1
|
Takahashi K, Yachida N, Tamura R, Adachi S, Kondo S, Abé T, Umezu H, Nyuzuki H, Okuda S, Nakaoka H, Yoshihara K. Clonal origin and genomic diversity in Lynch syndrome-associated endometrial cancer with multiple synchronous tumors: Identification of the pathogenicity of MLH1 p.L582H. Genes Chromosomes Cancer 2024; 63:e23231. [PMID: 38459936 DOI: 10.1002/gcc.23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
Lynch syndrome-associated endometrial cancer patients often present multiple synchronous tumors and this assessment can affect treatment strategies. We present a case of a 27-year-old woman with tumors in the uterine corpus, cervix, and ovaries who was diagnosed with endometrial cancer and exhibited cervical invasion and ovarian metastasis. Her family history suggested Lynch syndrome, and genetic testing identified a variant of uncertain significance, MLH1 p.L582H. We conducted immunohistochemical staining, microsatellite instability analysis, and Sanger sequencing for Lynch syndrome-associated cancers in three generations of the family and identified consistent MLH1 loss. Whole-exome sequencing for the corpus, cervical, and ovarian tumors of the proband identified a copy-neutral loss of heterozygosity (LOH) occurring at the MLH1 position in all tumors. This indicated that the germline variant and the copy-neutral LOH led to biallelic loss of MLH1 and was the cause of cancer initiation. All tumors shared a portion of somatic mutations with high mutant allele frequencies, suggesting a common clonal origin. There were no mutations shared only between the cervix and ovary samples. The profiles of mutant allele frequencies shared between the corpus and cervix or ovary indicated that two different subclones originating from the corpus independently metastasized to the cervix or ovary. Additionally, all tumors presented unique mutations in endometrial cancer-associated genes such as ARID1A and PIK3CA. In conclusion, we demonstrated clonal origin and genomic diversity in a Lynch syndrome-associated endometrial cancer, suggesting the importance of evaluating multiple sites in Lynch syndrome patients with synchronous tumors.
Collapse
Affiliation(s)
- Kotaro Takahashi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Cancer Genome Research, Sasaki Institute, Tokyo, Japan
| | - Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuhei Kondo
- Division of Pathology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tatsuya Abé
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hiromi Nyuzuki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Tokyo, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Skelin J, Sabol I, Tomaić V. Do or Die: HPV E5, E6 and E7 in Cell Death Evasion. Pathogens 2022; 11:pathogens11091027. [PMID: 36145459 PMCID: PMC9502459 DOI: 10.3390/pathogens11091027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the dividing cells of human epithelia and hijack the cellular replication machinery to ensure their own propagation. In the effort to adapt the cell to suit their own reproductive needs, the virus changes a number of processes, amongst which is the ability of the cell to undergo programmed cell death. Viral infections, forced cell divisions and mutations, which accumulate as a result of uncontrolled proliferation, all trigger one of several cell death pathways. Here, we examine the mechanisms employed by HPVs to ensure the survival of infected cells manipulated into cell cycle progression and proliferation.
Collapse
|
3
|
Kedhari Sundaram M, Haque S, Somvanshi P, Bhardwaj T, Hussain A. Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways. 3 Biotech 2020; 10:484. [PMID: 33117625 PMCID: PMC7584697 DOI: 10.1007/s13205-020-02473-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
This study examines the effect of epigallocatechin gallate (EGCG) on signaling pathways, epigenetic modulators and tumour suppressor genes in cervical cancer cells, HeLa. qRT-PCR, ELISA-based enzymatic assays and in silico studies were used to catalogue the modulation of these genes by EGCG treatment. qRT-PCR showed transcriptional modulation of several epigenetic modifiers including DNA methyltransferases and histone modifiers (DNMT1, DNMT3B, DNMT3A, AURKA, AURKC, AURKB, KDM4A, KDM5C, PRMT7, PRMT6, UBE2B, HDAC5, HDAC6, HDAC7 and HDAC11. Furthermore, ELISA-based assays showed that EGCG lowered the activity of DNA methyltransferases, histone deacetylases and histone methyltransferases (H3K9). Molecular docking results suggests that EGCG may competitively inhibit some epigenetic enzymes (DNMT1, DNMT3A, HDAC2, HDAC3, HDAC4, HDAC7 and EZH2). A functional outcome of these epigenetic alterations could be inferred from the reversal of promoter hypermethylation of tumour suppressor genes by quantitative methylation array and transcriptional re-expression of tumour suppressor genes including TP73, PTEN, SOCS1, CDH1, RARβ, and DAPK1 by qRT-PCR. Downregulation of key signaling moieties of PI3K, Wnt and MAPK pathways, cell cycle regulators, metastasis regulators and pro-inflammatory moieties including TERT, CCNB1, CCNB2, MMP2, MMP7. PIK3C2B, PIK3CA, MAPK8 and IL6 was also observed. In silico protein-protein interaction network analysis followed by KEGG analysis discerned the active participation of gene sets towards cancer pathways. This study comprehensively explains EGCG's anti-cancer mechanism via the synchronized transcriptional alteration of several molecular targets across different signaling pathways and reversal of tumour suppressor gene silencing through modulation of epigenetic enzymes.
Collapse
Affiliation(s)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142 Saudi Arabia
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070 India
| | - Tulika Bhardwaj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070 India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, PO Box 345050, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Yanatatsaneejit P, Chalertpet K, Sukbhattee J, Nuchcharoen I, Phumcharoen P, Mutirangura A. Promoter methylation of tumor suppressor genes induced by human papillomavirus in cervical cancer. Oncol Lett 2020; 20:955-961. [PMID: 32566025 DOI: 10.3892/ol.2020.11625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the most fourth common cancer in women worldwide. The E6 and E7 high-risk human papillomavirus (HPV) types are the main cause of this cancer. Several studies have revealed that promoter methylation of tumor suppressor genes is induced by HPV E7. Recently, it was found that HPV16-E7 and the DNA methyltransferase 1 complex could bind at the cyclin A1 (CCNA1) promoter, resulting in CCNA1 promoter methylation. Therefore, there is a need to study other tumor suppressor genes for which HPV may induce promoter methylation. The present study investigated whether HPV induced cell adhesion molecule 1 (CADM1) and death associated protein kinase 1 (DAPK1) promoter methylation. C33a (no HPV infection) and SiHa (HPV 16 infection) cell lines were used for methylation status and expression observation. It was found that CADM1 and DAPK1 promoter methylation, no expression of CADM1 and decreased expression of DAPK1, was presented in SiHa cells. While no promoter methylation of these two genes was observed in C33a cells, with positive expression of the genes. It was subsequently investigated whether E6 and/or E7 could induce promoter methylation and decrease the expression of these two genes. Methylation-specific primer PCR and quantitative PCR were performed to elucidate the promoter methylation status and expression of CADM1 and DAPK1 in C33a cells transfected with HPV16 E6-PCDNA3 or HPV16 E7-PCDNA3.1 myc-his, compared to empty vector-transfected cells. The results showed that HPV E7 could induce CADM1 promoter methylation and decrease the gene expression in HPV E7 transfected C33a cells, while HPV E6 could induce DAPK1 promoter methylation and decrease its expression in C33a cells transfected with HPV E6. Finally, the mechanism by which HPV E7 induced CADM1 promoter methylation was observed by performing chromatin immunoprecipitation; the data showed that E7 induced CADM1 methylation by the same mechanism as that for CCNA1, by binding at the CADM1 promoter, resulting in the subsequent reduction of its expression in cervical cancer.
