1
|
Xu C, Xia P, Li J, Lewis KB, Ciombor KK, Wang L, Smith JJ, Beauchamp RD, Chen XS. Discovery and validation of a 10-gene predictive signature for response to adjuvant chemotherapy in stage II and III colon cancer. Cell Rep Med 2024; 5:101661. [PMID: 39059386 PMCID: PMC11384724 DOI: 10.1016/j.xcrm.2024.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/30/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Identifying patients with stage II and III colon cancer who will benefit from 5-fluorouracil (5-FU)-based adjuvant chemotherapy is crucial for the advancement of personalized cancer therapy. We employ a semi-supervised machine learning approach to analyze a large dataset with 933 stage II and III colon cancer samples. Our analysis leverages gene regulatory networks to discover an 18-gene prognostic signature and to explore a 10-gene signature that potentially predicts chemotherapy benefits. The 10-gene signature demonstrates strong prognostic power and shows promising potential to predict chemotherapy benefits. We establish a robust clinical assay on the NanoString nCounter platform, validated in a retrospective formalin-fixed paraffin-embedded (FFPE) cohort, which represents an important step toward clinical application. Our study lays the groundwork for improving adjuvant chemotherapy and potentially expanding into immunotherapy decision-making in colon cancer. Future prospective studies are needed to validate and establish the clinical utility of the 10-gene signature in clinical settings.
Collapse
Affiliation(s)
- Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Xia
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Keeli B Lewis
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen K Ciombor
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
2
|
Weng YY, Huang MY. The CpG Island Methylator Phenotype Status in Synchronous and Solitary Primary Colorectal Cancers: Prognosis and Effective Therapeutic Drug Prediction. Int J Mol Sci 2024; 25:5243. [PMID: 38791280 PMCID: PMC11121449 DOI: 10.3390/ijms25105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Synchronous colorectal cancer (sCRC) is characterized by the occurrence of more than one tumor within six months of detecting the first tumor. Evidence suggests that sCRC might be more common in the serrated neoplasia pathway, marked by the CpG island methylator phenotype (CIMP), than in the chromosomal instability pathway (CIN). An increasing number of studies propose that CIMP could serve as a potential epigenetic predictor or prognostic biomarker of sCRC. Therapeutic drugs already used for treating CIMP-positive colorectal cancers (CRCs) are reviewed and drug selections for sCRC patients are discussed.
Collapse
Affiliation(s)
- Yun-Yun Weng
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Radiation Oncology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Kim SE. Enzymes involved in folate metabolism and its implication for cancer treatment. Nutr Res Pract 2020; 14:95-101. [PMID: 32256983 PMCID: PMC7075736 DOI: 10.4162/nrp.2020.14.2.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
4
|
Moradi Sarabi M, Mohammadrezaei Khorramabadi R, Zare Z, Eftekhar E. Polyunsaturated fatty acids and DNA methylation in colorectal cancer. World J Clin Cases 2019; 7:4172-4185. [PMID: 31911898 PMCID: PMC6940323 DOI: 10.12998/wjcc.v7.i24.4172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) has been designated a major global problem, especially due to its high prevalence in developed countries. CRC mostly occurs sporadically (75%-80%), and only 20%-25% of patients have a family history. Several processes are involved in the development of CRC such as a combination of genetic and epigenetic alterations. Epigenetic changes, including DNA methylation play a vital role in the progression of CRC. Complex interactions between susceptibility genes and environmental factors, such as a diet and sedentary lifestyle, lead to the development of CRC. Clinical and experimental studies have confirmed the beneficial effects of dietary polyunsaturated fatty acids (PUFAs) in preventing CRC. From a mechanistic viewpoint, it has been suggested that PUFAs are pleiotropic agents that alter chromatin remodeling, membrane structure and downstream cell signaling. Moreover, PUFAs can alter the epigenome via modulation of DNA methylation. In this review, we summarize recent investigations linking PUFAs and DNA methylation-associated CRC risk.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Reza Mohammadrezaei Khorramabadi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Zohre Zare
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| |
Collapse
|
5
|
Liu L, Lin J, He H. Identification of Potential Crucial Genes Associated With the Pathogenesis and Prognosis of Endometrial Cancer. Front Genet 2019; 10:373. [PMID: 31105744 PMCID: PMC6499025 DOI: 10.3389/fgene.2019.00373] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Endometrial cancer (EC) is a common gynecological malignancy worldwide. Despite advances in the development of strategies for treating EC, prognosis of the disease remains unsatisfactory, especially for advanced EC. The aim of this study was to identify novel genes that can be used as potential biomarkers for identifying the prognosis of EC and to construct a novel risk stratification using these genes. Methods and Results An mRNA sequencing dataset, corresponding survival data and expression profiling of an array of EC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Common differentially expressed genes (DEGs) were identified based on sequencing and expression as given in the profiling dataset. Pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction network was established using the string online database in order to identify hub genes. Univariate and multivariable Cox regression analyses were used to screen prognostic DEGs and to construct a prognostic signature. Survival analysis based on the prognostic signature was performed on TCGA EC dataset. A total of 255 common DEGs were found and 11 hub genes (TOP2A, CDK1, CCNB1, CCNB2, AURKA, PCNA, CCNA2, BIRC5, NDC80, CDC20, and BUB1BA) that may be closely related to the pathogenesis of EC were identified. A panel of 7 DEG signatures consisting of PHLDA2, GGH, ESPL1, FAM184A, KIAA1644, ESPL1, and TRPM4 were constructed. The signature performed well for prognosis prediction (p < 0.001) and time-dependent receiver-operating characteristic (ROC) analysis displayed an area under the curve (AUC) of 0.797, 0.734, 0.729, and 0.647 for 1, 3, 5, and 10-year overall survival (OS) prediction, respectively. Conclusion This study identified potential genes that may be involved in the pathophysiology of EC and constructed a novel gene expression signature for EC risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongying He
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
6
|
Fouad MA, Salem SE, Hussein MM, Zekri ARN, Hafez HF, El Desouky ED, Shouman SA. Impact of Global DNA Methylation in Treatment Outcome of Colorectal Cancer Patients. Front Pharmacol 2018; 9:1173. [PMID: 30405408 PMCID: PMC6201055 DOI: 10.3389/fphar.2018.01173] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Global DNA methylation has an impact in cancer pathogenesis and progression. This study aimed at investigating the impact of global DNA methylation in treatment outcome of Colorectal Cancer (CRC). Patients and Methods: Global DNA methylation was measured by LC/MS/MS in peripheral blood leucocytes of 102, 48, and 32 Egyptian CRC patients at baseline and after 3 and 6 months of Fluoropyrimidine (FP) therapy respectively, in addition to 32 normal healthy matched in age and sex. The genetic expressions of DNA methyl transferases (DNMTs) were determined and correlated with patients‘ survival using univariate and multivariate methods of analyses. Results: Egyptian CRC patients had significant global hypomethylation of 5mC level and 5mC % with overexpression of DNMT3A and DNMT3B. Significant higher 5mC levels were shown in patients > 45 years, male gender, T2 tumors, stage II, negative lymph nodes, and absence of metastasis. FP therapy significantly reduced DNA methylation particularly in the subgroups of patients with high DNA methylation level at baseline and good prognostic features. After 3 years of follow up, patients with 5mC % > 8.02% had significant poor overall survival (OS) while, significant better event-free survival (EFS) was found in patients with 5mC level > 0.55. High initial CEA level and presence of metastasis were significantly associated with hazards of disease progression and death. Conclusion: Global DNA methylation has a significant impact on the treatment outcome and survival of Egyptian CRC patients treated with FP- based therapy.
