1
|
Sun Q, He L, Sun L, Xu HY, Fu YQ, Sun ZY, Zhu BQ, Duan CQ, Pan QH. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1142139. [PMID: 36938056 PMCID: PMC10014734 DOI: 10.3389/fpls.2023.1142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and β-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.
Collapse
Affiliation(s)
- Qi Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hai-Ying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ya-Qun Fu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng-Yang Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Qing Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Marè C, Zampieri E, Cavallaro V, Frouin J, Grenier C, Courtois B, Brottier L, Tacconi G, Finocchiaro F, Serrat X, Nogués S, Bundó M, San Segundo B, Negrini N, Pesenti M, Sacchi GA, Gavina G, Bovina R, Monaco S, Tondelli A, Cattivelli L, Valè G. Marker-Assisted Introgression of the Salinity Tolerance Locus Saltol in Temperate Japonica Rice. RICE (NEW YORK, N.Y.) 2023; 16:2. [PMID: 36633713 PMCID: PMC9837369 DOI: 10.1186/s12284-023-00619-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Rice is one of the most salt sensitive crops at seedling, early vegetative and reproductive stages. Varieties with salinity tolerance at seedling stage promote an efficient growth at early stages in salt affected soils, leading to healthy vegetative growth that protects crop yield. Saltol major QTL confers capacity to young rice plants growing under salt condition by maintaining a low Na+/K+ molar ratio in the shoots. RESULTS Marker-assisted backcross (MABC) procedure was adopted to transfer Saltol locus conferring salt tolerance at seedling stage from donor indica IR64-Saltol to two temperate japonica varieties, Vialone Nano and Onice. Forward and background selections were accomplished using polymorphic KASP markers and a final evaluation of genetic background recovery of the selected lines was conducted using 15,580 SNP markers obtained from Genotyping by Sequencing. Three MABC generations followed by two selfing, allowed the identification of introgression lines achieving a recovery of the recurrent parent (RP) genome up to 100% (based on KASP markers) or 98.97% (based on GBS). Lines with highest RP genome recovery (RPGR) were evaluated for agronomical-phenological traits in field under non-salinized conditions. VN1, VN4, O1 lines were selected considering the agronomic evaluations and the RPGR% results as the most interesting for commercial exploitation. A physiological characterization was conducted by evaluating salt tolerance under hydroponic conditions. The selected lines showed lower standard evaluation system (SES) scores: 62% of VN4, and 57% of O1 plants reaching SES 3 or SES 5 respectively, while only 40% of Vialone Nano and 25% of Onice plants recorded scores from 3 to 5, respectively. VN1, VN4 and O1 showed a reduced electrolyte leakage values, and limited negative effects on relative water content and shoot/root fresh weight ratio. CONCLUSION The Saltol locus was successfully transferred to two elite varieties by MABC in a time frame of three years. The application of background selection until BC3F3 allowed the selection of lines with a RPGR up to 98.97%. Physiological evaluations for the selected lines indicate an improved salinity tolerance at seedling stage. The results supported the effectiveness of the Saltol locus in temperate japonica and of the MABC procedure for recovering of the RP favorable traits.
Collapse
Affiliation(s)
- Caterina Marè
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy.
| | - Elisa Zampieri
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100, Vercelli, Italy
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Viviana Cavallaro
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy - DiSAA, University of Milan, Milan, Italy
| | - Julien Frouin
- CIRAD, UMR AGAP, 34398, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, 34398, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Brigitte Courtois
- CIRAD, UMR AGAP, 34398, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Laurent Brottier
- CIRAD, UMR AGAP, 34398, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gianni Tacconi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG)-CSIC-IRTA-UAB-UB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG)-CSIC-IRTA-UAB-UB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Noemi Negrini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy - DiSAA, University of Milan, Milan, Italy
| | - Michele Pesenti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy - DiSAA, University of Milan, Milan, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy - DiSAA, University of Milan, Milan, Italy
| | - Giacomo Gavina
- SIS Società Italiana Sementi, Via Mirandola, 5, 40068, San Lazzaro di Savena, Bologna, Italy
| | - Riccardo Bovina
- SIS Società Italiana Sementi, Via Mirandola, 5, 40068, San Lazzaro di Savena, Bologna, Italy
| | - Stefano Monaco
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100, Vercelli, Italy
- Council for Agricultural Research and Economics, Research Centre for Engineering and Agro-Food Processing, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, Piazza S. Eusebio 5, 13100, Vercelli, Italy.