Collapse
Affiliation(s)
- Pattamawadee Yanatatsaneejit
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanwalat Chalertpet
- Inter-Department of Biomedical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juthamard Sukbhattee
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Irin Nuchcharoen
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyathida Phumcharoen
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Rokutan-Kurata M, Minamiguchi S, Kataoka TR, Abiko K, Mandai M, Haga H. Uterine cervical squamous cell carcinoma without p16 (CDKN2A) expression: Heterogeneous causes of an unusual immunophenotype. Pathol Int 2020; 70:413-421. [PMID: 32304153 DOI: 10.1111/pin.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022]
Abstract
Immunohistochemically p16 (CDKN2A)-negative uterine cervical squamous cell carcinoma (SCC) is uncommon, and there are few reports about its pathological features. This study explored the causes of p16 negativity in such cases. We analyzed diagnostic tissue samples of five cases of p16-negative cervical SCC among 107 patients who underwent hysterectomy at Kyoto University Hospital between January 2010 and December 2015. The samples were subjected to immunohistochemical staining, in situ hybridization and a genetic analysis. Two of five cases were positive for human papilloma virus (HPV) by genotyping. One was positive for HPV56 with promoter hypermethylation of CDKN2A and co-existing Epstein-Barr virus infection. Another was positive for HPV6 categorized as low-risk HPV with condylomatous morphology. Among the remaining three cases, one had amplification of the L1 gene of HPV with promoter hypermethylation of CDKN2A and TP53 mutation, and one of the other two HPV-negative cases had a homozygous CDKN2A deletion, while the other was positive for p53 and CK7. p16-negativity of cervical SCC is often associated with an unusual virus infection status and CDKN2A gene abnormality.
Collapse
Affiliation(s)
| | | | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Hospital, Kyoto, Japan.,Department of Gynecology and Obstetrics, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
6
|
Sundaram MK, Unni S, Somvanshi P, Bhardwaj T, Mandal RK, Hussain A, Haque S. Genistein Modulates Signaling Pathways and Targets Several Epigenetic Markers in HeLa Cells. Genes (Basel) 2019; 10:E955. [PMID: 31766427 PMCID: PMC6947182 DOI: 10.3390/genes10120955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several epigenetic changes are responsible for transcriptional alterations of signaling pathways and tumour suppressor genes (TSGs) contributing to carcinogenesis. This study was aimed to examine the effect of the phytochemical, genistein on various molecular targets in HeLa cells. METHODS Quantitative PCR was used to analyze the expression of various molecular targets. Biochemical assays were employed to study the epigenetic enzymes. To correlate the transcriptional status of the selected TSGs and epigenetic modulation, their promoter 5'CpG methylation levels were evaluated by quantitative methylation array followed by methylation specific restriction digestion. RESULTS The expression of several genes involved in the cell cycle regulation, migration, inflammation, phosphatidylinositol 3-kinase (PI3K) and mitogen activated kinase-like protein (MAPK) pathway were found to be modulated including CCNB1, TWIST1, MMP14, TERT, AKT1, PTPRR, FOS and IL1A. Genistein modulated the expression of DNA methyltransferases (DNMTs), histone deacetylases (HDACs), histone methyltransferases (HMTs), demethylases, and histone phosphorylases. Furthermore, genistein decreased the activity of DNMTs, HDACs, and HMTs and reduced global DNA methylation levels. Promoter methylation of several TSGs, including FHIT, RUNX3, CDH1, PTEN, and SOC51, was lowered with corresponding transcriptional increase. Network analysis indicated similar effect of genistein. CONCLUSION This study presents a comprehensive mechanism of action of genistein showcasing effective epigenetic modulation and widespread transcriptional changes resulting in restoration of tumour suppressor gene expression. This study corroborates the development of genistein as a candidate for anti-cancer therapy.
Collapse
Affiliation(s)
| | - Sreepoorna Unni
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, P.O. Box 19282 Dubai, UAE;
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi-110070, India; (P.S.); (T.B.)
| | - Tulika Bhardwaj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi-110070, India; (P.S.); (T.B.)
| | - Raju K. Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia;
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050 Dubai, UAE;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia;
| |
Collapse
|
7
|
Huang J, Luo JY, Tan HZ. Associations of MGMT promoter hypermethylation with squamous intraepithelial lesion and cervical carcinoma: A meta-analysis. PLoS One 2019; 14:e0222772. [PMID: 31574102 PMCID: PMC6772039 DOI: 10.1371/journal.pone.0222772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Background In this research, an meta-analysis was performed for assessment of the associations between O6-methyguanine-DNA methyltransferase (MGMT) promoter hypermethylation possessing low-grade intraepithelial lesion (LSIL), high-grade intraepithelial lesion (HSIL), cervical cancer (CC), and clinicopathological characters of CC. Methods Literature selection were conducted through searching PubMed, Web of science, EMBASE, China National Knowledge Infrastructure and Wanfang databases (up to November 2018). An assessment of associations between MGMT methylation and LSIL, HSIL, CC risk and clinicopathological characteristics was performed through pooled odds ratios (ORs) with relevant 95% confidence intervals (CIs). Subgroup analyses, meta-regressions and Galbraith plots were conducted to conduct an exploration on the possible sources of heterogeneity. The genome-wide DNA methylation array studies were extracted from Gene Expression Omnibus (GEO) databases for validation of these outcomes. Results In this meta-analysis of 25 published articles, MGMT hypermethylation gradually elevated the rates among control group (12.16%), LSIL (20.92%), HSIL (36.33%) and CC (41.50%) specimens. MGMT promoter methylation was significant associated with the increased risk of LSIL by 1.74-fold (P<0.001), HSIL by 3.71-fold (P<0.001) and CC by 7.08-fold (P<0.001) compared with control. A significant association between MGMT promoter methylation with FIGO stage was also found (OR = 2.81, 95% CI: 1.79–4.41, p<0.001). The results of GEO datasets showed that 5 CpG sites in MGMT with a great diagnostic value for the screening of cervical cancer. Conclusion The meta-analysis indicated the association between MGMT promoter hypermethylation and squamous intraepithelial lesion and cervical cancer. MGMT methylation detection might have a potential value to be an epigenetic marker for the clinical diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Jin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, China
| | - Jia-You Luo
- Department of Women and Children Health, School of Public Health, Central South University, Changsha, Hunan, China
| | - Hong-Zhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
8
|