Collapse
Affiliation(s)
- Mariam A Fouad
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salem E Salem
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa M Hussein
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdel Rahman N Zekri
- Virology and Immunology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hafez F Hafez
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman D El Desouky
- Department of Biostatistics and Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Schirripa M, Cohen SA, Battaglin F, Lenz HJ. Biomarker-driven and molecular targeted therapies for colorectal cancers. Semin Oncol 2018; 45:124-132. [PMID: 30262397 PMCID: PMC7496213 DOI: 10.1053/j.seminoncol.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
Improved clinical selection and identification of new molecules and innovative strategies have widened treatment options and increased overall survival in metastatic colorectal cancer patients in recent years. Biomarker-driven therapies represent an emerging issue in this field and new targeted treatments are under investigation and probably will be soon adopted into daily clinical practice. In the present review, the role RAS, BRAF mutations, Her2 amplification, microsatellite instability, and CpG island methylator phenotype are discussed according to their possible roles as prognostic, predictive markers, as well as possible biomarker-driven treatment options.
Collapse
Affiliation(s)
- Marta Schirripa
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Stacey A Cohen
- Division of Medical Oncology, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Francesca Battaglin
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Weisenberger DJ, Liang G, Lenz HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene 2017; 37:566-577. [PMID: 28991233 DOI: 10.1038/onc.2017.374] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a worldwide health concern with respect to both incidence and mortality, and as a result, CRC tumorigenesis, progression and metastasis have been heavily studied, especially with respect to identifying genetic, epigenetic, transcriptomic and proteomic profiles of disease. DNA methylation alterations are hallmarks of CRC, and epigenetic driver genes have been identified that are thought to be involved in early stages of tumorigenesis. Moreover, distinct CRC patient subgroups are organized based on DNA methylation profiles. CRC tumors displaying CpG island methylator phenotypes (CIMPs), defined as DNA hypermethylation at specific CpG islands in subsets of tumors, show high concordance with specific genetic alterations, disease risk factors and patient outcome. This review details the DNA methylation alterations in CRC, the significance of CIMP status, the development of treatments based on specific molecular profiles and the application of epigenetic therapies for CRC patient treatment.
Collapse
Affiliation(s)
- D J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA USA
| | - G Liang
- Department of Urology, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - H-J Lenz
- Department of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Bahrami A, Hesari A, Khazaei M, Hassanian SM, Ferns GA, Avan A. The therapeutic potential of targeting the BRAF mutation in patients with colorectal cancer. J Cell Physiol 2017; 233:2162-2169. [DOI: 10.1002/jcp.25952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies; Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - AmirReza Hesari
- Department of Biology, Damghan Branch; Islamic Azad University; Damghan Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Biochemistry, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Gordon A. Ferns
- Division of Medical Education; Brighton and Sussex Medical School; Falmer, Brighton UK
| | - Amir Avan
- Metabolic syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Cancer Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
10
|
Wang Y, Tian X, Liang L, Wang Y, Wang R, Cheng X, Yan Z, Chen Y, Qi P. Mechanistic Study on Triptorelin Action in Protecting From 5-FU-Induced Ovarian Damage in Rats. Oncol Res 2016; 22:283-92. [PMID: 26629940 PMCID: PMC7842582 DOI: 10.3727/096504015x14410238486720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Triptorelin, a kind of GnRH agonist, is widely used in the treatment of hormone-responsive cancers in the clinic. This study aimed to discover the underlying mechanism of triptorelin in protection from 5-fluorouracil (5-FU)-induced ovarian damage in Sprague–Dawley rats. In the present study, after using 5-FU to induce ovarian damage in rats, body weight and wet ovaries were weighed, the levels of estradiol (E2), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH) in blood were detected, and the expression of Bcl-2, Bax, and NF-κB was determined. It suggested that, compared to the control, body weight gain, the ratio of ovarian wet weight to body weight, primary follicle numbers, and the levels of AMH were significantly decreased, while the concentration of E2 and FSH was heavily increased following 5-FU administration. In contrast, after coadministration of triptorelin with 5-FU, the ratio of ovarian wet weight to body weight and the levels of AMH were significantly increased, whereas the level of E2 and FSH was decreased significantly when compared with the 5-FU group. Furthermore, at indicated times, 5-FU led to the reduced Bcl-2 and NF-κB expression and increased Bax expression while triptorelin plus 5-FU increased Bcl-2 and NF-κB expression and decreased Bax expression. It was indicated that triptorelin could protect rats from 5-FU-induced ovarian damage by modulation of hormones, Bcl-2, Bax, and NF-κB. These results might highlight the mechanism of triptorelin as a protective agent in clinical chemotherapy for ovarian damage.
Collapse
Affiliation(s)
- Ying Wang
- Obstertrics and Gynaecology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang X, Shimodaira H, Soeda H, Komine K, Takahashi H, Ouchi K, Inoue M, Takahashi M, Takahashi S, Ishioka C. CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin- and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer. Int J Clin Oncol 2016; 21:1091-1101. [PMID: 27435270 DOI: 10.1007/s10147-016-1017-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/24/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND The CpG island methylator phenotype (CIMP) with multiple promoter methylated loci has been observed in a subset of human colorectal cancer (CRC) cases. CIMP status, which is closely associated with specific clinicopathological and molecular characteristics, is considered a potential predictive biomarker for efficacy of cancer treatment. However, the relationship between the effect of standard chemotherapy, including cytotoxic drugs and anti-epidermal growth factor receptor (EGFR) antibodies, and CIMP status has not been elucidated. METHODS In 125 metastatic colorectal cancer (mCRC) patients, we investigated how clinical outcome of chemotherapy was related to CIMP status as detected by methylation-specific PCR (MSP) and to genetic status in five EGFR-related genes (KRAS, BRAF, PIK3CA, NRAS, and AKT1) as detected by direct sequencing. RESULTS CIMP-positive status was significantly associated with proximal tumor location and peritoneum metastasis (all P values <0.05). The progression-free survival of patients with CIMP-positive tumors receiving sequential therapy with FOLFOX as the first-line treatment followed by irinotecan-based therapy as the second-line treatment (median = 6.6 months) was inferior to that of such patients receiving the reverse sequence (median = 15.2 months; P = 0.043). Furthermore, CIMP-positive tumors showed higher mutation frequencies for the five EGFR-related genes (74.1 %) than the CIMP-negative tumors did (50.0 %). Among the KRAS wild-type tumors, CIMP-positive tumors were associated with a worse clinical outcome than CIMP-negative tumors following anti-EGFR antibody therapy. CONCLUSION Sequential FOLFOX followed by an irinotecan-based regimen is unfavorable in patients with CIMP-positive tumors. High frequencies of mutation in EGFR-related genes in CIMP-positive tumors may cause the lower response to anti-EGFR antibody therapy seen in patients with wild-type KRAS and CIMP-positive tumors.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan
| | - Hideki Shimodaira
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Hiroshi Soeda
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Keigo Komine
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Hidekazu Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan
| | - Kota Ouchi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan
| | - Masahiro Inoue
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Masanobu Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan.,Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aobaku, Sendai, 980-8575, Japan. .,Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan.
| |
Collapse
|
12
|
Abdelfatah E, Kerner Z, Nanda N, Ahuja N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol 2016; 9:560-79. [PMID: 27366224 PMCID: PMC4913338 DOI: 10.1177/1756283x16644247] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer.
