1
|
van den Burg S, Deolu-Ajayi AO, Nauta R, Cervi WR, van der Werf A, Poelman M, Wilbers GJ, Snethlage J, van Alphen M, van der Meer IM. Knowledge gaps on how to adapt crop production under changing saline circumstances in the Netherlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170118. [PMID: 38232830 DOI: 10.1016/j.scitotenv.2024.170118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Salinization, the increase and accumulation of salts in water and soil, impacts productivity of arable crops and is exacerbated by climate change. The Netherlands, like several other deltas and semi-arid regions, faces increasing salinization that negatively impacts agriculture and freshwater availability. Although a lot of salinity expertise exist in the Netherlands, several knowledge gaps on the impact of salinization in the Netherlands, as well as steps to facilitate closing this knowledge gaps to improve saline agriculture in the Netherlands, still exist. This review/opinion article moves beyond existing papers on salinization in bringing together various adaptation measures by thoroughly reviewing the measures through a triple P (People, Planet, Profit) lens. Five main salinity adaptation measures of the crop-soil-water continuum are 1) breeding and selection of salt tolerant varieties, 2) increased cultivation of halophytes, 3) soil management interventions, 4) use of biostimulants, and 5) irrigation techniques. These adaptation measures are described, discussed and analysed for their compliance to the sustainable development elements People, Planet and Profit. All five adaptation measures have potential positive impact on livelihood, contribute to food security and generate revenue but on the other hand, these measures may contribute to unwarranted changes of the ecosystem. The paper ends with a concluding chapter in which the bottlenecks and knowledge gaps that need resolving are identified based on the critical, including triple P, assessment of the discussed adaptation measures. Three key knowledge gaps on breeding, agronomy, environmental sciences and socioeconomics are identified with several approaches that lead to insights elucidated. Thereby informing on future research and action plans to optimize implementation of salinity adaptation measures in the Netherlands.
Collapse
Affiliation(s)
- Sander van den Burg
- Wageningen Economic Research, Wageningen University and Research, P. O. Box 29703, 2502 LS The Hague, the Netherlands
| | - Ayodeji O Deolu-Ajayi
- Wageningen Plant Research, Agrosystems Research, Wageningen University and Research, P. O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Reinier Nauta
- Wageningen Marine Research, Wageningen University and Research, P. O. Box 77, 4400 AB Yerseke, the Netherlands
| | - Walter Rossi Cervi
- Wageningen Economic Research, Wageningen University and Research, P. O. Box 29703, 2502 LS The Hague, the Netherlands
| | - Adrie van der Werf
- Wageningen Plant Research, Agrosystems Research, Wageningen University and Research, P. O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Marnix Poelman
- Wageningen Marine Research, Wageningen University and Research, P. O. Box 77, 4400 AB Yerseke, the Netherlands
| | - Gert-Jan Wilbers
- Wageningen Environmental Research, Wageningen University and Research, P. O. Box 47, 6708 PB Wageningen, the Netherlands
| | - Judit Snethlage
- Wageningen Environmental Research, Wageningen University and Research, P. O. Box 47, 6708 PB Wageningen, the Netherlands
| | - Monica van Alphen
- Wageningen Economic Research, Wageningen University and Research, P. O. Box 29703, 2502 LS The Hague, the Netherlands
| | - Ingrid M van der Meer
- Wageningen Plant Research, Bioscience, Wageningen University and Research, P. O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
2
|
Shahwar D, Khan Z, Park Y. Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2023; 24:15490. [PMID: 37895169 PMCID: PMC10607903 DOI: 10.3390/ijms242015490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melon (Cucumis melo L.) is an important crop that is cultivated worldwide for its fleshy fruit. Understanding the genetic basis of a plant's qualitative and quantitative traits is essential for developing consumer-favored varieties. This review presents genetic and molecular advances related to qualitative and quantitative phenotypic traits and biochemical compounds in melons. This information guides trait incorporation and the production of novel varieties with desirable horticultural and economic characteristics and yield performance. This review summarizes the quantitative trait loci, candidate genes, and development of molecular markers related to plant architecture, branching patterns, floral attributes (sex expression and male sterility), fruit attributes (shape, rind and flesh color, yield, biochemical compounds, sugar content, and netting), and seed attributes (seed coat color and size). The findings discussed in this review will enhance demand-driven breeding to produce cultivars that benefit consumers and melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