Allameh A, Moazeni-Roodi A, Harirchi I, Ravanshad M, Motiee-Langroudi M, Garajei A, Hamidavi A, Mesbah-Namin SA. Promoter DNA Methylation and mRNA Expression Level of p16 Gene in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Characteristics. Pathol Oncol Res 2018; 25:1535-1543. [PMID: 30511108 DOI: 10.1007/s12253-018-0542-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the relationship between p16 methylation and its expression in oral squamous cell carcinoma (OSCC). Also the contribution of clinicopathological factors, HPV infection and smoking in p16 expression and promoter methylation has been investigated. In this study 67 consecutive OSCC patients and 59 normal individuals were enrolled. All patients were candidates for surgery of oral cavity and fresh tumor biopsies were collected and processed for DNA and RNA extraction. Normal gingival tissues were collected from individuals referred to dentistry clinic and considered as controls. All the cases and controls were checked for HPV infection and then promoter methylation and expression of p16 gene were determined using Methylation-specific PCR (MSP) and real-time PCR (QPCR), respectively. Methylation of p16 in tumors and normal tissues were 59.7 and 38.9%, respectively. Most of hypermethylated samples (>82%) were in high grades. P16 methylation was comparable in HPV+ and HPV- patients or smokers. P16 was overexpressed (~3 fold; p = 0.044) in HPV+ tumors, but it was significantly down-regulated in smoker patients (40% of all tumors). Comparison of P16 expression in OSCC tumors with different degrees of promoter methylation further suggest the relationship of methylation rate and down-regulation of P16 expression. The p16 methylation and expression was differentially affected in patients with HPV infection and the smoker cases. Regardless of the influence of environmental factors, it appears that P16 status is useful for classifying patients with OSCC and for influencing treatment strategies in accordance with this classification. Moreover, targeting the upregulation of p16 could be a promising therapeutic option.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
| | - Abdolkarim Moazeni-Roodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.,Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Iraj Harirchi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Maziar Motiee-Langroudi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ata Garajei
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Department of Oral and Maxillofacial Surgery, School of Dentistry and Department of Head and Neck Surgical Oncology and Reconstructive Surgery, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Hamidavi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| |
Collapse
|
9
|
The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin Epigenetics 2018; 10:139. [PMID: 30409182 PMCID: PMC6225654 DOI: 10.1186/s13148-018-0563-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background In the present study, we investigated the molecular mechanisms underlying the pro-apoptotic effects of quercetin (Qu) by evaluating the effect of Qu treatment on DNA methylation and posttranslational histone modifications of genes related to the apoptosis pathway. This study was performed in vivo in two human xenograft acute myeloid leukemia (AML) models and in vitro using HL60 and U937 cell lines. Results Qu treatment almost eliminates DNMT1 and DNMT3a expression, and this regulation was in part STAT-3 dependent. The treatment also downregulated class I HDACs. Furthermore, treatment of the cell lines with the proteasome inhibitor, MG132, together with Qu prevented degradation of class I HDACs compared to cells treated with Qu alone, indicating increased proteasome degradation of class I HDACS by Qu. Qu induced demethylation of the pro-apoptotic BCL2L11, DAPK1 genes, in a dose- and time-dependent manner. Moreover, Qu (50 μmol/L) treatment of cell lines for 48 h caused accumulation of acetylated histone 3 and histone 4, resulting in three- to ten fold increases in the promoter region of DAPK1, BCL2L11, BAX, APAF1, BNIP3, and BNIP3L. In addition, Qu treatment significantly increased the mRNA levels of all these genes, when compared to cells treated with vehicle only (control cells) (*p < 0.05). Conclusions In summary, our results showed that enhanced apoptosis, induced by Qu, might be caused in part by its DNA demethylating activity, by HDAC inhibition, and by the enrichment of H3ac and H4ac in the promoter regions of genes involved in the apoptosis pathway, leading to their transcription activation.
Collapse
|
10
|
Teixeira da Costa Lodi C, Michelin MA, Miranda Lima MI, Murta EFC, Braga LDC, Montes L, Melo VH. Predicting cervical intraepithelial neoplasia recurrence in HIV-infected and -noninfected women by detecting aberrant promoter methylation in the CDH1, TIMP3, and MGMT genes. Arch Gynecol Obstet 2018; 298:971-979. [PMID: 30218185 DOI: 10.1007/s00404-018-4899-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Aberrant DNA methylation is present in virtually all types of human cancer. There is no clear evidence that methylation status can predict bad prognosis in patients with CIN recurrence in HIV infected. This study evaluates the relationship between aberrant methylation of CpG islands of CDH1, TIMP3 and MGMT genes and CIN recurrence in HIV-infected and -noninfected women. METHODS This is a nested case-control study involving 33 cases with CIN recurrence and 114 controls without recurrence, HIV infected and noninfected, treated with LEEP, between 1999 and 2004. Recurrence diagnosis was established after biopsy. Genes methylation profile was assessed by MSP-PCR technique in formalin-fixed, paraffin-embedded cone specimens. Statistical analysis was performed to compare categorical variables, using χ2 test with Yates correction and Fisher's exact test. Multivariate analysis was carried out using logistic regression. RESULTS CIN recurrence was more frequent in women with glandular involvement (OR 11.6; 95% CI 2.93-45.89) and compromised surgical margins (OR 2.5; 95% CI 0.87-7.27) in the cervical cone and in HIV-infected women (OR 2.47; 95% CI 0.87-7.05). One methylated allele of CDH1, TIMP3 and MGMT genes was present in 87.9% women with CIN recurrence. Promoter hypermethylation of TIMP3 and MGMT was detected in women with CIN recurrence and without CIN recurrence independent of HIV infection with significant difference between groups (p = 0.04 and p = 0.02, respectively). CONCLUSIONS CIN recurrence was associated with glandular involvement and compromised margins in cone biopsy and HIV infection. The presence of CpG islands hemimethylation in TIMP3 and MGMT genes is a promising triage method in CIN recurrence.
Collapse
Affiliation(s)
| | | | | | | | - Letícia da Conceição Braga
- Cell Biology Laboratory of Research and Development Management of Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Leticia Montes
- Biomedical of Research Institute of Oncology, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Victor Hugo Melo
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Abstract
This study is to investigate the genomic methylation in cervical adenocarcinoma in Xinjiang, China, using the DNA methylation analysis chips.Methylation of 5 cases of cervical adenocarcinoma tissues and 5 cases of normal cervical tissues were analyzed by the Illumina 850K methylation chip. The genes with abnormal methylation modification were screened out and analyzed by the gene ontology (GO) functional annotation analysis. Enrichment analysis of kyoto encyclopedia of genes and genomes (KEGG) signal transduction pathways was also performed.Totally 4056 sites showed differential expression patterns in cervical adenocarcinoma tissues compared to normal cervical tissues, of which 3738 were hypermethylated, and 318 were hypomethylated. The distribution of these sites covered from the 1st to 22nd chromosomes. GO functional annotation analysis showed that the differentially expressed genes in cervical adenocarcinoma tissues were mainly involved in the processes of tumor growth, development, metabolism, ion transport, transcriptional regulation, cell division, cell cycle regulation, and signal transduction. KEGG signaling pathway analysis showed that the most significantly different signaling pathway was the neuroactive ligand-receptor interaction. Gene-net-work analysis suggested that CCND1, CTNNB1, MAPK10, and PRKCA were involved.Methylated genes are specifically expressed in cervical adenocarcinoma tissues in Xinjiang, China. Four of these genes (CCND1, CTNNB1, MAPK10, and PRKCA) with differential expression patterns may play important regulatory roles in cervical adenocarcinoma development through affecting the neuroactive ligand-receptor interaction.