Collapse
Affiliation(s)
- Eihab Abdelfatah
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary Kerner
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nainika Nanda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nita Ahuja
- Department of Surgery and Oncology, Johns Hopkins University, 1650 Orleans St. Room 342, Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Cha Y, Kim KJ, Han SW, Rhee YY, Bae JM, Wen X, Cho NY, Lee DW, Lee KH, Kim TY, Oh DY, Im SA, Bang YJ, Jeong SY, Park KJ, Kang GH, Kim TY. Adverse prognostic impact of the CpG island methylator phenotype in metastatic colorectal cancer. Br J Cancer 2016; 115:164-71. [PMID: 27310704 PMCID: PMC4947699 DOI: 10.1038/bjc.2016.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022] Open
Abstract
Background: The association between the CpG island methylator phenotype (CIMP) and clinical outcomes in metastatic colorectal cancer remains unclear. We investigated the prognostic impact of CIMP in patients with metastatic colorectal cancer treated with systemic chemotherapy. Methods: Eight CIMP-specific promoters (CACNA1G, IGF2, NEUROG1, RUNX3, SOCS1, CDKN2A, CRABP1, and MLH1) were examined. The CIMP status was determined by the number of methylated promoters as high (⩾5), low (1–4), and negative (0). Results: A total of 153 patients were included (men/women, 103/50; median age, 61 years; range, 22–80 years). The CIMP status was negative/low/high in 77/ 69/7 patients, respectively. Overall survival (OS) was significantly different among the three CIMP groups, with median values of 35.7, 22.2, and 9.77 months for the negative, low, and high groups, respectively (P<0.001). For patients treated with fluoropyrimidine and oxaliplatin first-line chemotherapy (N=128), OS and progression-free survival (PFS) were significantly different among the three CIMP groups; the median OS was 37.9, 23.8, and 6.77 months for the negative, low, and high groups, respectively (P<0.001), while the median PFS was 9.97, 7.87, and 1.83 months, respectively (P=0.002). Response rates were marginally different among the three CIMP groups (53.4% vs 45.1% vs 16.7%, respectively; P=0.107). For patients treated with fluoropyrimidine and irinotecan second-line chemotherapy (N=86), only OS showed a difference according to the CIMP status, with median values of 20.4, 13.4, and 2.90 months for the negative, low, and high groups, respectively (P<0.001). Conclusions: The CIMP status is a negative prognostic factor for patients with metastatic colorectal cancer treated with chemotherapy.
Collapse
Affiliation(s)
- Yongjun Cha
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Ju Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ye Young Rhee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Xianyu Wen
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae-Won Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Murcia O, Juárez M, Hernández-Illán E, Egoavil C, Giner-Calabuig M, Rodríguez-Soler M, Jover R. Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy. World J Gastroenterol 2016; 22:3516-3530. [PMID: 27053844 PMCID: PMC4814638 DOI: 10.3748/wjg.v22.i13.3516] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/04/2015] [Accepted: 01/30/2016] [Indexed: 02/06/2023] Open
Abstract
Molecular advances support the existence of an alternative pathway of colorectal carcinogenesis that is based on the hypermethylation of specific DNA regions that silences tumor suppressor genes. This alternative pathway has been called the serrated pathway due to the serrated appearance of tumors in histological analysis. New classifications for colorectal cancer (CRC) were proposed recently based on genetic profiles that show four types of molecular alterations: BRAF gene mutations, KRAS gene mutations, microsatellite instability, and hypermethylation of CpG islands. This review summarizes what is known about the serrated pathway of CRC, including CRC molecular and clinical features, prognosis, and response to chemotherapy.
Collapse
|
15
|
Yi JH, Liu J, Wang KH. CpG island methylator phenotype in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:558-565. [DOI: 10.11569/wcjd.v24.i4.558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and is caused by accumulation of genetic and epigenetic changes. With the discovery of CpG island methylator phenotype (CIMP), more and more studies have focused on epigenetic modifications in CRC. CIMP is found in a subset of CRC with an exceptionally high frequency of methylated genes. Current research shows that CIMP has several molecular characteristics and is significantly associated with multiple clinicopathological features, but the mechanim of CIMP is still unclear. The prognosis and treatment response in CRC with CIMP are largely different form those of other CRCs, however, the absence of widely accepted CIMP biomarkers has prevented the clinical applications of CIMP to guide the personalized therapy of CRC.
Collapse
|
16
|
Differences between colon and rectal cancer in complications, short-term survival and recurrences. Int J Colorectal Dis 2016; 31:1683-91. [PMID: 27497831 PMCID: PMC5031780 DOI: 10.1007/s00384-016-2633-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE Many apparent differences exist in aetiology, genetics, anatomy and treatment response between colon cancer (CC) and rectal cancer (RC). This study examines the differences in patient characteristics, prevalence of complications and their effect on short-term survival, long-term survival and the rate of recurrence between RC and CC. METHODS For all stage II-III CC and RC patients who underwent resection with curative intent (2006-2008) in five hospitals in the Netherlands, occurrence of complications, crude survival, relative survival and recurrence rates were compared. RESULTS A total of 767 CC and 272 RC patients underwent resection. Significant differences were found for age, gender, emergency surgery, T-stage and grade. CC patients experienced fewer complications compared to RC (p = 0.019), but CC patients had worse short-term mortality rates (1.5 versus 6.7 % for 30-day mortality, p = 0.001 and 5.2 versus 9.5 % for 90-day mortality, p = 0.032). The adjusted HR (overall survival) for CC patients with complications was 1.57 (1.23-2.01; p < 0.001) as compared to patients without complications; for RC, the HR was 1.79 (1.12-2.87; p = 0.015). Relative survival analyses showed high excess mortality in the first months after surgery and a sustained, prolonged negative effect on both CC and RC. Complications were associated with a higher recurrence rate for both CC and RC; adjusted analyses showed a trend towards a significant association. CONCLUSION Large differences exist in patient characteristics and clinical outcomes between CC and RC. CC patients have a significantly higher short-term mortality compared to RC patients due to a more severe effect of complications.
Collapse
|
17
|
Pfütze K, Benner A, Hoffmeister M, Jansen L, Yang R, Bläker H, Herpel E, Ulrich A, Ulrich CM, Chang-Claude J, Brenner H, Burwinkel B. Methylation status at HYAL2 predicts overall and progression-free survival of colon cancer patients under 5-FU chemotherapy. Genomics 2015; 106:348-54. [PMID: 26453961 DOI: 10.1016/j.ygeno.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
DNA methylation variations in gene promoter regions are well documented tumor-specific alterations in human malignancies including colon cancer, which may influence tumor behavior and clinical outcome. As a subset of colon cancer patients does not benefit from adjuvant chemotherapy, predictive biomarkers are desirable. Here, we describe that DNA methylation levels at CpG loci of hyaluronoglucosaminidase 2 (HYLA2) could be used to identify stage II and III colon cancer patients who are most likely to benefit from 5-flourouracil (5-FU) chemotherapy with respect to overall survival and progression-free survival.
Collapse
Affiliation(s)
- Katrin Pfütze
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Germany; Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany.