3
|
KhokharVoytas A, Shahbaz M, Maqsood MF, Zulfiqar U, Naz N, Iqbal UZ, Sara M, Aqeel M, Khalid N, Noman A, Zulfiqar F, Al Syaad KM, AlShaqhaa MA. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Funct Integr Genomics 2023; 23:283. [PMID: 37642792 DOI: 10.1007/s10142-023-01202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Enhancing the resilience of plants to abiotic stresses, such as drought, salinity, heat, and cold, is crucial for ensuring global food security challenge in the context of climate change. The adverse effects of climate change, characterized by rising temperatures, shifting rainfall patterns, and increased frequency of extreme weather events, pose significant threats to agricultural systems worldwide. Genetic modification strategies offer promising approaches to develop crops with improved abiotic stress tolerance. This review article provides a comprehensive overview of various genetic modification techniques employed to enhance plant resilience. These strategies include the introduction of stress-responsive genes, transcription factors, and regulatory elements to enhance stress signaling pathways. Additionally, the manipulation of hormone signaling pathways, osmoprotectant accumulation, and antioxidant defense mechanisms is discussed. The use of genome editing tools, such as CRISPR-Cas9, for precise modification of target genes related to stress tolerance is also explored. Furthermore, the challenges and future prospects of genetic modification for abiotic stress tolerance are highlighted. Understanding and harnessing the potential of genetic modification strategies can contribute to the development of resilient crop varieties capable of withstanding adverse environmental conditions caused by climate change, thereby ensuring sustainable agricultural productivity and food security.
Collapse
Affiliation(s)
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan.
| | | | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usama Zafar Iqbal
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid M Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | |
Collapse
|
4
|
Raj SRG, Nadarajah K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. Int J Mol Sci 2022; 24:6. [PMID: 36613450 PMCID: PMC9820233 DOI: 10.3390/ijms24010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
At least 75% of the world's grain production comes from the three most important cereal crops: rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays). However, abiotic stressors such as heavy metal toxicity, salinity, low temperatures, and drought are all significant hazards to the growth and development of these grains. Quantitative trait locus (QTL) discovery and mapping have enhanced agricultural production and output by enabling plant breeders to better comprehend abiotic stress tolerance processes in cereals. Molecular markers and stable QTL are important for molecular breeding and candidate gene discovery, which may be utilized in transgenic or molecular introgression. Researchers can now study synteny between rice, maize, and wheat to gain a better understanding of the relationships between the QTL or genes that are important for a particular stress adaptation and phenotypic improvement in these cereals from analyzing reports on QTL and candidate genes. An overview of constitutive QTL, adaptive QTL, and significant stable multi-environment and multi-trait QTL is provided in this article as a solid framework for use and knowledge in genetic enhancement. Several QTL, such as DRO1 and Saltol, and other significant success cases are discussed in this review. We have highlighted techniques and advancements for abiotic stress tolerance breeding programs in cereals, the challenges encountered in introgressing beneficial QTL using traditional breeding techniques such as mutation breeding and marker-assisted selection (MAS), and the in roads made by new breeding methods such as genome-wide association studies (GWASs), the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and meta-QTL (MQTL) analysis. A combination of these conventional and modern breeding approaches can be used to apply the QTL and candidate gene information in genetic improvement of cereals against abiotic stresses.
Collapse
Affiliation(s)
| | - Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
5
|
Chandra S, Choudhary M, Bagaria PK, Nataraj V, Kumawat G, Choudhary JR, Sonah H, Gupta S, Wani SH, Ratnaparkhe MB. Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean ( Glycine max L.). Front Genet 2022; 13:939182. [PMID: 36452161 PMCID: PMC9702362 DOI: 10.3389/fgene.2022.939182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/21/2022] [Indexed: 09/16/2023] Open
Abstract
Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.