Collapse
|
12
|
Wang XB, Cui NH, Liu XN, Ma JF, Zhu QH, Guo SR, Zhao JW, Ming L. Identification of DAPK1 Promoter Hypermethylation as a Biomarker for Intra-Epithelial Lesion and Cervical Cancer: A Meta-Analysis of Published Studies, TCGA, and GEO Datasets. Front Genet 2018; 9:258. [PMID: 30065752 PMCID: PMC6056635 DOI: 10.3389/fgene.2018.00258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Promoter hypermethylation in death-associated protein kinase 1 (DAPK1) gene has been long linked to cervical neoplasia, but the established results remained controversial. Here, we performed a meta-analysis to assess the associations of DAPK1 promoter hypermethylation with low-grade intra-epithelial lesion (HSIL), high-grade intra-epithelial lesion (HSIL), cervical cancer (CC), and clinicopathological features of CC. Methods: Published studies with qualitative methylation data were initially searched from PubMed, Web of Science, EMBASE, and China National Knowledge Infrastructure databases (up to March 2018). Then, quantitative methylation datasets, retrieved from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, were pooled to validate the results of published studies. Results: In a meta-analysis of 37 published studies, DAPK1 promoter hypermethylation progressively increased the risk of LSIL by 2.41-fold (P = 0.012), HSIL by 7.62-fold (P < 0.001), and CC by 23.17-fold (P < 0.001). Summary receiver operating characteristic curves suggested a potential diagnostic value of DAPK1 promoter hypermethylation in CC, with a large area-under-the-curve of 0.83, a high specificity of 97%, and a moderate sensitivity of 59%. There were significant impacts of DAPK1 promoter hypermethylation on histological type (odds ratio (OR) = 3.53, P < 0.001) and FIGO stage of CC (OR = 2.15, P = 0.003). Then, a pooled analysis of nine TCGA and GEO datasets, covering 13 CPG sites within DAPK1 promoter, identified eight CC-associated sites, six sites with diagnostic values for CC (pooled specificities: 74–90%; pooled sensitivities: 70–81%), nine loci associated with the histological type of CC, and all 13 loci with down-regulated effects on DAPK1 mRNA expression. Conclusion: The meta-analysis suggests that DAPK1 promoter hypermethylation is significantly associated with the disease severity of cervical neoplasia. DAPK1 methylation detection exhibits a promising ability to discriminate CC from cancer-free controls.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning-Hua Cui
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xia-Nan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Fen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing-Hua Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Ren Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Wei Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Wang R, van Leeuwen RW, Boers A, Klip HG, de Meyer T, Steenbergen RDM, van Criekinge W, van der Zee AGJ, Schuuring E, Wisman GBA. Genome-wide methylome analysis using MethylCap-seq uncovers 4 hypermethylated markers with high sensitivity for both adeno- and squamous-cell cervical carcinoma. Oncotarget 2018; 7:80735-80750. [PMID: 27738327 PMCID: PMC5348351 DOI: 10.18632/oncotarget.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background Cytology-based screening methods for cervical adenocarcinoma (ADC) and to a lesser extent squamous-cell carcinoma (SCC) suffer from low sensitivity. DNA hypermethylation analysis in cervical scrapings may improve detection of SCC, but few methylation markers have been described for ADC. We aimed to identify novel methylation markers for the early detection of both ADC and SCC. Results Genome-wide methylation profiling for 20 normal cervices, 6 ADC and 6 SCC using MethylCap-seq yielded 53 candidate regions hypermethylated in both ADC and SCC. Verification and independent validation of the 15 most significant regions revealed 5 markers with differential methylation between 17 normals and 13 cancers. Quantitative methylation-specific PCR on cervical cancer scrapings resulted in detection rates ranging between 80% and 92% while between 94% and 99% of control scrapings tested negative. Four markers (SLC6A5, SOX1, SOX14 and TBX20) detected ADC and SCC with similar sensitivity. In scrapings from women referred with an abnormal smear (n=229), CIN3+ sensitivity was between 36% and 71%, while between 71% and 93% of adenocarcinoma in situ (AdCIS) were detected; and CIN0/1 specificity was between 88% and 98%. Compared to hrHPV, the combination SOX1/SOX14 showed a similar CIN3+ sensitivity (80% vs. 75%, respectively, P>0.2), while specificity improved (42% vs. 84%, respectively, P < 10-5). Conclusion SOX1 and SOX14 are methylation biomarkers applicable for screening of all cervical cancer types.
Collapse
Affiliation(s)
- Rong Wang
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, Tianjin Medical University, Tianjin, China
| | - Robert W van Leeuwen
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Aniek Boers
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Harry G Klip
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Tim de Meyer
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | | | - Wim van Criekinge
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Han YD, Wang XB, Cui NH, Zhang S, Wang C, Zheng F. Associations of P16INK4a promoter hypermethylation with squamous intra-epithelial lesion, cervical cancer and their clinicopathological features: a meta-analysis. Oncotarget 2018; 8:1871-1883. [PMID: 27669738 PMCID: PMC5352104 DOI: 10.18632/oncotarget.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022] Open
Abstract
To assess the associations of P16INK4a methylation status with low-grade squamous intra-epithelial lesion (LSIL), high-grade squamous intra-epithelial lesion (HSIL), cervical cancer (CC) and their clinicopathological features, a meta-analysis with 29 eligible studies was conducted. Pooled odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated to assess the strength of the associations. Heterogeneity, sensitivity of pooled results and publication bias were also evaluated. Overall, there was an increasing trend of P16INK4a hypermethylation rates among LSIL (21.4%), HSIL (30.9%) and CC (35.0%) specimens. P16INK4a hypermethylation was significantly associated with the increased risk of LSIL, HSIL and CC, with the pooled ORs of 3.26 (95% CI: 1.86-5.71), 5.80 (95% CI: 3.80-8.84) and 12.17 (95% CI: 5.86-25.27), respectively. A significant association was also found between P16INK4a hypermethylation and smoking habit (OR = 3.88, 95% CI: 2.13-7.08). Taken together, meta-analysis results support P16INK4a hypermethylation as an epigenetic marker for the progression of cervical carcinogenesis.
Collapse
Affiliation(s)
- Ya-di Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Bin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning-Hua Cui
- Department of Clinical Laboratory, Children's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Shuai Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Gao D, Herman JG, Guo M. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget 2018; 7:37331-37346. [PMID: 26967246 PMCID: PMC5095080 DOI: 10.18632/oncotarget.7949] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
The stability and integrity of the human genome are maintained by the DNA damage repair (DDR) system. Unrepaired DNA damage is a major source of potentially mutagenic lesions that drive carcinogenesis. In addition to gene mutation, DNA methylation occurs more frequently in DDR genes in human cancer. Thus, DNA methylation may play more important roles in DNA damage repair genes to drive carcinogenesis. Aberrant methylation patterns in DNA damage repair genes may serve as predictive, diagnostic, prognostic and chemosensitive markers of human cancer. MGMT methylation is a marker for poor prognosis in human glioma, while, MGMT methylation is a sensitive marker of glioma cells to alkylating agents. Aberrant epigenetic changes in DNA damage repair genes may serve as therapeutic targets. Treatment of MLH1-methylated colon cancer cell lines with the demethylating agent 5′-aza-2′-deoxycytidine induces the expression of MLH1 and sensitizes cancer cells to 5-fluorouracil. Synthetic lethality is a more exciting approach in patients with DDR defects. PARP inhibitors are the most effective anticancer reagents in BRCA-deficient cancer cells.