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Germany
| | - Rongxi Yang
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Germany; Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany
| | - Hendrik Bläker
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Division of Molecular oncology, National Center for Tumor Diseases (NCT), Germany
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT)/German Cancer Research Center (DKFZ), Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, Unit of Genetic Epidemiology, German Cancer Research Center (DKFZ), Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Germany; German Cancer Research Center (DKTk)Germany
| | - Barbara Burwinkel
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Germany; Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany
| |
Collapse
|
18
|
Sarabi MM, Naghibalhossaini F. Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell Biochem Funct 2015; 33:427-33. [PMID: 26416384 DOI: 10.1002/cbf.3126] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022]
Abstract
There are conflicting reports regarding the association between DNA methyltransferases (DNMTs) expression and global or gene-specific DNA methylation in colorectal cancer (CRC) cells. To correlate DNMTs expression with DNA methylation, we quantified DNMT1, DNMT3A and DNMT3B mRNA levels in five CRC cell lines (HCT116, LS180, HT29/219, Caco2 and SW742) by real-time reverse-transcriptase polymerase chain reaction (PCR) assay. In addition, we examined the global 5-methyl cytosine levels and the methylation patterns of 12 CpG islands in these CRC cells by enzyme-linked immunosorbent assay and methylation-specific PCR methods, respectively. The average expression levels of three DNMTs in HCT116, Caco2, HT29/219 and SW742, relative to the expression level in LS180 (taken to be 1), were 90.1, 31.6, 2.66 and 1.86. Our data indicated that overall about 1.45%, 1.03%, 0.98%, 0.86% and 0.85% of the cytosines were methylated in the genome of HCT116, Caco2, HT29/219, SW742 and LS180 cells, respectively. The 5-mC percentages were positively correlated with the relative cellular DNMTs expression in five CRC cell lines as verified by Pearson correlation test. However, we found no positive correlation between mRNA expression of DNMTs and gene promoter hypermethylation in these cells. Our results suggest that cellular DNMT expression is positively correlated with global DNA methylation level but not with regional DNA hypermethylation at each locus.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fakhraddin Naghibalhossaini
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Abstract
Sporadic colorectal cancer (CRC) is a somatic genetic disease in which pathogenesis is influenced by the local colonic environment and the patient's genetic background. Consolidating the knowledge of genetic and epigenetic events that occur with initiation, progression, and metastasis of sporadic CRC has identified some biomarkers that might be utilized to predict behavior and prognosis beyond staging, and inform treatment approaches. Modern next-generation sequencing of sporadic CRCs has confirmed prior identified genetic alterations and has classified new alterations. Each patient's CRC is genetically unique, propelled by 2-8 driver gene alterations that have accumulated within the CRC since initiation. Commonly observed alterations across sporadic CRCs have allowed classification into a (1) hypermutated group that includes defective DNA mismatch repair with microsatellite instability and POLE mutations in ∼15%, containing multiple frameshifted genes and BRAF(V600E); (2) nonhypermutated group with multiple somatic copy number alterations and aneuploidy in ∼85%, containing oncogenic activation of KRAS and PIK3CA and mutation and loss of heterozygosity of tumor suppressor genes, such as APC and TP53; (3) CpG island methylator phenotype CRCs in ∼20% that overlap greatly with microsatellite instability CRCs and some nonhypermutated CRCs; and (4) elevated microsatellite alterations at selected tetranucleotide repeats in ∼60% that associates with metastatic behavior in both hypermutated and nonhypermutated groups. Components from these classifications are now used as diagnostic, prognostic, and treatment biomarkers. Additional common biomarkers may come from genome-wide association studies and microRNAs among other sources, as well as from the unique alteration profile of an individual CRC to apply a precision medicine approach to care.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Barbara H Jung
- Division of Gastroenterology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Stadler ZK. Diagnosis and management of DNA mismatch repair-deficient colorectal cancer. Hematol Oncol Clin North Am 2015; 29:29-41. [PMID: 25475571 DOI: 10.1016/j.hoc.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Colorectal tumors exhibiting defective DNA mismatch repair (MMR-D)/microsatellite instability (MSI-H) form a distinct subgroup of CRCs associated with important clinical and pathologic features. The identification of MMR-D/MSI-H may impact CRC prognosis, prediction of response to chemotherapeutic agents, and may necessitate the need for genetic assessment for Lynch syndrome. Oncologists remain at the forefront of diagnosing, treating, and managing patients with MMR-D/MSI-H CRC and ensuring that the clinical care of these patients reflect our evolving understanding of this unique CRC subtype.
Collapse
Affiliation(s)
- Zsofia K Stadler
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
|
22
|
The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig Dis Sci 2015; 60:762-72. [PMID: 25492499 PMCID: PMC4779895 DOI: 10.1007/s10620-014-3444-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/15/2014] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Advances in our understanding of the molecular genetics and epigenetics of colorectal cancer have led to novel insights into the pathogenesis of this common cancer. These advances have revealed that there are molecular subtypes of colon polyps and colon cancer and that these molecular subclasses have unique and discrete clinical and pathological features. Although the molecular characterization of these subgroups of colorectal polyps and cancer is only partially understood at this time, it does appear likely that classifying colon polyps and cancers based on their genomic instability and/or epigenomic instability status will eventually be useful for informing approaches for the prevention and early detection of colon polyps and colorectal cancer. CONCLUSIONS In this review, we will discuss our current understanding of the molecular pathogenesis of the polyp to cancer sequence and the potential to use this information to direct screening and prevention programs.
Collapse
|
23
|
Droy-Dupré L, Bossard C, Volteau C, Bezieau S, Laboisse CL, Mosnier JF. Hierarchical clustering identifies a subgroup of colonic adenocarcinomas expressing crypt-like differentiation markers, associated with MSS status and better prognosis. Virchows Arch 2015; 466:383-91. [DOI: 10.1007/s00428-015-1724-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 12/21/2014] [Accepted: 01/20/2015] [Indexed: 01/28/2023]
|
24
|
Ng JMK, Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci 2015; 16:2472-96. [PMID: 25622259 PMCID: PMC4346847 DOI: 10.3390/ijms16022472] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy and the fourth leading cause of cancer deaths worldwide. It results from the accumulation of multiple genetic and epigenetic changes leading to the transformation of colon epithelial cells into invasive adenocarcinomas. In CRC, epigenetic changes, in particular promoter CpG island methylation, occur more frequently than genetic mutations. Hypermethylation contributes to carcinogenesis by inducing transcriptional silencing or downregulation of tumour suppressor genes and currently, over 600 candidate hypermethylated genes have been identified. Over the past decade, a deeper understanding of epigenetics coupled with technological advances have hinted at the potential of translating benchtop research into biomarkers for clinical use. DNA methylation represents one of the largest bodies of literature in epigenetics, and hence has the highest potential for minimally invasive biomarker development. Most progress has been made in the development of diagnostic markers and there are currently two, one stool-based and one blood-based, biomarkers that are commercially available for diagnostics. Prognostic and predictive methylation markers are still at their infantile stages.
Collapse
Affiliation(s)
- Jennifer Mun-Kar Ng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol 2015; 11:333-48. [DOI: 10.2217/fon.14.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Based on the pivotal importance of epigenetics for transcription regulation, it is not surprising that cancer is characterized by several epigenetic abnormalities. Conversely to genetic alterations, epigenetic changes are not permanent, thus represent opportunities for therapeutic strategies designed to reverse transcriptional abnormalities, and cancer is the first disease in which epigenetic therapies with chromatin remodeling agents were introduced. The role of miRNAs in gene regulation supports their potential as innovative therapeutic strategy. Recent evidences have proven that the environment can profoundly influence the epigenome: diet, smoking and alcohol consumption can negatively impact the expression profile. Given the plasticity of epigenetic marks, it is challenging the idea that the epigenetic alterations are ‘druggable’ sites using specific food components.