| |
Collapse
|
3
|
Zhang L, Wang L, Chen X, Zhao L, Liu X, Wang Y, Wu G, Xia C, Zhang L, Kong X. The protein phosphatase 2C clade A TaPP2CA interact with calcium-dependent protein kinases, TaCDPK5/TaCDPK9-1, that phosphorylate TabZIP60 transcription factor from wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111304. [PMID: 35696905 DOI: 10.1016/j.plantsci.2022.111304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 05/20/2023]
Abstract
Previously we have found that TabZIP60 from the ABF/AREB (ABRE-binding factor/ABA-responsive element-binding protein) subfamily of bZIP transcription factor (TF) was involved in salt stress response. However, the regulatory mechanism of TabZIP60 is unknown. In the present study, we identified two calcium-dependent protein kinase (CDPK) genes, TaCDPK5/TaCDPK9-1, which were clustered into group Ⅰ and were induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG) treatments. RT-qPCR results showed that the expression level of salt-induced TabZIP60 was drastically inhibited by Ca2+ channel blocker LaCl3. TaCDPK5/TaCDPK9-1 were involved in interaction with TabZIP60 protein in vivo and in vitro. And TaCDPK5/TaCDPK9-1 could autophosphorylate and phosphorylate TabZIP60 protein in a Ca2+-dependent way. Mutational analysis indicated that Serine-110 of TabZIP60 was essential for TaCDPK5/TaCDPK9-1-TabZIP60 interaction and was the phosphorylation site of TaCDPK5/TaCDPK9-1 kinases. Yeast two-hybrid assay results showed the interactions between TaCDPK5/TaCDPK9-1 and wheat protein phosphatase 2 C clade A TaPP2CA116/ TaPP2CA121 separately. These findings demonstrate that the phosphorylation status of TabZIP60 controlled by TaPP2CA116/ TaPP2CA121 and TaCDPK5/TaCDPK9-1 might play a crucial role in wheat during salt stress.
Collapse
Affiliation(s)
- Lina Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Liting Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xue Chen
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Lijuan Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xingyan Liu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yinghong Wang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, Henan 453000, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Chuan Xia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lichao Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Tiwari S, Nutan KK, Deshmukh R, Sarsu F, Gupta KJ, Singh AK, Singla-Pareek SL, Pareek A. Seedling-stage salinity tolerance in rice: Decoding the role of transcription factors. PHYSIOLOGIA PLANTARUM 2022; 174:e13685. [PMID: 35419814 DOI: 10.1111/ppl.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Rice is an important staple food crop that feeds over half of the human population, particularly in developing countries. Increasing salinity is a major challenge for continuing rice production. Though rice is affected by salinity at all the developmental stages, it is most sensitive at the early seedling stage. The yield thus depends on how many seedlings can withstand saline water at the stage of transplantation, especially in coastal farms. The rapid development of "omics" approaches has assisted researchers in identifying biological molecules that are responsive to salt stress. Several salinity-responsive quantitative trait loci (QTL) contributing to salinity tolerance have been identified and validated, making it essential to narrow down the search for the key genes within QTLs. Owing to the impressive progress of molecular tools, it is now clear that the response of plants toward salinity is highly complex, involving multiple genes, with a specific role assigned to the repertoire of transcription factors (TF). Targeting the TFs for improving salinity tolerance can have an inbuilt advantage of influencing multiple downstream genes, which in turn can contribute toward tolerance to multiple stresses. This is the first comparative study for TF-driven salinity tolerance in contrasting rice cultivars at the seedling stage that shows how tolerant genotypes behave differently than sensitive ones in terms of stress tolerance. Understanding the complexity of salt-responsive TF networks at the seedling stage will be helpful to alleviate crop resilience and prevent crop damage at an early growth stage in rice.