Collapse
Affiliation(s)
- Dan Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.,Medical College of NanKai University, Tianjin, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Sen P, Ganguly P, Ganguly N. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol Lett 2018; 15:11-22. [PMID: 29285184 PMCID: PMC5738689 DOI: 10.3892/ol.2017.7292] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are double stranded circular DNA viruses that infect cutaneous and mucosal epithelial cells. Almost 99% of cervical cancer has a HPV infection. The early oncoproteins E6 and E7 are important in this cellular transformation process. Epigenetic mechanisms have long been known to result in decisive alterations in DNA, leading to alterations in DNA-protein interactions, alterations in chromatin structure and compaction and significant alterations in gene expression. The enzymes responsible for these epigenetic modifications are DNA methyl transferases (DNMTs), histone acetylases and deacetylases. Epigenetics has an important role in cancer development by modifying the cellular micro environment. In this review, the authors discuss the role of HPV oncoproteins E6 and E7 in modulating the epigenetic mechanisms inside the host cell. The oncoproteins induce the expression of DNMTs which lead to aberrant DNA methylations and disruption of the normal epigenetic processes. The E7 oncoprotein may additionally directly bind and induce methyl transferase activity of the enzyme. These modulations lead to altered gene expression levels, particularly the genes involved in apoptosis, cell cycle and cell adhesion. In addition, the present review discusses how epigenetic mechanisms may be targeted for possible therapeutic interventions for HPV mediated cervical cancer.
Collapse
Affiliation(s)
- Prakriti Sen
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Pooja Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Niladri Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
17
|
Yanokura M, Banno K, Kobayashi Y, Nomura H, Hayashi S, Tominaga E, Aoki D. Recent findings on epigenetic gene abnormalities involved in uterine cancer. Mol Clin Oncol 2017; 7:733-737. [PMID: 29181164 DOI: 10.3892/mco.2017.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/29/2017] [Indexed: 11/05/2022] Open
Abstract
Selective aberrant genetic effects that do not depend on abnormal DNA sequences are referred to as epigenetic abnormalities and are involved in carcinogenesis. In uterine cancer, various genes involved in apoptosis, cell cycle, DNA repair, cell proliferation and cell adhesion are abnormally methylated, resulting in gene silencing. Reversal of such epigenetic abnormalities in cancer cells is a potential strategy for cancer therapy, and studies on epigenetic abnormalities and treatment methods in uterine cancer are in progress. These include the evaluation of 5-hydroxymethylcytosine, which is present in cancer tissues at lower levels compared with those in normal tissues, as a prognostic marker in cervical cancer; combination therapy with 5-azacytidine and cisplatin; combination treatment focusing on tumor necrosis factor-related apoptosis-inducing ligand in cervical cancer; studies focusing on DNA mismatch repair in endometrial cancer; and use of a demethylating agent to reactivate tumor suppressor genes and inhibit tumor proliferation. Detection of epigenetic changes using biomarkers may be used for histological classification, evaluation of disease progression and identification of compounds that are able to modulate epigenetic changes and may be useful for uterine cancer treatment.
Collapse
Affiliation(s)
- Megumi Yanokura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shigenori Hayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
18
|
Bahari G, Hashemi M, Naderi M, Sadeghi-Bojd S, Taheri M. FHIT promoter DNA methylation and expression analysis in childhood acute lymphoblastic leukemia. Oncol Lett 2017; 14:5034-5038. [PMID: 29085517 DOI: 10.3892/ol.2017.6796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/16/2017] [Indexed: 12/27/2022] Open
Abstract
Fragile histidine triad (FHIT) is a tumor suppressor gene, which is involved in several malignancies. Epigenetic alterations in FHIT have been hypothesized to contribute to tumorigenesis. The present study aimed to examine DNA promoter methylation and gene expression levels of FHIT in childhood acute lymphoblastic leukemia (ALL), in a sample of Iranian patients. The promoter methylation status of FHIT was analyzed in 100 patients diagnosed with ALL and 120 healthy control patients. mRNA expression levels were assessed in 30 new cases of ALL compared with 32 healthy controls. Hypermethylation of the FHIT promoter was significantly more frequent in patients with ALL than in healthy controls (OR=3.83, 95% CI=1.51-9.75, P=0.007). Furthermore, FHIT mRNA expression levels were significantly reduced in childhood ALL patients compared with healthy controls (P=0.032). The results of the present study revealed that dysregulation of the FHIT gene may contribute to the pathogenesis of childhood ALL. Future studies investigating a larger sample population with greater ethnic diversity would be beneficial, to confirm the results from the present study.
Collapse
Affiliation(s)
- Gholamreza Bahari
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran.,Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran.,Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Majid Naderi
- Department of Pediatrics, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Simin Sadeghi-Bojd
- Department of Pediatrics, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| |
Collapse
|
19
|
Association between MGMT Promoter Methylation and Risk of Breast and Gynecologic Cancers: A Systematic Review and Meta-Analysis. Sci Rep 2017; 7:12783. [PMID: 28986566 PMCID: PMC5630583 DOI: 10.1038/s41598-017-13208-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022] Open
Abstract
The role of the promoter methylation of O6-methylguanine-DNA methyltransferase (MGMT) remains controversial for breast and gynecologic cancers. We conducted a meta-analysis to assess the association between hypermethylation of MGMT promoter and the risk of breast and gynecologic cancers. A comprehensive search was conducted in PubMed and Embase electronic databases up to 19th August 2017 for studies about the association between MGMT promoter hypermethylation and breast and gynecologic cancers. A total of 28 articles including 2,171 tumor tissues and 1,191 controls were involved in the meta-analysis. The pooled results showed that MGMT promoter methylation status was significantly associated with an increased risk of breast and gynecologic cancers (OR = 4.37, 95% CI: 2.68–7.13, P < 0.05). The associations were robust in subgroup analysis based on ethnicity, cancer type, methylation detection method, and control source. This meta-analysis indicated that MGMT hypermethylation was significantly associated with the risk of breast and gynecological cancers, and it may be utilized as a valuable biomarker in early diagnostics and prognostication of these cancers. Further efforts are needed to identify and validate this finding in prospective studies, especially in situation with new methylation testing methods and samples from plasma circulating DNA.