Collapse
Affiliation(s)
- Monica Miozzo
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Integrative Biology Unit, Milano, Italy
| | | |
Collapse
|
26
|
γ-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. GENES AND NUTRITION 2014; 10:444. [PMID: 25502219 DOI: 10.1007/s12263-014-0444-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways.
Collapse
|
27
|
Frequent intragenic rearrangements of DPYD in colorectal tumours. THE PHARMACOGENOMICS JOURNAL 2014; 15:211-8. [DOI: 10.1038/tpj.2014.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/31/2014] [Accepted: 09/19/2014] [Indexed: 01/14/2023]
|
28
|
Fang M, Ou J, Hutchinson L, Green MR. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype. Mol Cell 2014; 55:904-915. [PMID: 25219500 PMCID: PMC4170521 DOI: 10.1016/j.molcel.2014.08.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 12/16/2022]
Abstract
Most colorectal cancers (CRCs) containing activated BRAF (BRAF[V600E]) have a CpG island methylator phenotype (CIMP) characterized by aberrant hypermethylation of many genes, including the mismatch repair gene MLH1. MLH1 silencing results in microsatellite instability and a hypermutable phenotype. Through an RNAi screen, here we identify the transcriptional repressor MAFG as the pivotal factor required for MLH1 silencing and CIMP in CRCs containing BRAF(V600E). In BRAF-positive human CRC cell lines and tumors, MAFG is bound at the promoters of MLH1 and other CIMP genes, and recruits a corepressor complex that includes its heterodimeric partner BACH1, the chromatin remodeling factor CHD8, and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. BRAF(V600E) increases BRAF/MEK/ERK signaling resulting in phosphorylation and elevated levels of MAFG, which drives DNA binding. Analysis of transcriptionally silenced CIMP genes in KRAS-positive CRCs indicates that different oncoproteins direct the assembly of distinct repressor complexes on common promoters.
Collapse
Affiliation(s)
- Minggang Fang
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lloyd Hutchinson
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
29
|
Shiovitz S, Bertagnolli MM, Renfro LA, Nam E, Foster NR, Dzieciatkowski S, Luo Y, Lao VV, Monnat RJ, Emond MJ, Maizels N, Niedzwiecki D, Goldberg RM, Saltz LB, Venook A, Warren RS, Grady WM. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer. Gastroenterology 2014; 147:637-45. [PMID: 24859205 PMCID: PMC4143495 DOI: 10.1053/j.gastro.2014.05.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The CpG island methylator phenotype (CIMP), defined by a high frequency of aberrantly methylated genes, is a characteristic of a subclass of colon tumors with distinct clinical and molecular features. Cohort studies have produced conflicting results on responses of CIMP-positive tumors to chemotherapy. We assessed the association between tumor CIMP status and survival of patients receiving adjuvant fluorouracil and leucovorin alone or with irinotecan (IFL). METHODS We analyzed data from patients with stage III colon adenocarcinoma randomly assigned to groups given fluorouracil and leucovorin or IFL after surgery, from April 1999 through April 2001. The primary end point of the trial was overall survival and the secondary end point was disease-free survival. DNA isolated from available tumor samples (n = 615) was used to determine CIMP status based on methylation patterns at the CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 loci. The effects of CIMP on survival were modeled using Kaplan-Meier and Cox proportional hazards; interactions with treatment and BRAF, KRAS, and mismatch repair (MMR) status were also investigated. RESULTS Of the tumor samples characterized for CIMP status, 145 were CIMP positive (23%). Patients with CIMP-positive tumors had shorter overall survival times than patients with CIMP-negative tumors (hazard ratio = 1.36; 95% confidence interval: 1.01-1.84). Treatment with IFL showed a trend toward increased overall survival for patients with CIMP-positive tumors, compared with treatment with fluorouracil and leucovorin (hazard ratio = 0.62; 95% CI: 0.37-1.05; P = .07), but not for patients with CIMP-negative tumors (hazard ratio = 1.38; 95% CI: 1.00-1.89; P = .049). In a 3-way interaction analysis, patients with CIMP-positive, MMR-intact tumors benefited most from the addition of irinotecan to fluorouracil and leucovorin therapy (for the interaction, P = .01). CIMP was more strongly associated with response to IFL than MMR status. Results for disease-free survival times were comparable among all analyses. CONCLUSIONS Patients with stage III, CIMP-positive, MMR-intact colon tumors have longer survival times when irinotecan is added to combination therapy with fluorouracil and leucovorin.
Collapse
Affiliation(s)
- Stacey Shiovitz
- Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Monica M Bertagnolli
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Lindsay A Renfro
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - Eunmi Nam
- Division of Hematology/Oncology, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Nathan R Foster
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | | | - Yanxin Luo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, PR China
| | - Victoria Valinluck Lao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Surgery, University of Washington Medical School, Seattle, Washington
| | - Raymond J Monnat
- Departments of Pathology and Genome Science, University of Washington Medical School, Seattle, Washington
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Nancy Maizels
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| | - Donna Niedzwiecki
- Alliance Statistics and Data Center, Duke University Medical Center, Durham, North Carolina
| | | | | | - Alan Venook
- University of California-San Francisco and the Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Robert S Warren
- University of California-San Francisco and the Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - William M Grady
- Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
30
|
Hokazono K, Ueki T, Nagayoshi K, Nishioka Y, Hatae T, Koga Y, Hirahashi M, Oda Y, Tanaka M. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps. Oncol Lett 2014; 8:1937-1944. [PMID: 25289081 PMCID: PMC4186580 DOI: 10.3892/ol.2014.2430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/15/2014] [Indexed: 01/05/2023] Open
Abstract
A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP status was classified according to the number of methylated genes and was correlated with the clinicopathological features, including the concomitant polyps in and around the tumors. The frequency of aberrant methylation in each CRC showed a bimodal pattern, and the CRCs were classified as CIMP-high (CIMP-H), CIMP-low (CIMP-L) and CIMP-negative (CIMP-N). CIMP-H was associated with aberrant methylation of MLH1 (P=0.005) and with an improved recurrence-free survival (RFS) rate following curative resection compared with CIMP-L/N (five-year RFS rate, 93.8 vs. 67.1%; P=0.044), while CIMP-N tumors were associated with frequent distant metastases at diagnosis (P=0.023). No concomitant serrated lesions were present in the tumors, whereas conventional adenoma was contiguous with 11 (10.6%) of 104 CRCs, including four CIMP-H CRCs. CIMP-H was classified in CRCs by a novel CIMP marker panel and the presence of concomitant tumors revealed that certain CIMP-H CRCs may have arisen from conventional adenomas.