Collapse
Affiliation(s)
- Shalini Tiwari
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Kamlesh Kant Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Fatma Sarsu
- General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | | | - Anil K Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
5
|
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 12:797141. [PMID: 35126422 PMCID: PMC8813771 DOI: 10.3389/fpls.2021.797141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | | | - Michele Pesenti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Jorge Gómez-Ariza
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Julien Frouin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Brigitte Courtois
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
6
|
Mishra M, Wungrampha S, Kumar G, Singla-Pareek SL, Pareek A. How do rice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis. PHOTOSYNTHESIS RESEARCH 2021; 150:117-135. [PMID: 32632535 DOI: 10.1007/s11120-020-00771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Rice, one of the most important staple food crops in the world, is highly sensitive to soil salinity at the seedling stage. The ultimate yield of this crop is a function of the number of seedlings surviving after transplantation in saline water. Oryza sativa cv. IR64 is a high-yielding salinity-sensitive variety, while Pokkali is a landrace traditionally cultivated by the local farmers in the coastal regions in India. However, the machinery responsible for the seedling-stage tolerance in Pokkali is not understood. To bridge this gap, we subjected young seedlings of these contrasting genotypes to salinity and performed detailed investigations about their growth parameters, ion homeostasis, biochemical composition, and photosynthetic parameters after every 24 h of salinity for three days. Taken together, all the physiological and biochemical indicators, such as proline accumulation, K+/Na+ ratio, lipid peroxidation, and electrolyte leakage, clearly revealed significant differences between IR64 and Pokkali under salinity, establishing their contrasting nature at this stage. In response to salinity, the Fv/Fm ratio (maximum quantum efficiency of Photosystem II as inferred from Chl a fluorescence) and the energy conserved for the electron transport after the reduction of QA (the primary electron acceptor of PSII), to QA-, and reduction of the end electron acceptor molecules towards the PSI (Photosystem I) electron acceptor side was higher in Pokkali than IR64 plants. These observations reflect a direct contribution of photosynthesis towards seedling-stage salinity tolerance in rice. These findings will help to breed high-yielding crops for salinity prone agricultural lands.
Collapse
Affiliation(s)
- Manjari Mishra
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gautam Kumar
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Saidi A, Hajibarat Z, Hajibarat Z. Phylogeny, gene structure and GATA genes expression in different tissues of solanaceae species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Abstract
Plants are an important part of nature because as photoautotrophs, they provide a nutrient source for many other living organisms. Due to their sessile nature, to overcome both biotic and abiotic stresses, plants have developed intricate mechanisms for perception of and reaction to these stresses, both on an external level (perception) and on an internal level (reaction). Specific proteins found within cells play crucial roles in stress mitigation by enhancing cellular processes that facilitate the plants survival during the unfavorable conditions. Well before plants are able to synthesize nascent proteins in response to stress, proteins which already exist in the cell can be subjected to an array of posttranslation modifications (PTMs) that permit a rapid response. These activated proteins can, in turn, aid in further stress responses. Different PTMs have different functions in growth and development of plants. Protein phosphorylation, a reversible form of modification has been well elucidated, and its role in signaling cascades is well documented. In this mini-review, we discuss the integration of protein phosphorylation with other components of abiotic stress-responsive pathways including phytohormones and ion homeostasis. Overall, this review demonstrates the high interconnectivity of the stress response system in plants and how readily plants are able to toggle between various signaling pathways in order to survive harsh conditions. Most notably, fluctuations of the cytosolic calcium levels seem to be a linking component of the various signaling pathways.
Collapse
Affiliation(s)
- Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China.