Collapse
|
20
|
Jayaprakash C, Radhakrishnan R, Ray S, Satyamoorthy K. Promoter methylation of MGMT in oral carcinoma: A population-based study and meta-analysis. Arch Oral Biol 2017; 80:197-208. [DOI: 10.1016/j.archoralbio.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
|
21
|
Shu R, He J, Wu C, Gao J. The association between RARβ and FHIT promoter methylation and the carcinogenesis of patients with cervical carcinoma: A meta-analysis. Tumour Biol 2017. [PMID: 28639889 DOI: 10.1177/1010428317709126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RARβ and FHIT promoter methylation are observed in some cervical carcinoma. However, the association between RARβ and FHIT promoter methylation and cervical carcinogenesis remains unclear. This study was carried out to evaluate the correlation between RARβ or FHIT promoter methylation and cervical carcinogenesis. Eligible publications were searched via online databases. The combined odds ratios and corresponding 95% confidence intervals were calculated and summarized. In all, 17 eligible articles on RARβ and FHIT promoter methylation were identified in the study. RARβ promoter methylation was significantly higher in cervical cancer than in cervical intraepithelial neoplasia lesions and normal cervical tissues (odds ratio = 3.90, p = 0.018; odds ratio = 12.98, p < 0.001, respectively). There was more FHIT promoter methylation in cervical cancer than in cervical intraepithelial neoplasia lesions and normal controls (odds ratio = 8.0, p = 0.055; odds ratio = 10.75, p < 0.001, respectively). In addition, FHIT promoter methylation was correlated with clinical stage (advanced stage vs early stage: odds ratio = 2.69, p = 0.056) and tumor grade (high grade vs low grade: odds ratio = 4.11, p < 0.001). RARβ and FHIT promoter methylation may be associated with the carcinogenesis of cervical cancer. FHIT promoter methylation may play a crucial role in cervical cancer progression. Additional studies with large sample sizes are essential to confirm our findings.
Collapse
Affiliation(s)
- Ruming Shu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie He
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengzhen Wu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Gao
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Cardoso MDFS, Castelletti CHM, Lima-Filho JLD, Martins DBG, Teixeira JAC. Putative biomarkers for cervical cancer: SNVs, methylation and expression profiles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:161-173. [PMID: 28927526 DOI: 10.1016/j.mrrev.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
Cervical cancer is primarily caused by Human papillomavirus (HPV) infection, but other factors such as smoking habits, co-infections and genetic background, can also contribute to its development. Although this cancer is avoidable, it is the fourth most frequent type of cancer in females worldwide and can only be treated with chemotherapy and radical surgery. There is a need for biomarkers that will enable early diagnosis and targeted therapy for this type of cancer. Therefore, a systems biology pipeline was applied in order to identify potential biomarkers for cervical cancer, which show significant reports in three molecular aspects: DNA sequence variants, DNA methylation pattern and alterations in mRNA/protein expression levels. CDH1, CDKN2A, RB1 and TP53 genes were selected as putative biomarkers, being involved in metastasis, cell cycle regulation and tumour suppression. Other ten genes (CDH13, FHIT, PTEN, MLH1, TP73, CDKN1A, CACNA2D2, TERT, WIF1, APC) seemed to play a role in cervical cancer, but the lack of studies prevented their inclusion as possible biomarkers. Our results highlight the importance of these genes. However, further studies should be performed to elucidate the impact of DNA sequence variants and/or epigenetic deregulation and altered expression of these genes in cervical carcinogenesis and their potential as biomarkers for cervical cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Maria de Fátima Senra Cardoso
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil.
| | - Carlos Henrique Madeiros Castelletti
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Agronomic Institute of Pernambuco (IPA), Av. General San Martin 1371, Bongi, Recife - PE, 50761-000, Brazil
| | - José Luiz de Lima-Filho
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil
| | - José António Couto Teixeira
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Department of Biological Engineering, University of Minho (UM), Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Bhat S, Kabekkodu SP, Varghese VK, Chakrabarty S, Mallya SP, Rotti H, Pandey D, Kushtagi P, Satyamoorthy K. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumour Biol 2017; 39:1010428317694573. [PMID: 28351298 DOI: 10.1177/1010428317694573] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes ( ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.
Collapse
Affiliation(s)
- Samatha Bhat
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Shama Prasada Kabekkodu
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Vinay Koshy Varghese
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sanjiban Chakrabarty
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sandeep P Mallya
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Harish Rotti
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Deeksha Pandey
- 2 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pralhad Kushtagi
- 3 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kapaettu Satyamoorthy
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| |
Collapse
|
24
|
Li J, Zhou C, Zhou H, Bao T, Gao T, Jiang X, Ye M. The association between methylated CDKN2A and cervical carcinogenesis, and its diagnostic value in cervical cancer: a meta-analysis. Ther Clin Risk Manag 2016; 12:1249-60. [PMID: 27574435 PMCID: PMC4994797 DOI: 10.2147/tcrm.s108094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Cervical cancer is the second deadliest gynecologic malignancy, characterized by apparently precancerous lesions and cervical intraepithelial neoplasia (CIN), and having a long course from the development of CIN to cervical cancer. Cyclin-dependent kinase inhibitor 2A (CDKN2A) is a well-documented tumor suppressor gene and is commonly methylated in cervical cancer. However, the relationship between methylated CDKN2A and carcinogenesis in cervical cancer is inconsistent, and the diagnostic accuracy of methylated CDKN2A is underinvestigated. In this study, we attempted to quantify the association between CDKN2A methylation and the carcinogenesis of cervical cancer, and its diagnostic power. Methods We systematically reviewed four electronic databases and identified 26 studies involving 1,490 cervical cancers, 1,291 CINs, and 964 controls. A pooled odds ratio (OR) with corresponding 95% confidence intervals (95% CI) was calculated to evaluate the association between methylated CDKN2A and the carcinogenesis of cervical cancer. Specificity, sensitivity, the area under the receiver operating characteristic curve, and the diagnostic odds ratio were computed to assess the effect of methylated CDKN2A in the diagnosis of cervical cancer. Results Our results indicated an upward trend in the methylation frequency of CDKN2A in the carcinogenesis of cervical cancer (cancer vs control: OR =23.67, 95% CI =15.54–36.06; cancer vs CIN: OR =2.53, 95% CI =1.79–3.5; CIN vs control: OR =9.68, 95% CI =5.82–16.02). The specificity, sensitivity, area under the receiver operating characteristic curve, and diagnostic odds ratio were 0.99 (95% CI: 0.97–0.99), 0.36 (95% CI: 0.28–0.45), 0.93 (95% CI: 0.91–0.95), and 43 (95% CI: 19–98), respectively. Conclusion Our findings indicate that abnormal CDKN2A methylation may be strongly correlated with the pathogenesis of cervical cancer. Our results also demonstrate that CDKN2A methylation might serve as an early detector of cervical cancer. These findings require further confirmation.
Collapse
Affiliation(s)
- Jinyun Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University; Department of Medical Oncology, Affiliated Hospital, Ningbo University
| | - Chongchang Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University
| | - Haojie Zhou
- Department of Molecular Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, People's Republic of China
| | - Tianlian Bao
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University
| | - Tengjiao Gao
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University
| | - Xiangling Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University; Department of Medical Oncology, Affiliated Hospital, Ningbo University
| |
Collapse
|
25
|
Shang HS, Chang CH, Chou YR, Yeh MY, Au MK, Lu HF, Chu YL, Chou HM, Chou HC, Shih YL, Chung JG. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells. Oncol Rep 2016; 36:2207-15. [DOI: 10.3892/or.2016.5002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/21/2016] [Indexed: 11/05/2022] Open
|
26
|
Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia. Gynecol Oncol 2016; 142:566-73. [PMID: 27401842 DOI: 10.1016/j.ygyno.2016.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16(INK4A) and p14(ARF) proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer. METHODS We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons. RESULTS In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers. CONCLUSION Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16(INK4A)/p14(ARF) expression prior to development of malignant disease.
