, Santo André, São Paulo, Brazil
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
12
|
Barros Junior UO, Lima MDR, Alsahli AA, Lobato AKS. Unraveling the roles of brassinosteroids in alleviating drought stress in young Eucalyptus urophylla plants: Implications on redox homeostasis and photosynthetic apparatus. PHYSIOLOGIA PLANTARUM 2021; 172:748-761. [PMID: 33247448 DOI: 10.1111/ppl.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 05/20/2023]
Abstract
Water deficit is the most limiting abiotic stress to plants because it affects several physiological and biochemical processes. Brassinosteroids, including 24-epibrassinolide (EBR), are steroids that regulate growth and positively act on gas exchange. This research aims to determine whether EBR can attenuate the negative effects of water deficit, revealing possible contributions of this steroid on photosynthetic machinery of young Eucalyptus urophylla plants under water deficit. The experiment had a completely randomized factorial design with two water conditions (control and water deficit) and three levels of EBR (0, 50, and 100 nM EBR). Water deficit caused a decrease in the levels of total chlorophyll and carotenoids, but these photosynthetic pigments increased by 135 and 226%, respectively, in plants sprayed with EBR when compared to the water deficit + 0 nM EBR treatment. Regarding the antioxidant system, 100 nM EBR induced significant increments in superoxide dismutase (42%), catalase (52%), ascorbate peroxidase (147%), and peroxidase (204%). Steroid application in E. urophylla plants exposed to water deficit increased the effective quantum yield of the photosystem II (PSII) photochemistry and electron transport rate. However, interestingly, it decreased the nonphotochemical quenching and relative energy excess at the PSII level, indicating improvements related to PSII efficiency. This research revealed that application of 100 nM EBR attenuated the negative effects caused by water deficit, being explained by the positive repercussions on antioxidant enzyme activities, chloroplastic pigments, PSII efficiency, electron flux, and net photosynthetic rate.
Collapse
Affiliation(s)
- Udson O Barros Junior
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - Michael D R Lima
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - Abdulaziz A Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Allan K S Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| |
Collapse
|
13
|
Wang W, Du J, Chen L, Zeng Y, Tan X, Shi Q, Pan X, Wu Z, Zeng Y. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage. BMC Genomics 2021; 22:176. [PMID: 33706696 PMCID: PMC7952222 DOI: 10.1186/s12864-021-07458-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. RESULTS LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72,818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. CONCLUSION Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.
Collapse
Affiliation(s)
- Wenxia Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liming Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xueming Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaohua Pan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yanhua Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
14
|
Chien HJ, Yang MM, Wang WC, Hong XG, Zheng YF, Toh JT, Wu CC, Lai CC. Proteomic analysis of "Oriental Beauty" oolong tea leaves with different degrees of leafhopper infestation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8825. [PMID: 32396680 DOI: 10.1002/rcm.8825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Oriental Beauty, a type of oolong tea native to Taiwan, is highly prized by connoisseurs for its unique fruity aroma and sweet taste. Leaves of Oriental Beauty vary in appearance, aroma, and taste, depending on the degree of tea green leafhopper (Jacobiasca formosana) infestation. In this study, the aim is to investigate the differential expression of proteins in leaves with low, medium, and high degrees of leafhopper infestation. METHODS Proteomic techniques 2DE (two-dimensional electrophoresis) and nanoscale liquid chromatography/tandem mass spectrometry (LC/MS/MS) were used to investigate the differential expression of proteins in tea leaves with different degrees of leafhopper infestation. RESULTS A total of 89 proteins were found to exhibit significant differences in expression. In a gene ontology analysis, most of these proteins participated in biosynthesis, carbohydrate metabolism, transport, responses to stress, and amino acid metabolism. CONCLUSIONS These results indicated that the unique aroma and taste of the leaves might be influenced by their protein expression profiles, as well as related factors such as defensive responses to tea green leafhopper saliva.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Man-Miao Yang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Xiang-Gui Hong
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Jie-Teng Toh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Liu Y, Pan T, Tang Y, Zhuang Y, Liu Z, Li P, Li H, Huang W, Tu S, Ren G, Wang T, Wang S. Proteomic Analysis of Rice Subjected to Low Light Stress and Overexpression of OsGAPB Increases the Stress Tolerance. RICE (NEW YORK, N.Y.) 2020; 13:30. [PMID: 32488648 PMCID: PMC7266901 DOI: 10.1186/s12284-020-00390-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/11/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Light provides the energy for photosynthesis and determines plant morphogenesis and development. Low light compromises photosynthetic efficiency and leads to crop yield loss. It remains unknown how rice responds to low light stress at a proteomic level. RESULTS In this study, the quantitative proteomic analysis with isobaric tags for relative and absolute quantitation (iTRAQ) was used and 1221 differentially expressed proteins (DEPs) were identified from wild type rice plants grown in control or low light condition (17% light intensity of control), respectively. Bioinformatic analysis of DEPs indicated low light remarkably affects the abundance of chloroplastic proteins. Specifically, the proteins involved in carbon fixation (Calvin cycle), electron transport, and ATPase complex are severely downregulated under low light. Furthermore, overexpression of the downregulated gene encoding rice β subunit of glyceraldehyde-3-phosphate dehydrogenase (OsGAPB), an enzyme in Calvin cycle, significantly increased the CO2 assimilation rate, chlorophyll content and fresh weight under low light conditions but have no obvious effect on rice growth and development under control light. CONCLUSION Our results revealed that low light stress on vegetative stage of rice inhibits photosynthesis possibly by decreasing the photosynthetic proteins and OsGAPB gene is a good candidate for manipulating rice tolerance to low light stress.