Collapse
Affiliation(s)
| | | | - Pravin K. Bagaria
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | | | | | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Sanjay Gupta
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
6
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
7
|
Development of College Students’ Resilience Scale. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8418279. [PMID: 36193324 PMCID: PMC9525765 DOI: 10.1155/2022/8418279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022]
Abstract
In order to explore the dimensions of college students' resilience and compile a measuring tool for contemporary Chinese college students' resilience, semistructured interviews are conducted with 20 college students who have experienced adversity, and the initial dimension of college students' resilience is obtained. Based on the initial dimensions, the project is compiled to form the “College Students' Resilience Scale,” which is tested for 1374 college students, and four dimensions of the scale are obtained through exploratory factor analysis. The college students' resilience scale consists of 26 items with 4 dimensions, namely, “self-efficacy and adaptability,” “positive cognition,” “negative emotion adjustment ability,” and “perceived use of social support.” The self-made college students' resilience scale has good reliability and validity and is an effective measuring tool for college students' resilience.
Collapse
|
8
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
9
|
Bapela T, Shimelis H, Tsilo TJ, Mathew I. Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:1331. [PMID: 35631756 PMCID: PMC9144332 DOI: 10.3390/plants11101331] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 06/01/2023]
Abstract
Wheat production and productivity are challenged by recurrent droughts associated with climate change globally. Drought and heat stress resilient cultivars can alleviate yield loss in marginal production agro-ecologies. The ability of some crop genotypes to thrive and yield in drought conditions is attributable to the inherent genetic variation and environmental adaptation, presenting opportunities to develop drought-tolerant varieties. Understanding the underlying genetic, physiological, biochemical, and environmental mechanisms and their interactions is key critical opportunity for drought tolerance improvement. Therefore, the objective of this review is to document the progress, challenges, and opportunities in breeding for drought tolerance in wheat. The paper outlines the following key aspects: (1) challenges associated with breeding for adaptation to drought-prone environments, (2) opportunities such as genetic variation in wheat for drought tolerance, selection methods, the interplay between above-ground phenotypic traits and root attributes in drought adaptation and drought-responsive attributes and (3) approaches, technologies and innovations in drought tolerance breeding. In the end, the paper summarises genetic gains and perspectives in drought tolerance breeding in wheat. The review will serve as baseline information for wheat breeders and agronomists to guide the development and deployment of drought-adapted and high-performing new-generation wheat varieties.
Collapse
Affiliation(s)
- Theresa Bapela
- African Centre for Crop Improvement, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (H.S.); (I.M.)
- Agricultural Research Council—Small Grain, Bethlehem 9700, South Africa;
| | - Hussein Shimelis
- African Centre for Crop Improvement, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (H.S.); (I.M.)
| | - Toi John Tsilo
- Agricultural Research Council—Small Grain, Bethlehem 9700, South Africa;
| | - Isack Mathew
- African Centre for Crop Improvement, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (H.S.); (I.M.)
| |
Collapse
|
10
|
Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, V. VT, Sheoran S, T. RK, Longmei N, Rakshit S, Siddique KHM. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity (Edinb) 2022; 128:497-518. [DOI: 10.1038/s41437-022-00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
|
11
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
González Guzmán M, Cellini F, Fotopoulos V, Balestrini R, Arbona V. New approaches to improve crop tolerance to biotic and abiotic stresses. PHYSIOLOGIA PLANTARUM 2022; 174:e13547. [PMID: 34480798 PMCID: PMC9290814 DOI: 10.1111/ppl.13547] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 05/24/2023]
Abstract
During the last years, a great effort has been dedicated at the development and employment of diverse approaches for achieving more stress-tolerant and climate-flexible crops and sustainable yield increases to meet the food and energy demands of the future. The ongoing climate change is in fact leading to more frequent extreme events with a negative impact on food production, such as increased temperatures, drought, and soil salinization as well as invasive arthropod pests and diseases. In this review, diverse "green strategies" (e.g., chemical priming, root-associated microorganisms), and advanced technologies (e.g., genome editing, high-throughput phenotyping) are described on the basis of the most recent research evidence. Particularly, attention has been focused on the potential use in a context of sustainable and climate-smart agriculture (the so called "next agriculture generation") to improve plant tolerance and resilience to abiotic and biotic stresses. In addition, the gap between the results obtained in controlled experiments and those from application of these technologies in real field conditions (lab to field step) is also discussed.