Collapse
|
27
|
Wu X, Wu G, Yao X, Hou G, Jiang F. The clinicopathological significance and ethnic difference of FHIT hypermethylation in non-small-cell lung carcinoma: a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:699-709. [PMID: 26929601 PMCID: PMC4760666 DOI: 10.2147/dddt.s85253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence indicates that FHIT is a candidate tumor suppressor in many types of tumors including non-small-cell lung carcinoma (NSCLC). However, the prognostic value and correlation between FHIT hypermethylation and clinicopathological characteristics of NSCLC remains unclear. In this report, we performed a meta-analysis to evaluate the effects of FHIT hypermethylation on the incidence of NSCLC and clinicopathological characteristics of human NSCLC patients. Final analysis of 1,801 NSCLC patients from 18 eligible studies was performed. FHIT hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue. The pooled odds ratio (OR) from ten studies included 819 NSCLC and 792 normal lung tissues (OR =7.51, 95% confidence interval [CI] =2.98-18.91, P<0.0001). Subgroup analysis based on ethnicity implied that FHIT hypermethylation level was higher in NSCLC tissues than in normal tissues in both Caucasians (P=0.02) and Asians (P<0.0001), indicating that the difference in Asians was much more significant. FHIT hypermethylation was also correlated with sex status, smoking status, as well as pathological types. In addition, patients with FHIT hypermethylation had a lower survival rate than those without (hazard ratio =1.73, 95% CI =1.10-2.71, P=0.02). The results of this meta-analysis suggest that FHIT hypermethylation is associated with an increased risk and poor survival in NSCLC patients. FHIT hypermethylation, which induces the inactivation of FHIT gene, plays an important role in the carcinogenesis and clinical outcome and may serve as a potential diagnostic marker and drug target of NSCLC.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Guannan Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Xuequan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Gang Hou
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
The clinicopathological significance of FHIT hypermethylation in non-small cell lung cancer, a meta-analysis and literature review. Sci Rep 2016; 6:19303. [PMID: 26796853 PMCID: PMC4726317 DOI: 10.1038/srep19303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that FHIT is a candidate tumor suppressor in non-small cell lung cancer (NSCLC). However, the correlation between FHIT hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Thus, we conducted a meta-analysis to quantitatively evaluate the effects of FHIT hypermethylation on the incidence of NSCLC and clinicopathological characteristics. Final analysis of 1717 NSCLC patients from 16 eligible studies was performed. FHIT hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue, the pooled OR from 8 studies including 735 NSCLC and 708 normal lung tissue, OR = 5.45, 95% CI = 2.15-13.79, p = 0.0003. FHIT hypermethylation was also correlated with sex status, smoking status, as well as pathological types. We did not find that FHIT hypermethylation was correlated with the differentiated types or clinical stages in NSCLC patients. However, patients with FHIT hypermethylation had a lower survival rate than those without, HR = 1.73, 95% CI = 1.10-2.71, p = 0.02. The results of this meta-analysis suggest that FHIT hypermethylation is associated with an increased risk and worsen survival in NSCLC patients. FHIT hypermethylation, which induces the inactivation of FHIT gene, plays an important role in the carcinogenesis and clinical outcome and may serve as a potential drug target of NSCLC.
Collapse
|
29
|
Bhat S, Kabekkodu SP, Noronha A, Satyamoorthy K. Biological implications and therapeutic significance of DNA methylation regulated genes in cervical cancer. Biochimie 2015; 121:298-311. [PMID: 26743075 DOI: 10.1016/j.biochi.2015.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide. About 528,000 women are diagnosed with cervical cancer contributing to around 266,000 deaths, across the globe every year. Out of these, the burden of 226,000 (85%) deaths occurs in the developing countries, who are less resource intensive to manage the disease. This is despite the fact that cervical cancer is amenable for early detection due to its long and relatively well-known natural history prior to its culmination as invasive disease. Infection with high risk human papillomavirus (hrHPVs) is essential but not sufficient to cause cervical cancer. Although it was thought that genetic mutations alone was sufficient to cause cervical cancer, the current epidemiological and molecular studies have shown that HPV infection along with genetic and epigenetic changes are frequently associated and essential for initiation, development and progression of the disease. Moreover, aberrant DNA methylation in host and HPV genome can be utilized not only as biomarkers for early detection, disease progression, diagnosis and prognosis of cervical cancer but also to design effective therapeutic strategies. In this review, we focus on recent studies on DNA methylation changes in cervical cancer and their potential role as biomarkers for early diagnosis, prognosis and targeted therapy.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Ashish Noronha
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India.
| |
Collapse
|
30
|
Su Y, Wang X, Li J, Xu J, Xu L. The clinicopathological significance and drug target potential of FHIT in breast cancer, a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5439-45. [PMID: 26491255 PMCID: PMC4598219 DOI: 10.2147/dddt.s89861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FHIT is a bona fide tumor-suppressor gene and its loss contributes to tumorigenesis of epithelial cancers including breast cancer (BC). However, the association and clinicopathological significance between FHIT promoter hypermethylation and BC remains unclear. The purpose of this study is to conduct a meta-analysis and literature review to investigate the clinicopathological significance of FHIT methylation in BC. A detailed literature search was performed in PubMed, EMBASE, Web of Science, and Google Scholar databases. The data were extracted and assessed by two reviewers independently. Odds ratios with 95% corresponding confidence intervals were calculated. A total of seven relevant articles were available for meta-analysis, which included 985 patients. The frequency of FHIT hypermethylation was significantly increased in invasive ductal carcinoma compared to benign breast disease, the pooled odds ratio was 8.43, P<0.00001. The rate of FHIT hypermethylation was not significantly different between stage I/II and stage III/IV, odds ratio was 2.98, P=0.06. In addition, FHIT hypermethylation was not significantly associated with ER and PR status. FHIT hypermethylation was not significantly correlated with premenopausal and postmenopausal patients with invasive ductal carcinoma. In summary, our meta-analysis indicated that the frequency of FHIT hypermethylation was significantly increased in BC compared to benign breast disease. The rate of FHIT hypermethylation in advanced stages of BC was higher than in earlier stages; however, the difference was not statistically significant. Our data suggested that FHIT methylation could be a diagnostic biomarker of BC carcinogenesis. FHIT is a potential drug target for development of demethylation treatment for patients with BC.