Collapse
Affiliation(s)
- Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Zhuang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Ren
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
16
|
Lu T, Yu H, Li Q, Chai L, Jiang W. Improving Plant Growth and Alleviating Photosynthetic Inhibition and Oxidative Stress From Low-Light Stress With Exogenous GR24 in Tomato ( Solanum lycopersicum L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:490. [PMID: 31057589 PMCID: PMC6477451 DOI: 10.3389/fpls.2019.00490] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Low light (LL) is one of the main limiting factors that negatively affect tomato growth and yield. Techniques of chemical regulation are effective horticultural methods to improve stress resistance. Strigolactones (SLs), newly discovered phytohormones, are considered as important regulators of physiological responses. We investigated the effects of foliage spray of GR24, a synthesized SLs, on tomato seedlings grown under LL stress conditions. The results showed that application of GR24 effectively mitigated the inhibition of plant growth and increased the fresh and dry weight of tomato plants under LL. Additionally, GR24 also increased the chlorophyll content (Chla and Chlb), the net photosynthetic rate (Pn), the photochemical efficiency of photosystem (PS) II (Fv/Fm), and the effective quantum yield of PSII and I [Y(II) and Y(I)], but decreased the excitation pressure of PSII (1-qP), the non-regulatory quantum yield of energy dissipation [Y(NO)] and the donor side limitation of PSI [Y(ND)] under LL. Moreover, application of GR24 to LL-stressed tomato leaves increased the electron transport rate of PSII and PSI [ETR(II) and ETR(I)], the ratio of the quantum yield of cyclic electron flow (CEF) to Y(II) [Y(CEF)/Y(II)], the oxidized plastoquinone (PQ) pool size and the non-photochemical quenching. Besides, GR24 application increased the activity and gene expression of antioxidant enzymes, but it reduced malonaldehyde (MDA) and hydrogen peroxide (H2O2) content in LL-stressed plants. These results suggest that exogenous application of GR24 enhances plant tolerance to LL by promoting plant utilization of light energy to alleviate the photosystem injuries induced by excess light energy and ROS, and enhancing photosynthesis efficiency to improve plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
The Positive Effect of Different 24-epiBL Pretreatments on Salinity Tolerance in Robinia pseudoacacia L. Seedlings. FORESTS 2018. [DOI: 10.3390/f10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a brassinosteroid (BR), 24-epibrassinolide (24-epiBL) has been widely used to enhance the resistance of plants to multiple stresses, including salinity. Black locust (Robinia pseudoacacia L.) is a common species in degraded soils. In the current study, plants were pretreated with three levels of 24-epiBL (0.21, 0.62, or 1.04 µM) by either soaking seeds during the germination phase (Sew), foliar spraying (Spw), or root dipping (Diw) at the age of 6 months. The plants were exposed to salt stress (100 and 200 mM NaCl) via automatic drip-feeding (water content ~40%) for 45 days after each treatment. Increased salinity resulted in a decrease in net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular:ambient CO2 concentration ratio (Ci/Ca), water-use efficiency (WUEi), and maximum quantum yield of photosystem II (PSII) (Fv/Fm). Non-photochemical quenching (NPQ) and thermal dissipation (Hd) were elevated under stress, which accompanied the reduction in the membrane steady index (MSI), water content (RWC), and pigment concentration (Chl a, Chl b, and Chl). Indicators of oxidative stress (i.e., malondialdehyde (MDA) and antioxidant enzymes (peroxidase (POD) and superoxide dismutase (SOD)) in leaves and Na+ content in chloroplasts increased accompanied by a reduction in chloroplastid K+ and Ca2+. At 200 mM NaCl, the chloroplast and thylakoid ultrastructures were severely disrupted. Exogenous 24-epiBL improved MSI, RWC, K+, and Ca2+ content, reduced Na+ levels, maintained chloroplast and thylakoid membrane structures, and enhanced the antioxidant ability in leaves. 24-epiBL also substantially alleviated stress-induced limitations of photosynthetic ability, reflected by elevated chlorophyll fluorescence, pigment levels, and Pn. The positive effects of alleviating salt stress in R. pseudoacacia seedlings in terms of treatment application was Diw > Sew > Spw, and the most positive impacts were seen with 1.04 µM 24-epiBL. These results provide diverse choice for 24-epiBL usage to defend against NaCl stress of a plant.