| |
Collapse
|
9
|
Nutan KK, Singla-Pareek SL, Pareek A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:684-698. [PMID: 31613368 DOI: 10.1093/jxb/erz368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/06/2019] [Indexed: 05/23/2023]
Abstract
GATA represents a highly conserved family of transcription factors reported in organisms ranging from fungi to angiosperms. A member of this family, OsGATA8, localized within the Saltol QTL in rice, has been reported to be induced by salinity, drought, and ABA. However, its precise role in stress tolerance has not yet been elucidated. Using genetic, molecular, and physiological analyses, in this study we show that OsGATA8 increases seed size and tolerance to abiotic stresses in both Arabidopsis and rice. Transgenic lines of rice were generated with 3-fold overexpression of OsGATA8 compared to the wild-type together with knockdown lines with 2-fold lower expression. The overexpressing lines showed higher biomass accumulation and higher photosynthetic efficiency in seedlings compared to the wild-type and knockdown lines under both normal and salinity-stress conditions. OsGATA8 appeared to be an integrator of diverse cellular processes, including K+/Na+ content, photosynthetic efficiency, relative water content, Fv/Fm ratio, and the stability to sub-cellular organelles. It also contributed to maintaining yield under stress, which was ~46% higher in overexpression plants compared with the wild-type. OsGATA8 produced these effects by regulating the expression of critical genes involved in stress tolerance, scavenging of reactive oxygen species, and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Kamlesh K Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Buti M, Baldoni E, Formentin E, Milc J, Frugis G, Lo Schiavo F, Genga A, Francia E. A Meta-Analysis of Comparative Transcriptomic Data Reveals a Set of Key Genes Involved in the Tolerance to Abiotic Stresses in Rice. Int J Mol Sci 2019; 20:E5662. [PMID: 31726733 PMCID: PMC6888222 DOI: 10.3390/ijms20225662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/16/2022] Open
Abstract
Several environmental factors, such as drought, salinity, and extreme temperatures, negatively affect plant growth and development, which leads to yield losses. The tolerance or sensitivity to abiotic stressors are the expression of a complex machinery involving molecular, biochemical, and physiological mechanisms. Here, a meta-analysis on previously published RNA-Seq data was performed to identify the genes conferring tolerance to chilling, osmotic, and salt stresses, by comparing the transcriptomic changes between tolerant and susceptible rice genotypes. Several genes encoding transcription factors (TFs) were identified, suggesting that abiotic stress tolerance involves upstream regulatory pathways. A gene co-expression network defined the metabolic and signalling pathways with a prominent role in the differentiation between tolerance and susceptibility: (i) the regulation of endogenous abscisic acid (ABA) levels, through the modulation of genes that are related to its biosynthesis/catabolism, (ii) the signalling pathways mediated by ABA and jasmonic acid, (iii) the activity of the "Drought and Salt Tolerance" TF, involved in the negative regulation of stomatal closure, and (iv) the regulation of flavonoid biosynthesis by specific MYB TFs. The identified genes represent putative key players for conferring tolerance to a broad range of abiotic stresses in rice; a fine-tuning of their expression seems to be crucial for rice plants to cope with environmental cues.
Collapse
Affiliation(s)
- Matteo Buti
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
- Present address: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Elide Formentin
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| | - Giovanna Frugis
- CNR-IBBA, Rome Unit, via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, 35131 Padova, Italy; (E.F.); (F.L.S.)
- Botanical Garden, University of Padova, 35123 Padova, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133 Milano, Italy;
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, Via Amendola 2, 42124 Reggio Emilia, Italy; (M.B.); (J.M.); (E.F.)
| |
Collapse
|
11
|
Das P, Lakra N, Nutan KK, Singla-Pareek SL, Pareek A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. RICE (NEW YORK, N.Y.) 2019; 12:58. [PMID: 31375941 PMCID: PMC6890918 DOI: 10.1186/s12284-019-0316-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice productivity is adversely affected by environmental stresses. Transcription factors (TFs), as the regulators of gene expression, are the key players contributing to stress tolerance and crop yield. Histone gene binding protein-1b (OsHBP1b) is a TF localized within the Saltol QTL in rice. Recently, we have reported the characterization of OsHBP1b in relation to salinity and drought tolerance in a model system tobacco. In the present study, we over-express the full-length gene encoding OsHBP1b in the homologous system (rice) to assess its contribution towards multiple stress tolerance and grain yield. RESULTS We provide evidence to show that transgenic rice plants over-expressing OsHBP1b exhibit better survival and favourable osmotic parameters under salinity stress than the wild type counterparts. These transgenic plants restricted reactive oxygen species accumulation by exhibiting high antioxidant enzyme activity (ascorbate peroxidase and superoxide dismutase), under salinity conditions. Additionally, these transgenic plants maintained the chlorophyll concentration, organellar structure, photosynthesis and expression of photosynthesis and stress-related genes even when subjected to salinity stress. Experiments conducted for other abiotic stresses such as drought and high temperature revealed improved tolerance in these transgenic plants with better root and shoot growth, better photosynthetic parameters, and enhanced antioxidant enzyme activity, in comparison with WT. Further, the roots of transgenic lines showed large cortical cells and accumulated a good amount of callose, unlike the WT roots, thus enabling them to penetrate hard soil and prevent the entry of harmful ions in the cell. CONCLUSION Collectively, our results show that rice HBP1b gene contributes to multiple abiotic stress tolerance through several molecular and physiological pathways and hence, may serve as an important gene for providing multiple stress tolerance and improving crop yield in rice.