Collapse
Affiliation(s)
- Koji Hokazono
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takashi Ueki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kinuko Nagayoshi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yasunobu Nishioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Tatsunobu Hatae
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yutaka Koga
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Minako Hirahashi
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Panczyk M. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World J Gastroenterol 2014; 20:9775-827. [PMID: 25110414 PMCID: PMC4123365 DOI: 10.3748/wjg.v20.i29.9775] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
During the past two decades the first sequencing of the human genome was performed showing its high degree of inter-individual differentiation, as a result of large international research projects (Human Genome Project, the 1000 Genomes Project International HapMap Project, and Programs for Genomic Applications NHLBI-PGA). This period was also a time of intensive development of molecular biology techniques and enormous knowledge growth in the biology of cancer. For clinical use in the treatment of patients with colorectal cancer (CRC), in addition to fluoropyrimidines, another two new cytostatic drugs were allowed: irinotecan and oxaliplatin. Intensive research into new treatment regimens and a new generation of drugs used in targeted therapy has also been conducted. The last 20 years was a time of numerous in vitro and in vivo studies on the molecular basis of drug resistance. One of the most important factors limiting the effectiveness of chemotherapy is the primary and secondary resistance of cancer cells. Understanding the genetic factors and mechanisms that contribute to the lack of or low sensitivity of tumour tissue to cytostatics is a key element in the currently developing trend of personalized medicine. Scientists hope to increase the percentage of positive treatment response in CRC patients due to practical applications of pharmacogenetics/pharmacogenomics. Over the past 20 years the clinical usability of different predictive markers has been tested among which only a few have been confirmed to have high application potential. This review is a synthetic presentation of drug resistance in the context of CRC patient chemotherapy. The multifactorial nature and volume of the issues involved do not allow the author to present a comprehensive study on this subject in one review.
Collapse
|
32
|
Environmental Exposures, Tumor Heterogeneity, and Colorectal Cancer Outcomes. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0221-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Luo HY, Xu RH. Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer. World J Gastroenterol 2014; 20:3858-3874. [PMID: 24744578 PMCID: PMC3983442 DOI: 10.3748/wjg.v20.i14.3858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignant diseases and the second leading cause of cancer-related deaths worldwide. The treatment of advanced CRC has improved significantly in recent years. With the emergence of two targeted antibodies, cetuximab (Erbitux), an anti-epidermal growth factor receptor monoclonal antibody and bevacizumab (Avastin), a vascular endothelial growth factor monoclonal antibody, the treatment of metastatic CRC has entered the era of personalized therapy. Predictive and prognostic biomarkers have, and will continue to, facilitate the selection of suitable patients and the personalization of treatment for metastatic CRC (mCRC). In this review, we will focus primarily on the important progresses made in the personalized treatment of mCRC and discuss the potentially novel predictive and prognostic biomarkers for improved selection of patients for anti-cancer treatment in the future.
Collapse
|
34
|
Loh M, Liem N, Vaithilingam A, Lim PL, Sapari NS, Elahi E, Mok ZY, Cheng CL, Yan B, Pang B, Salto-Tellez M, Yong WP, Iacopetta B, Soong R. DNA methylation subgroups and the CpG island methylator phenotype in gastric cancer: a comprehensive profiling approach. BMC Gastroenterol 2014; 14:55. [PMID: 24674026 PMCID: PMC3986689 DOI: 10.1186/1471-230x-14-55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed comprehensive DNA methylation profiling of a well-characterised series of primary GC. METHODS The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was investigated using the Illumina GoldenGate Methylation Panel I assay on DNA extracted from 60 gastric tumors and matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture model and investigated for associations with clinicopathological and molecular features including age, Helicobacter pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations. RESULTS A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively. Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in CpG islands and marked for polycomb occupancy. CONCLUSIONS High-throughput methylation analysis implicates genes involved in embryonic development and hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly methylated group showing some features consistent with a CpG island methylator phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
35
|
Molinari C, Casadio V, Foca F, Zingaretti C, Giannini M, Avanzolini A, Lucci E, Saragoni L, Passardi A, Amadori D, Calistri D, Zoli W. Gene methylation in rectal cancer: predictive marker of response to chemoradiotherapy? J Cell Physiol 2014; 228:2343-9. [PMID: 23702823 DOI: 10.1002/jcp.24405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/09/2013] [Indexed: 01/11/2023]
Abstract
Although numerous studies have focused on the link between CpG island methylator phenotypes and the development of colorectal cancer, few studies have dealt specifically with methylation profiling in rectal cancer and its role in predicting response to neoadjuvant chemoradiotherapy (NCRT). We characterized methylation profiles in normal and neoplastic tissue samples from patients with rectal cancer and assessed the role of this molecular profile in predicting chemoradioactivity. We evaluated 74 pretreatment tumor samples and 16 apparently normal tissue biopsies from rectal cancer patients submitted to NCRT. The methylation profile of 24 different tumor suppressor genes was analyzed from FFPE samples by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). Methylation status was studied in relation to tissue type and clinical pathological parameters, in particular, pathological response evaluated by tumor regression grade (TRG). ESR1, CDH13, RARB, IGSF4, and APC genes showed high methylation levels in tumor samples (range 18.92-49.77) with respect to normal tissue. Methylation levels of the remaining genes were low and similar in both normal (range 1.91-14.56) and tumor tissue (range 1.84-11). Analysis of the association between methylation and response to therapy in tumor samples showed that only TIMP3 methylation status differed significantly within the four TRG classes (ANOVA, P < 0.05). Results from the present explorative study suggest that quantitative epigenetic classification of rectal cancer by MS-MLPA clearly distinguishes tumor tissue from apparently normal mucosa. Conversely, with the exception of TIMP3 gene, the methylation of selected genes does not seem to correlate with response to NCRT.
Collapse
Affiliation(s)
- Chiara Molinari
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer (CRC) are leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing CRCs for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor. In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of CRC and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers).
Collapse
Affiliation(s)
- William M Grady
- 1Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
37
|
Dawson H, Galván JA, Helbling M, Muller DE, Karamitopoulou E, Koelzer VH, Economou M, Hammer C, Lugli A, Zlobec I. Possible role of Cdx2 in the serrated pathway of colorectal cancer characterized by BRAF mutation, high-level CpG Island methylator phenotype and mismatch repair-deficiency. Int J Cancer 2013; 134:2342-51. [PMID: 24166180 DOI: 10.1002/ijc.28564] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022]
Abstract
Colorectal cancer is a heterogeneous disease at the histomorphological, clinical and molecular level. Approximately 20% of cases may progress through the "serrated" pathway characterized by BRAF mutation and high-level CpG Island Methylator Phenotype (CIMP). A large subgroup are additionally microsatellite instable (MSI) and demonstrate significant loss of tumor suppressor Cdx2. The aim of this study is to determine the specificity of Cdx2 protein expression and CpG promoter hypermethylation for BRAF(V600E) and high-level CIMP in colorectal cancer. Cdx2, Mlh1, Msh2, Msh6, and Pms2 were analyzed by immunohistochemistry using a multi-punch tissue microarray (TMA; n = 220 patients). KRAS and BRAF(V600E) mutation analysis, CDX2 methylation and CIMP were investigated. Loss of Cdx2 was correlated with larger tumor size (P = 0.0154), right-sided location (P = 0.0014), higher tumor grade (P < 0.0001), more advanced pT (P = 0.0234) and lymphatic invasion (P = 0.0351). Specificity was 100% for mismatch repair (MMR)-deficiency (P < 0.0001), 92.2% (P < 0.0001) for BRAF(V600E) and 91.8% for CIMP-high. Combined analysis of BRAF(V600E)/CIMP identified Cdx2 loss as sensitive (80%) and specific (91.5%) for mutation/high status. These results were validated on eight well-established colorectal cancer cell lines. CDX2 methylation correlated with BRAF(V600E) (P = 0.0184) and with Cdx2 protein loss (P = 0.0028). These results seem to indicate that Cdx2 may play a role in the serrated pathway to colorectal cancer as underlined by strong relationships with BRAF(V600E), CIMP-high and MMR-deficiency. Whether this protein can only be used as a "surrogate" marker, or is functionally involved in the progression of these tumors remains to be elucidated.