Collapse
Affiliation(s)
- Miguel González Guzmán
- Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume ICastelló de la PlanaSpain
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
| | - Francesco Cellini
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA)MetapontoItaly
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante (CNR, IPSP)TorinoItaly
| | - Vasileios Fotopoulos
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Department of Agricultural Sciences, Biotechnology & Food ScienceCyprus University of TechnologyLemesosCyprus
| | - Raffaella Balestrini
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante (CNR, IPSP)TorinoItaly
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume ICastelló de la PlanaSpain
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
| |
Collapse
|
13
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
14
|
Choudhary A, Kaur N, Sharma A, Kumar A. Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. PHYSIOLOGIA PLANTARUM 2021; 173:2207-2215. [PMID: 34549444 DOI: 10.1111/ppl.13571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Salinity is one of the most important constraints for global cereal production, and breeding for salinity tolerance is a challenge. The limited gene pools, merged information regarding osmotic stress/tissue tolerance mechanism(s) including the accumulation of Na+ , over-stressed on the Na+ exclusion mechanism, and inadequate suitable screening methods further weaken the progress. In the present study, an attempt was made to evaluate the salt tolerance in Triticum aestivum lines using the membership function value (MFV) of certain traits viz., the root and shoot length (RL & SL), shoot and root fresh weight (SFW & RFW), shoot and root dry weight (SDW & RDW) and germination percentage (GP). This study screened 314 wheat lines (278 linked top cross population [LTPs] and 36 normal wheat cultivars) under lab conditions to evaluate their salt tolerance. A positive, and the highest, correlation coefficient was recorded between salt tolerance index (STI) of SL and the STI of RL.0.11 highly salt tolerant (HST), 59 salt tolerant (ST), 100 moderately salt tolerant (MST), 137 salt sensitive (SS), and seven highly salt sensitive (HSS) were observed with a distance of 2.2 between each category. The R-square value was maximum (0.836) between the STI of SFW and the mean MFV, which can be used as the most reliable trait for the salinity tolerance in T. aestivum at the germination phase. Wheat tolerant lines had higher tolerance to salt stress in comparison with the used normal wheat cultivars were detected at the seedling stage.
Collapse
Affiliation(s)
- Anuj Choudhary
- Department of Botany, Punjab Agricultural University Ludhiana, Punjab, India
| | - Nirmaljit Kaur
- Department of Botany, Punjab Agricultural University Ludhiana, Punjab, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University Ludhiana, Punjab, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University Ludhiana, Punjab, India
| |
Collapse
|
15
|
Choudhary M, Singh A, Rakshit S. Coping with low moisture stress: Remembering and responding. PHYSIOLOGIA PLANTARUM 2021; 172:1162-1169. [PMID: 33496015 DOI: 10.1111/ppl.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/01/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Low-moisture stress, also referred to as drought, is one of the major factors that negatively impact the agricultural yield. The present scenario of climate change is expected to aggravate it further. Considering the extended time required to develop resistant crops, it is important to prioritize research efforts for coping with low moisture, prevalent in arid and semi-arid regions of the world. While agricultural yield is a tradeoff between many choices, tolerance to biotic and abiotic stresses comes with yield penalties. To balance the tradeoffs and maximize productivity, the use of region-specific cultivars and/or introgression of precise genetic proportions in an elite variety may prove useful. Stress memory is an emerging approach that helps plants to record and respond to repeated stress in an effective manner. In this context, we discuss the role of "stress memory" in imparting drought tolerance in plants. Future research efforts for its effective deployment for "drought hardening" in agricultural settings, along with a discussion on the yield tradeoff involved, is implicated.