Collapse
Affiliation(s)
- Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nita Lakra
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kamlesh Kant Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Lakra N, Kaur C, Singla-Pareek SL, Pareek A. Mapping the 'early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. RICE (NEW YORK, N.Y.) 2019; 12:3. [PMID: 30701331 PMCID: PMC6357216 DOI: 10.1186/s12284-018-0259-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/11/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND To delineate the adaptive mechanisms operative under salinity stress, it is essential to study plant responses at the very early stages of stress which are very crucial for governing plant survival and adaptation. We believe that it is the initial perception and response phase which sets the foundation for stress adaptation in rice seedlings where plants can be considered to be in a state of osmotic shock and ion buildup. RESULTS An isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approach was used to analyze the pre-existing differences as well as the very early salt shock responsive changes in the proteome of seedlings of contrasting rice genotypes, viz salt-sensitive IR64 and salt-tolerant Pokkali. In response to a quick salt shock, shoots of IR64 exhibited hyperaccumulation of Na+, whereas in Pokkali, these ions accumulated more in roots. Interestingly, we could find 86 proteins to be differentially expressed in shoots of Pokkali seedlings under non-stress conditions whereas under stress, 63 proteins were differentially expressed in Pokkali shoots in comparison to IR64. However, only, 40 proteins under non-stress and eight proteins under stress were differentially expressed in Pokkali roots. A higher abundance of proteins involved in photosynthesis (such as, oxygen evolving enhancer proteins OEE1 & OEE3, PsbP) and stress tolerance (such as, ascorbate peroxidase, superoxide dismutase, peptidyl-prolyl cis-trans isomerases and glyoxalase II), was observed in shoots of Pokkali in comparison to IR64. In response to salinity, selected proteins such as, ribulose bisphosphate carboxylase/oxygenase activase, remained elevated in Pokkali shoots. Glutamate dehydrogenase - an enzyme which serves as an important link between Krebs cycle and metabolism of amino acids was found to be highly induced in Pokkali in response to stress. Similarly, other enzymes such as peroxidases and triose phosphate isomerase (TPI) were also altered in roots in response to stress. CONCLUSION We conclude that Pokkali rice seedlings are primed to face stress conditions where the proteins otherwise induced under stress in IR64, are naturally expressed in high abundance. Through specific alterations in its proteome, this proactive stress machinery contributes towards the observed salinity tolerance in this wild rice germplasm.
Collapse
Affiliation(s)
- Nita Lakra
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Wang A, Shu X, Niu X, Zhao W, Ai P, Li P, Zheng A. Comparison of gene co-networks analysis provide a systems view of rice (Oryza sativa L.) response to Tilletia horrida infection. PLoS One 2018; 13:e0202309. [PMID: 30372430 PMCID: PMC6205584 DOI: 10.1371/journal.pone.0202309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The biotrophic soil-borne fungus Tilletia horrida causes rice kernel smut, an important disease affecting the production of rice male sterile lines in most hybrid rice growing regions of the world. There are no successful ways of controlling this disease and there has been little study of mechanisms of resistance to T. horrida. Based on transcriptional data of different infection time points, we found 23, 782 and 23, 718 differentially expressed genes (fragments per kilobase of transcript sequence per million, FPKM >1) in Jiangcheng 3A (resistant to T. horrida) and 9311A (susceptible to T. horrida), respectively. In order to illuminate the differential responses of the two rice male sterile lines to T. horrida, we identified gene co-expression modules using the method of weighted gene co-expression network analysis (WGCNA) and compared the different biological functions of gene co-expression networks in key modules at different infection time points. The results indicated that gene co-expression networks in the two rice genotypes were different and that genes contained in some modules of the two groups may play important roles in resistance to T. horrida, such as DTH8 and OsHop/Sti1a. Furthermore, these results provide a global view of the responses of two different phenotypes to T. horrida, and assist our understanding of the regulation of expression changes after T. horrida infection.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xinyue Shu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xianyu Niu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| |
Collapse
|
14
|
Zhang J, Zhao W, Fu R, Fu C, Wang L, Liu H, Li S, Deng Q, Wang S, Zhu J, Liang Y, Li P, Zheng A. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection. Funct Integr Genomics 2018; 18:545-557. [PMID: 29730773 PMCID: PMC6097106 DOI: 10.1007/s10142-018-0607-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Rong Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chenglin Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
15
|