Collapse
Affiliation(s)
- Heather Dawson
- Department of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland; Translational Research Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Samadder NJ, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, Lynch CF, Anderson KE, French AJ, Haile RW, Potter JD, Slager SL, Smyrk TC, Thibodeau SN, Cerhan JR, Limburg PJ. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women. Gastroenterology 2013; 145:348-56.e1-2. [PMID: 23665275 PMCID: PMC3772766 DOI: 10.1053/j.gastro.2013.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/11/2013] [Accepted: 05/01/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Colorectal tumors have a large degree of molecular heterogeneity. Three integrated pathways of carcinogenesis (ie, traditional, alternate, and serrated) have been proposed, based on specific combinations of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and mutations in BRAF and KRAS. We used resources from the population-based Iowa Women's Health Study (n = 41,836) to associate markers of colorectal tumors, integrated pathways, and clinical and pathology characteristics, including survival times. METHODS We assessed archived specimens from 732 incident colorectal tumors and characterized them as microsatellite stable (MSS), MSI high or MSI low, CIMP high or CIMP low, CIMP negative, and positive or negative for BRAF and/or KRAS mutations. Informative marker data were collected from 563 tumors (77%), which were assigned to the following integrated pathways: traditional (MSS, CIMP negative, BRAF mutation negative, and KRAS mutation negative; n = 170), alternate (MSS, CIMP low, BRAF mutation negative, and KRAS mutation positive; n = 58), serrated (any MSI, CIMP high, BRAF mutation positive, and KRAS mutation negative; n = 142), or unassigned (n = 193). Multivariable-adjusted Cox proportional hazards regression models were used to assess the associations of interest. RESULTS Patients' mean age (P = .03) and tumors' anatomic subsite (P = .0001) and grade (P = .0001) were significantly associated with integrated pathway assignment. Colorectal cancer (CRC) mortality was not associated with the traditional, alternate, or serrated pathways, but was associated with a subset of pathway-unassigned tumors (MSS or MSI low, CIMP negative, BRAF mutation negative, and KRAS mutation positive) (n = 96 cases; relative risk = 1.76; 95% confidence interval, 1.07-2.89, compared with the traditional pathway). CONCLUSIONS We identified clinical and pathology features associated with molecularly defined CRC subtypes. However, additional studies are needed to determine how these features might influence prognosis.
Collapse
Affiliation(s)
- N Jewel Samadder
- Department of Medicine, Gastroenterology, Huntsman Cancer Institute and University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Pardo OE, Seckl MJ. S6K2: The Neglected S6 Kinase Family Member. Front Oncol 2013; 3:191. [PMID: 23898460 PMCID: PMC3721059 DOI: 10.3389/fonc.2013.00191] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023] Open
Abstract
S6 kinase 2 (S6K2) is a member of the AGC kinases super-family. Its closest homolog, S6K1, has been extensively studied along the years. However, due to the belief in the community that the high degree of identity between these two isoforms would translate in essentially identical biological functions, S6K2 has been largely neglected. Nevertheless, recent research has clearly highlighted that these two proteins significantly differ in their roles in vitro as well as in vivo. These findings are significant to our understanding of S6 kinase signaling and the development of therapeutic strategies for several diseases including cancer. Here, we will focus on S6K2 and review the protein–protein interactions and specific substrates that determine the selective functions of this kinase.
Collapse
Affiliation(s)
- Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital , London , UK
| | | |
Collapse
|
41
|
Silvestri A, Pin E, Huijbers A, Pellicani R, Parasido EM, Pierobon M, Petricoin E, Liotta L, Belluco C. Individualized therapy for metastatic colorectal cancer. J Intern Med 2013; 274:1-24. [PMID: 23527888 DOI: 10.1111/joim.12070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Systemic therapeutic efficacy is central to determining the outcome of patients with metastatic colorectal cancer (CRC). In these patients, there is a critical need for predictive biomarkers to optimize efficacy whilst minimizing toxicity. The integration of a new generation of molecularly targeted drugs into the treatment of CRC, coupled with the development of sophisticated technologies for individual tumours as well as patient molecular profiling, underlines the potential for personalized medicine. In this review, we focus on the latest progress made within the genomic and proteomic fields, concerning predictive biomarkers for individualized therapy in metastatic CRC.
Collapse
Affiliation(s)
- A Silvestri
- Division of Experimental Oncology 2, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tänzer M, Liebl M, Quante M. Molecular biomarkers in esophageal, gastric, and colorectal adenocarcinoma. Pharmacol Ther 2013; 140:133-47. [PMID: 23791941 DOI: 10.1016/j.pharmthera.2013.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023]
Abstract
Cancers of the esophagus, stomach and colon contribute to a major health burden worldwide and over 20% of all cancer deaths. Biomarkers that should indicate pathogenic process and are measureable in an objective manner for these tumors are rare and not established in the clinical setting. In general biomarkers can be very useful for cancer management as they can improve clinical decision-making regarding diagnosis, surveillance, and therapy. Biomarkers can be different types of molecular entities (such as DNA, RNA or proteins), which can be detected, in different tissues or body fluids. However, more important is the type of biomarker itself, which allows diagnostic, prognostic or predictive analyses for different clinical problems. This review aims to systematically summarize the recent findings of genetic and epigenetic markers for gastrointestinal tumors within the last decade. While many biomarkers seem to be very promising, especially if used as panels, further development is urgently needed to address practical considerations of biomarkers in cancer treatment.
Collapse
Affiliation(s)
- Marc Tänzer
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München, Germany
| | | | | |
Collapse
|
43
|
Simons CCJM, Hughes LAE, Smits KM, Khalid-de Bakker CA, de Bruïne AP, Carvalho B, Meijer GA, Schouten LJ, van den Brandt PA, Weijenberg MP, van Engeland M. A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann Oncol 2013; 24:2048-56. [PMID: 23532114 DOI: 10.1093/annonc/mdt076] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We studied the overlap between the major (epi)genomic events microsatellite instability (MSI), the CpG island methylator phenotype (CIMP) and chromosomal instability (CIN) in colorectal cancer (CRC), and whether specific (epi)genotypes were associated with CRC-related deaths. PATIENTS AND METHODS Molecular analyses using tumor DNA were successful in 509 CRC cases identified within the Netherlands Cohort Study in the period 1989-1993. Follow-up for the vital status until May 2005 was 100%. RESULTS MSI (12.6%), CIMP-only (5.3%), CIMP + CIN (13.4%), CIN-only (58.2%) and triple-negative tumors (10.6%) differed significantly regarding tumor localization, differentiation grade, initial adjuvant therapy (AT) use and genetic characteristics (P ≤ 0.03). CIMP-only, CIMP + CIN and triple-negative tumors, compared with CIN-only tumors, were significantly associated with a 3.67, 2.44 and 3.78-fold risk of CRC-related deaths after 2-year follow-up (95% confidence intervals, CIs, 1.70-7.91, 1.35-4.41 and 1.97-7.25, respectively), but not after late follow-up. MSI tumors were borderline significantly associated with a 0.40-fold risk of CRC-related deaths after late follow-up (95% CI 0.15-1.03). CONCLUSION(S) This is the first study to show that specific (epi)genotypes may hold a differential prognostic value that may vary over time. Although no specific treatment data were available, an explanation for the differential findings over time might be that (epi)genotypes modify therapy response.