Collapse
Affiliation(s)
- Yunshu Su
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoli Wang
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China ; Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jun Li
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Junming Xu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lijun Xu
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
31
|
DAPK1 Promoter Methylation and Cervical Cancer Risk: A Systematic Review and a Meta-Analysis. PLoS One 2015; 10:e0135078. [PMID: 26267895 PMCID: PMC4534406 DOI: 10.1371/journal.pone.0135078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
Objective The Death-Associated Protein Kinase 1 (DAPK1) gene has been frequently investigated in cervical cancer (CC). The aim of the present study was to carry out a systematic review and a meta-analysis in order to evaluate DAPK1 promoter methylation as an epigenetic marker for CC risk. Methods A systematic literature search was carried out. The Cochrane software package Review Manager 5.2 was used. The fixed-effects or random-effects models, according to heterogeneity across studies, were used to calculate odds ratios (ORs) and 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by histological type, assays used to evaluate DAPK1 promoter methylation, and control sample source. Results A total of 20 papers, published between 2001 and 2014, on 1929 samples, were included in the meta-analysis. DAPK1 promoter methylation was associated with an increased CC risk based on the random effects model (OR: 21.20; 95%CI = 11.14–40.35). Omitting the most heterogeneous study, the between study heterogeneity decreased and the association increased (OR: 24.13; 95% CI = 15.83–36.78). The association was also confirmed in all the subgroups analyses. Conclusions A significant strong association between DAPK1 promoter methylation and CC was shown and confirmed independently by histological tumor type, method used to evaluate methylation and source of control samples. Methylation markers may have value in early detection of CC precursor lesions, provide added reassurances of safety for women who are candidates for less frequent screens, and predict outcomes of women infected with human papilloma virus.
Collapse
|
32
|
Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:412149. [PMID: 26161119 PMCID: PMC4487331 DOI: 10.1155/2015/412149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM) for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs) was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs) and histone deacetylases (HDACs) were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.
Collapse
|
33
|
Hypermethylation of the tumor-suppressor cell adhesion molecule 1 in human papillomavirus-transformed cervical carcinoma cells. Int J Oncol 2015; 46:2656-62. [PMID: 25845528 PMCID: PMC4441298 DOI: 10.3892/ijo.2015.2945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modification at CpG islands located on the promoter regions of tumor-suppressor genes has been associated with tumor development in many human cancers. Our study showed that the cell adhesion molecule 1 (CADM1) is downregulated in human papillomavirus (HPV)-infected cervical cancer cell lines via its hypermethylation and demethylation using 5-aza-2′-deoxycyticine (5-aza-dC) restored the expression of CADM1 protein. Overexpression of CADM1 inhibited cell proliferation. p53 was involved in the regulation of CADM1. Our results demonstrate that epigenetic alteration of CADM1 was more frequent in HPV-positive cervical cancers and that restoration of CADM1 expression may be a potential strategy for cervical cancer therapy.
Collapse
|
34
|
Bai LX, Wang JT, Ding L, Jiang SW, Kang HJ, Gao CF, Chen X, Chen C, Zhou Q. Folate Deficiency and FHIT Hypermethylation and HPV 16 Infection Promote Cervical Cancerization. Asian Pac J Cancer Prev 2014; 15:9313-7. [DOI: 10.7314/apjcp.2014.15.21.9313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Celik S, Akcora D, Ozkan T, Varol N, Aydos S, Sunguroglu A. Methylation analysis of the DAPK1 gene in imatinib-resistant chronic myeloid leukemia patients. Oncol Lett 2014; 9:399-404. [PMID: 25435999 PMCID: PMC4246661 DOI: 10.3892/ol.2014.2677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
Death-associated protein kinase-1 (DAPK1) is a pro-apoptotic gene that induces cellular apoptosis in response to internal and external apoptotic stimulants. The silencing of DAPK1 can result in uncontrolled cell proliferation, indicating that it may have a role in tumor suppression. DAPK1 activity can be inhibited by the cytosine methylation that occurs in its promoter region. These methylation changes in the promoter region of DAPK1 have been reported in a range of solid and hematological malignancies. In the present study, DAPK1 methylation was investigated in chronic myeloid leukemia patients (n=43) using bisulfite conversion followed by methylation-specific polymerase chain reaction. The present study included a number of patients who were identified to be resistant to the common chemotherapeutic agent imatinib (STI571, Gleevec®, Glivec®), exhibiting at least one mutation in the breakpoint cluster region-Abelson murine leukemia (BCR-ABL) gene. Thus, the patients in the present study were divided into two groups according to their response to imatinib therapy: Non-resistant (n=26) and resistant (n=17) to imatinib. Resistant patients were characterized by the presence of single or multiple mutations of the BCR-ABL gene: i) T315I, ii) M351T, iii) E255K, iv) T315I and M351T or v) T315I, M351T and E255K. The present study identified that: i) The incidence of DAPK1 methylation was significantly higher in the resistant patients compared with the non-resistant patients; ii) the extent of resistance varied between mutation types; and iii) there was no DAPK1 methylation in any of the healthy controls. These findings indicate that DAPK1 methylation may be associated with a signaling pathway for imatinib resistance in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Selcen Celik
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Golbasi, Ankara 06830, Turkey
| | - Dilara Akcora
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey ; Department of Biology, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Burdur 15100, Turkey
| | - Tulin Ozkan
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Golbasi, Ankara 06830, Turkey
| | - Nuray Varol
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Sena Aydos
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|
36
|
Zhang X, Zhang X, Sun B, Lu H, Wang D, Yuan X, Huang Z. Detection of aberrant promoter methylation of RNF180, DAPK1 and SFRP2 in plasma DNA of patients with gastric cancer. Oncol Lett 2014; 8:1745-1750. [PMID: 25202403 PMCID: PMC4156173 DOI: 10.3892/ol.2014.2410] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed malignancies in East Asia, particularly in China, and remains the second leading cause of cancer-associated mortality worldwide. However, no effective plasma biomarkers have been identified for the diagnosis of patients with GC. The aim of this study was to investigate the DNA methylation status of the ring finger protein 180 (RNF180), secreted frizzled-related protein 2 (SFRP2) and death-associated protein kinase 1 (DAPK1) genes in the plasma samples of 57 GC patients and 42 control individuals with no malignant disease, and to evaluate the clinical utility of these makers. A significantly higher level of methylation was observed in the plasma DNA of GC patients when compared with that of controls for the three genes investigated (RNF180, 57.89% vs. 23.81%; DAPK1, 49.12% vs. 28.57%; and SFRP2, 71.93% vs. 42.86%). No association was identified between the DAPK1 or SFRP2 methylation level in the plasma DNA and the clinicopathological parameters of patients. Notably, RNF180 methylation was found to positively correlate with tumor size (P=0.018), histological type (P=0.025), TNM stage (P=0.002), lymph node metastasis (P=0.008) and distant metastasis (P=0.018). Overall, 50 cancer patients (87.72%) exhibited methylation of at least one of the three markers, while 26 normal subjects presented methylation in plasma DNA [specificity, 38.1%; odds ratio (OR), 4.4]. The combined use of RNF180 and SFRP2 as methylation markers appeared to be the most preferable predictor with regard to predictive power and cost-performance (OR, 5.57; P=0.0002). The results of the present study indicate that aberrant promoter methylation of genes in the plasma may be detected in a substantial proportion of GC patients and thus, these genes must be evaluated in the screening and surveillance of GC.
Collapse
Affiliation(s)
- Xie Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Beilei Sun
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Hongna Lu
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Danping Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaogang Yuan
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Zhigang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
37
|
Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6199-2-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|