Frouin J, Languillaume A, Mas J, Mieulet D, Boisnard A, Labeyrie A, Bettembourg M, Bureau C, Lorenzini E, Portefaix M, Turquay P, Vernet A, Périn C, Ahmadi N, Courtois B. Tolerance to mild salinity stress in japonica rice: A genome-wide association mapping study highlights calcium signaling and metabolism genes. PLoS One 2018; 13:e0190964. [PMID: 29342194 PMCID: PMC5771603 DOI: 10.1371/journal.pone.0190964] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Salinity tolerance is an important quality for European rice grown in river deltas. We evaluated the salinity tolerance of a panel of 235 temperate japonica rice accessions genotyped with 30,000 SNP markers. The panel was exposed to mild salt stress (50 mM NaCl; conductivity of 6 dS m-1) at the seedling stage. Eight different root and shoot growth parameters were measured for both the control and stressed treatments. The Na+ and K+ mass fractions of the stressed plants were measured using atomic absorption spectroscopy. The salt treatment affected plant growth, particularly the shoot parameters. The panel showed a wide range of Na+/K+ ratio and the temperate accessions were distributed over an increasing axis, from the most resistant to the most susceptible checks. We conducted a genome-wide association study on indices of stress response and ion mass fractions in the leaves using a classical mixed model controlling structure and kinship. A total of 27 QTLs validated by sub-sampling were identified. For indices of stress responses, we also used another model that focused on marker × treatment interactions and detected 50 QTLs, three of which were also identified using the classical method. We compared the positions of the significant QTLs to those of approximately 300 genes that play a role in rice salt tolerance. The positions of several QTLs were close to those of genes involved in calcium signaling and metabolism, while other QTLs were close to those of kinases. These results reveal the salinity tolerance of accessions with a temperate japonica background. Although the detected QTLs must be confirmed by other approaches, the number of associations linked to candidate genes involved in calcium-mediated ion homeostasis highlights pathways to explore in priority to understand the salinity tolerance of temperate rice.
Collapse
Affiliation(s)
- Julien Frouin
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Antoine Languillaume
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Justine Mas
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Delphine Mieulet
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | | | - Axel Labeyrie
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Mathilde Bettembourg
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Charlotte Bureau
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Eve Lorenzini
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Muriel Portefaix
- Institut National de la Recherche Agronomique, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Patricia Turquay
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Aurore Vernet
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Christophe Périn
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Nourollah Ahmadi
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Brigitte Courtois
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
- * E-mail:
| |
Collapse
|
16
|
Yan H, Bombarely A, Xu B, Frazier TP, Wang C, Chen P, Chen J, Hasing T, Cui C, Zhang X, Zhao B, Huang L. siRNAs regulate DNA methylation and interfere with gene and lncRNA expression in the heterozygous polyploid switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:208. [PMID: 30061930 PMCID: PMC6058383 DOI: 10.1186/s13068-018-1202-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/10/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Understanding the DNA methylome and its relationship with non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is essential for elucidating the molecular mechanisms underlying key biological processes in plants. Few studies have examined the functional roles of the DNA methylome in grass species with highly heterozygous polyploid genomes. RESULTS We performed genome-wide DNA methylation profiling in the tetraploid switchgrass (Panicum virgatum L.) cultivar 'Alamo' using bisulfite sequencing. Single-base-resolution methylation patterns were observed in switchgrass leaf and root tissues, which allowed for characterization of the relationship between DNA methylation and mRNA, miRNA, and lncRNA populations. The results of this study revealed that siRNAs positively regulate DNA methylation of the mCHH sites surrounding genes, and that DNA methylation interferes with gene and lncRNA expression in switchgrass. Ninety-six genes covered by differentially methylated regions (DMRs) were annotated by GO analysis as being involved in stimulus-related processes. Functionally, 82% (79/96) of these genes were found to be hypomethylated in switchgrass root tissue. Sequencing analysis of lncRNAs identified two lncRNAs that are potential precursors of miRNAs, which are predicted to target genes that function in cellulose biosynthesis, stress regulation, and stem and root development. CONCLUSIONS This study characterized the DNA methylome in switchgrass and elucidated its relevance to gene and non-coding RNAs. These results provide valuable genomic resources and references that will aid further epigenetic research in this important biofuel crop.