Collapse
Affiliation(s)
- Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana, India
| |
Collapse
|
16
|
Zenda T, Liu S, Dong A, Duan H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life (Basel) 2021; 11:502. [PMID: 34072447 PMCID: PMC8228855 DOI: 10.3390/life11060502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Adapting to climate change, providing sufficient human food and nutritional needs, and securing sufficient energy supplies will call for a radical transformation from the current conventional adaptation approaches to more broad-based and transformative alternatives. This entails diversifying the agricultural system and boosting productivity of major cereal crops through development of climate-resilient cultivars that can sustainably maintain higher yields under climate change conditions, expanding our focus to crop wild relatives, and better exploitation of underutilized crop species. This is facilitated by the recent developments in plant genomics, such as advances in genome sequencing, assembly, and annotation, as well as gene editing technologies, which have increased the availability of high-quality reference genomes for various model and non-model plant species. This has necessitated genomics-assisted breeding of crops, including underutilized species, consequently broadening genetic variation of the available germplasm; improving the discovery of novel alleles controlling important agronomic traits; and enhancing creation of new crop cultivars with improved tolerance to biotic and abiotic stresses and superior nutritive quality. Here, therefore, we summarize these recent developments in plant genomics and their application, with particular reference to cereal crops (including underutilized species). Particularly, we discuss genome sequencing approaches, quantitative trait loci (QTL) mapping and genome-wide association (GWAS) studies, directed mutagenesis, plant non-coding RNAs, precise gene editing technologies such as CRISPR-Cas9, and complementation of crop genotyping by crop phenotyping. We then conclude by providing an outlook that, as we step into the future, high-throughput phenotyping, pan-genomics, transposable elements analysis, and machine learning hold much promise for crop improvements related to climate resilience and nutritional superiority.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura P. Bag 1020, Zimbabwe
| | - Songtao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
17
|
Degraeve S, De Baerdemaeker NJF, Ameye M, Leroux O, Haesaert GJW, Steppe K. Acoustic Vulnerability, Hydraulic Capacitance, and Xylem Anatomy Determine Drought Response of Small Grain Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:599824. [PMID: 34113357 PMCID: PMC8186553 DOI: 10.3389/fpls.2021.599824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/12/2021] [Indexed: 06/01/2023]
Abstract
Selection of high-yielding traits in cereal plants led to a continuous increase in productivity. However, less effort was made to select on adaptive traits, favorable in adverse and harsh environments. Under current climate change conditions and the knowledge that cereals are staple foods for people worldwide, it is highly important to shift focus to the selection of traits related to drought tolerance, and to evaluate new tools for efficient selection. Here, we explore the possibility to use vulnerability to drought-induced xylem embolism of wheat cultivars Excalibur and Hartog (Triticum aestivum L.), rye cultivar Duiker Max (Secale cereale L.), and triticale cultivars Dublet and US2014 (x Triticosecale Wittmack) as a proxy for their drought tolerance. Multiple techniques were combined to underpin this hypothesis. During bench-top dehydration experiments, acoustic emissions (AEs) produced by formation of air emboli were detected, and hydraulic capacitances quantified. By only looking at the AE50 values, one would classify wheat cultivar Excalibur as most tolerant and triticale cultivar Dublet as most vulnerable to drought-induced xylem embolism, though Dublet had significantly higher hydraulic capacitances, which are essential in terms of internal water storage to temporarily buffer or delay water shortage. In addition, xylem anatomical traits revealed that both cultivars have a contrasting trade-off between hydraulic safety and efficiency. This paper emphasizes the importance of including a cultivar's hydraulic capacitance when evaluating its drought response and vulnerability to drought-induced xylem embolism, instead of relying on the AE50 as the one parameter.
Collapse
Affiliation(s)
- Szanne Degraeve
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels J. F. De Baerdemaeker
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Khadka K, Raizada MN, Navabi A. Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1149. [PMID: 32849707 PMCID: PMC7417477 DOI: 10.3389/fpls.2020.01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Abstract
There is a need to increase wheat productivity to meet the food demands of the ever-growing human population. However, accelerated development of high yielding varieties is hindered by drought, which is worsening due to climate change. In this context, germplasm diversity is central to the development of drought-tolerant wheat. Extensive collections of these genetic resources are conserved in national and international genebanks. In addition to phenotypic assessments, the use of advanced molecular techniques (e.g., genotype by sequencing) to identify quantitative trait loci (QTLs) for drought tolerance related traits is useful for genome- and marker-assisted selection based approaches. Therefore, to assist wheat breeders at a critical time, we searched the recent peer-reviewed literature (2011-current), first, to identify wheat germplasm observed to be useful genetic sources for drought tolerance, and second, to report QTLs associated with drought tolerance. Though many breeders limit the parents used in breeding programs to a familiar core collection, the results of this review show that larger germplasm collections have been sources of useful genes for drought tolerance in wheat. The review also demonstrates that QTLs for drought tolerance in wheat are associated with diverse physio-morphological traits, at different growth stages. Here, we also briefly discuss the potential of genome engineering/editing to improve drought tolerance in wheat. The use of CRISPR-Cas9 and other gene-editing technologies can be used to fine-tune the expression of genes controlling drought adaptive traits, while high throughput phenotyping (HTP) techniques can potentially accelerate the selection process. These efforts are empowered by wheat researcher consortia.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|