Collapse
|
18
|
Ahmad P, Abd Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KHM. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Sci Rep 2018; 8:13515. [PMID: 30201952 PMCID: PMC6131545 DOI: 10.1038/s41598-018-31917-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
The present study tested the efficacy of 24-epibrassinolide (EBL) and calcium (Ca) for mediating salinity tolerance in tomato. Salinity stress affected the morphological parameters of tomato as well as leaf relative water content (LRWC), photosynthetic and accessory pigments, leaf gas exchange parameters, chlorophyll fluorescence and the uptake of essential macronutrients. The salt (NaCl) treatment induced oxidative stress in the form of increased Na+ ion concentration by 146%, electrolyte leakage (EL) by 61.11%, lipid peroxidation (MDA) 167% and hydrogen peroxide (H2O2) content by 175%. Salt stress also enhanced antioxidant enzyme activities including those in the ascorbate-glutathione cycle. Plants treated with EBL or Ca after salt exposure mitigated the ill effects of salt stress, including oxidative stress, by reducing the uptake of Na+ ions by 52%. The combined dose of EBL + Ca reversed the salt-induced changes through an elevated pool of enzymes in the ascorbate-glutathione cycle, other antioxidants (superoxide dismutase, catalase), and osmoprotectants (proline, glycine betaine). Exogenously applied EBL and Ca help to optimize mineral nutrient status and enable tomato plants to tolerate salt toxicity. The ability of tomato plants to tolerate salt stress when supplemented with EBL and Ca was attributed to modifications to enzymatic and non-enzymatic antioxidants, osmolytes and metabolites.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|
19
|
Lee J, Shim D, Moon S, Kim H, Bae W, Kim K, Kim YH, Rhee SK, Hong CP, Hong SY, Lee YJ, Sung J, Ryu H. Genome-wide transcriptomic analysis of BR-deficient Micro-Tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:553-560. [PMID: 29723826 DOI: 10.1016/j.plaphy.2018.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) are plant steroid hormones that play crucial roles in a range of growth and developmental processes. Although BR signal transduction and biosynthetic pathways have been well characterized in model plants, their biological roles in an important crop, tomato (Solanum lycopersicum), remain unknown. Here, cultivated tomato (WT) and a BR synthesis mutant, Micro-Tom (MT), were compared using physiological and transcriptomic approaches. The cultivated tomato showed higher tolerance to drought and osmotic stresses than the MT tomato. However, BR-defective phenotypes of MT, including plant growth and stomatal closure defects, were completely recovered by application of exogenous BR or complementation with a SlDWARF gene. Using genome-wide transcriptome analysis, 619 significantly differentially expressed genes (DEGs) were identified between WT and MT plants. Several DEGs were linked to known signaling networks, including those related to biotic/abiotic stress responses, lignification, cell wall development, and hormone responses. Consistent with the higher susceptibility of MT to drought stress, several gene sets involved in responses to drought and osmotic stress were differentially regulated between the WT and MT tomato plants. Our data suggest that BR signaling pathways are involved in mediating the response to abiotic stress via fine-tuning of abiotic stress-related gene networks in tomato plants.