Collapse
Affiliation(s)
- Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | | | - Bin Xu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Taylor P. Frazier
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Chengran Wang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Peilin Chen
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jing Chen
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tomas Hasing
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Chenming Cui
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061 USA
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
17
|
|
18
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
19
|
Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. Methods Mol Biol 2017; 1679:83-95. [PMID: 28913795 DOI: 10.1007/978-1-4939-7337-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salinity and drought are interconnected, causing phenotypic, physiological, biochemical, and molecular changes in a cell. These stresses are the major factors adversely affecting growth and productivity in cereals. Genetic engineering methods have advanced to enable development of genotypes with improved salinity and drought tolerance. The resulting transgenic plant produces a group of progenies which includes moderate to high-stress tolerant transgenic lines. Development of reproducible screening methods to identify high-stress tolerant germplasm under laboratory, greenhouse, or field conditions is must. Further, field level demonstration of improved phenotypes and yield under salinity and drought stress conditions is both challenging and expensive. Fast and efficient screening techniques that could be used to screen transgenic lines under greenhouse conditions, for salt and drought stress tolerance, may contribute toward the identification of promising lines for field conditions. This chapter provides information on various approaches which can be developed during different stages of plant development for selecting salinity and drought tolerant plants in cereals, especially wheat.
Collapse
|
20
|
Gupta P, Nutan KK, Singla-Pareek SL, Pareek A. Abiotic Stresses Cause Differential Regulation of Alternative Splice Forms of GATA Transcription Factor in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1944. [PMID: 29181013 PMCID: PMC5693882 DOI: 10.3389/fpls.2017.01944] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/30/2017] [Indexed: 05/05/2023]
Abstract
The GATA gene family is one of the most conserved families of transcription factors, playing a significant role in different aspects of cellular processes, in organisms ranging from fungi to angiosperms. GATA transcription factors are DNA-binding proteins, having a class IV zinc-finger motif CX2CX17-20CX2C followed by a highly basic region and are known to bind a consensus sequence WGATAR. In plants, GATAs are known to be involved in light-dependent gene regulation and nitrate assimilation. However, a comprehensive analysis of these GATA gene members has not yet been highlighted in rice when subjected to environmental stresses. In this study, we present an overview of the GATA gene family in rice (OsGATA) in terms of, their chromosomal distribution, domain architecture, and phylogeny. Our study has revealed the presence of 28 genes, encoding 35 putative GATA transcription factors belonging to seven subfamilies in the rice genome. Transcript abundance analysis in contrasting genotypes of rice-IR64 (salt sensitive) and Pokkali (salt tolerant), for individual GATA members indicated their differential expression in response to various abiotic stresses such as salinity, drought, and exogenous ABA. One of the members of subfamily VII-OsGATA23a, emerged as a multi-stress responsive transcription factor giving elevated expression levels in response to salinity and drought. ABA also induces expression of OsGATA23a by 35 and 55-folds in IR64 and Pokkali respectively. However, OsGATA23b, an alternative splice variant of OsGATA23 did not respond to above-mentioned stresses. Developmental regulation of the OsGATA genes based on a publicly available microarray database showed distinct expression patterns for most of the GATA members throughout different stages of rice development. Altogether, our results suggest inherent roles of diverse OsGATA factors in abiotic stress signaling and also throw some light on the tight regulation of the spliced variants of OsGATA genes in response to different environmental conditions.
Collapse
Affiliation(s)
- Priyanka Gupta
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kamlesh K. Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Ashwani Pareek
| |
Collapse
|