Collapse
Affiliation(s)
- C C J M Simons
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Detection and differential diagnosis of colon cancer by a cumulative analysis of promoter methylation. Nat Commun 2013; 3:1206. [PMID: 23149750 DOI: 10.1038/ncomms2209] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
Alterations in the methylation of promoters of cancer-related genes are promising biomarkers for the early detection of disease. Compared with single methylation alteration, assessing combined methylation alterations can provide higher association with specific cancer. Here we use cationic conjugated polymer-based fluorescence resonance energy transfer to quantitatively analyse DNA methylation levels of seven colon cancer-related genes in a Chinese population. Through a stepwise discriminant analysis and cumulative detection of methylation alterations, we acquire high accuracy and sensitivity for colon cancer detection (86.3 and 86.7%) and for differential diagnosis (97.5 and 94%). Moreover, we identify a correlation between the CpG island methylator phenotype and clinically important parameters in patients with colon cancer. The cumulative analysis of promoter methylation alterations by the cationic conjugated polymer-based fluorescence resonance energy transfer may be useful for the screening and differential diagnosis of patients with colon cancer, and for performing clinical correlation analyses.
Collapse
|
45
|
Donada M, Bonin S, Barbazza R, Pettirosso D, Stanta G. Management of stage II colon cancer - the use of molecular biomarkers for adjuvant therapy decision. BMC Gastroenterol 2013; 13:36. [PMID: 23446022 PMCID: PMC3599045 DOI: 10.1186/1471-230x-13-36] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/25/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND There is uncertainty on the benefit of adjuvant chemotherapy in patients with stage II colorectal cancers. The aim of this study is to investigate the combined role of clinical, pathological and molecular parameters to identify those stage II patients who better benefit from adjuvant therapy. METHODS We examined 120 stage II colon cancer patients. Of these, 60 patients received adjuvant 5-FU chemotherapy after surgery and the other 60 did not receive therapy. Immunohistochemical (IHC) analyses were performed to evaluate the expressions of Thymidylate synthetase (TYMS), TP53 (p53), β-catenin (CTNNB1) and CD8. For TYMS, its mRNA expression levels were also investigated by real time qRT-PCR. The entire case study was characterized by the presence of a defect in the MMR (mismatch repair) system, the presence of the CpG island methylator phenotype (CIMP or CIMP-High) and for the V600E mutation in the BRAF gene. At the histo-pathological level, the depth of tumour invasion, lymphovascular invasion, invasion of large veins, host lymphocytic response and tumour border configuration were recorded. RESULTS The presence of the V600E mutation in the BRAF gene was a poor prognostic factor for disease free and overall survival (DFS; hazard ratio [HR], 2.57; 95% CI: 1.03 -6.37; p = 0.04 and OS; HR, 3.68; 95% CI: 1.43-9.47; p < 0.01 respectively), independently of 5-FU treatment. Adjuvant therapy significantly improved survival in patients with high TYMS levels (p = 0.04), while patients with low TYMS had a better outcome if treated by surgery alone (DFS; HR, 6.07; 95% CI, 0.82 to 44.89; p = 0.04). In patients with a defect in the MMR system (dMMR), 5-FU therapy was associated to reduced survival (DFS; HR, 37.98; 95% CI, 1.04 to 1381.31; p = 0.04), while it was beneficial for CIMP-High associated tumours (DFS; HR, 0.17; 95% CI, 0.02 to 1.13; p = 0.05). CONCLUSIONS Patients' characterization according to MMR status, CIMP phenotype and TYMS mRNA expression may provide a more tailored approach for adjuvant therapy in stage II colon cancer.
Collapse
Affiliation(s)
- Marisa Donada
- DSM Department (Department of medical, surgical and health sciences), University of Trieste, Surgical Pathology Bldg, Strada di Fiume 447, I-34149, Trieste, Italy
| | | | | | | | | |
Collapse
|
46
|
Prevalence, Clinicopathologic Characteristics, and Predictors of Interval Colorectal Cancers in Korean Population. Intest Res 2013. [DOI: 10.5217/ir.2013.11.3.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
47
|
Ham MS, Lee JK, Kim KC. S-adenosyl methionine specifically protects the anticancer effect of 5-FU via DNMTs expression in human A549 lung cancer cells. Mol Clin Oncol 2012; 1:373-378. [PMID: 24649178 DOI: 10.3892/mco.2012.53] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 12/11/2012] [Indexed: 12/16/2022] Open
Abstract
Cellular methylation is associated with stabilization of the chromatin structure. S-adenosyl methionine (SAM), a metabolite of methionine metabolism, is the methyl donor of essential cellular methyltransferase reactions. Using 3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyl tetrazolium bromide (MTT) assay, we found that combination treatment of SAM and 5-fluorouracil (5-FU) specifically protected the anticancer effect of 5-FU, whereas the combination of SAM and cisplatin had no effect. This result was confirmed by FACS analysis. The combination treatment of SAM and 5-FU significantly decreased the dead cell population, while the G1 cell population was slightly increased, suggesting that protection of SAM is not associated with the cell cycle arrest of DNA-damaging drugs. We also analyzed which cellular methylation-related proteins were involved in the protective effect. Results showed the expression of DNA methyltransferases (DNMTs) was decreased with 5-FU alone but was increased with the combination treatment of SAM and 5-FU, suggesting that SAM protects the anticancer effect of 5-FU by regulating the expression of DNMTs. Taken together, the results indicated that SAM specifically modulates the anti-cancer effect of the DNA damage agent 5-FU and this may be modulated by aberrant DNA methylation.
Collapse
Affiliation(s)
- Myeong-Sun Ham
- Medical and Bio-Material Research Center and Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Ju-Kyung Lee
- Medical and Bio-Material Research Center and Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Keun-Cheol Kim
- Medical and Bio-Material Research Center and Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| |
Collapse
|
48
|
Promoter CpG island methylation in colorectal cancer:. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Ibrahim AE, Arends MJ. Molecular typing of colorectal cancer: applications in diagnosis and treatment. DIAGNOSTIC HISTOPATHOLOGY 2012; 18:70-80. [DOI: 10.1016/j.mpdhp.2011.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
|
50
|
Hughes LAE, Khalid-de Bakker CAJ, Smits KM, van den Brandt PA, Jonkers D, Ahuja N, Herman JG, Weijenberg MP, van Engeland M. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta Rev Cancer 2011; 1825:77-85. [PMID: 22056543 DOI: 10.1016/j.bbcan.2011.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/15/2022]
Abstract
In recent years, attention has focused on the biology and potential clinical importance of the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). While it is generally well accepted that etiologically and clinically distinct subgroups exist in this disease, a precise definition of CIMP remains to be established. Here, we summarize existing literature that documents the prevalence of CIMP in CRC, with particular attention to the various methods and definitions used to classify a tumor as CIMP positive. Through a systematic review on both case-series and population based studies, we examined only original research articles reporting on sporadic CRC and/or adenomas in unselected cases. Forty-eight papers published between January 1999 and August 2011 met the inclusion criteria. We describe the use of multiple gene panels, marker threshold values, and laboratory techniques which results in a wide range in the prevalence of CIMP. Because there is no universal standard or consensus on quantifying the phenotype, establishing its true prevalence is a challenge. This bottleneck is becoming increasingly evident as molecular pathological epidemiology continues to offer possibilities for clear answers regarding environmental risk factors and disease trends. For the first time, large, unselected series of cases are available for analysis, but comparing populations and pooling data will remain a challenge unless a universal definition of CIMP and a consensus on analysis can be reached, and the primary cause of CIMP identified.
Collapse
Affiliation(s)
- Laura A E Hughes
- Dept. of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200MD Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|