Collapse
Affiliation(s)
- Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Donghwan Shim
- Department of Forest Genetic Resources, National Institute of Forest Science, Suwon 16631, Republic of Korea.
| | - Suyun Moon
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Kyunghwan Kim
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Chang Pyo Hong
- TheragenEtex Bio Institute, Suwon 16229, Republic of Korea.
| | - Suk-Young Hong
- Division of Soil and Fertilizer, National Academy of Agricultural Science, RDA, Wanju, 27715, Republic of Korea.
| | - Ye-Jin Lee
- Division of Soil and Fertilizer, National Academy of Agricultural Science, RDA, Wanju, 27715, Republic of Korea.
| | - Jwakyung Sung
- Division of Soil and Fertilizer, National Academy of Agricultural Science, RDA, Wanju, 27715, Republic of Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
20
|
Zhou Y, Yuan C, Ruan S, Zhang Z, Meng J, Xi Z. Exogenous 24-Epibrassinolide Interacts with Light to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Cabernet Sauvignon (Vitis vinifera L.). Molecules 2018; 23:molecules23010093. [PMID: 29315208 PMCID: PMC6017727 DOI: 10.3390/molecules23010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/04/2022] Open
Abstract
Anthocyanins and proanthocyanidins (PAs) are crucial factors that affect the quality of grapes and the making of wine, which were stimulated by various stimuli and environment factors (sugar, hormones, light, and temperature). The aim of the study was to investigate the influence of exogenous 24-Epibrassinolide (EBR) and light on the mechanism of anthocyanins and PAs accumulation in grape berries. Grape clusters were sprayed with EBR (0.4 mg/L) under light and darkness conditions (EBR + L, EBR + D), or sprayed with deionized water under light and darkness conditions as controls (L, D), at the onset of veraison. A large amount of anthocyanins accumulated in the grape skins and was measured under EBR + L and L treatments, whereas EBR + D and D treatments severely suppressed anthocyanin accumulation. This indicated that EBR treatment could produce overlay effects under light, in comparison to that in dark. Real-time quantitative PCR analysis indicated that EBR application up-regulated the expression of genes (VvCHI1, VvCHS2, VvCHS3, VvDFR, VvLDOX, VvMYBA1) under light conditions. Under darkness conditions, only early biosynthetic genes of anthocyanin biosynthesis responded to EBR. Furthermore, we also analyzed the expression levels of the BR-regulated transcription factor VvBZR1 (Brassinazole-resistant 1) and light-regulated transcription factor VvHY5 (Elongated hypocotyl 5). Our results suggested that EBR and light had synergistic effects on the expression of genes in the anthocyanin biosynthesis pathway.
Collapse
Affiliation(s)
- Yali Zhou
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| | - Shicheng Ruan
- Chateau Changyu Rena Co., Ltd., Xianyang 712000, China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| |
Collapse
|
21
|
Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions - A review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Lima JV, Lobato AKS. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:59-72. [PMID: 28250584 PMCID: PMC5313414 DOI: 10.1007/s12298-016-0410-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Accepted: 12/23/2016] [Indexed: 05/20/2023]
Abstract
Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in ΦPSII, qP and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, PN, E and gs exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a, Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a, Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in ΦPSII, qP and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea plants exposed to the water deficit.
Collapse
Affiliation(s)
- J. V. Lima
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Rodovia PA 256, Paragominas, Pará Brazil
| | - A. K. S. Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Rodovia PA 256, Paragominas, Pará Brazil
| |
Collapse
|
23
|
Sharma I, Kaur N, Pati PK. Brassinosteroids: A Promising Option in Deciphering Remedial Strategies for Abiotic Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2151. [PMID: 29326745 PMCID: PMC5742319 DOI: 10.3389/fpls.2017.02151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/05/2017] [Indexed: 05/03/2023]
Abstract
Rice is an important staple crop as it feeds about a half of the earth's population. It is known to be sensitive to a range of abiotic stresses which result in significant decline in crop productivity. Recently, the use of phytohormones for abiotic stress amelioration has generated considerable interest. Plants adapt to various environmental stresses by undergoing series of changes at physiological and molecular levels which are cooperatively modulated by various phytohormones. Brassinosteroids (BRs) are a class of naturally occurring steroidal phytohormones, best known for their role in plant growth and development. For the past two decades, greater emphasis on studies related to BRs biosynthesis, distribution and signaling has resulted in better understanding of BRs function. Recent advances in the use of contemporary genetic, biochemical and proteomic tools, with a vast array of accessible biological resources has led to an extensive exploration of the key regulatory components in BR signaling networks, thus making it one of the most well-studied hormonal pathways in plants. The present review highlights the advancements of knowledge in BR research and links it with its growing potential in abiotic stress management for important crop like rice.
Collapse
|
24
|
The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics 2016; 16:465-80. [DOI: 10.1007/s10142-016-0501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
|