1
|
Saetan U, Kornthong N, Duangprom S, Songkoomkrong S, Phanthong P, Sanprick A, Tipbunjong C, Tamtin M, Saetan J. The occurrence of luteinizing hormone-like molecule and its receptor in the blue swimming crab, Portunus pelagicus. Comp Biochem Physiol A Mol Integr Physiol 2024; 299:111753. [PMID: 39366546 DOI: 10.1016/j.cbpa.2024.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Knowledge of the neuroendocrine system possibly improves the reproductive performance of captivated crustacean broodstock in aquaculture and it may substitute eyestalk ablation. In this study, we explored the luteinizing hormone (LH)-like molecule and proved the existence of the LH receptor (PpelLHR)-like mRNA in the blue swimming crab, Portunus pelagicus. Using the anti-human LH-β antibody, the immunoreactivities were found in the central nervous system (CNS) and ovary of the crab with the strongest signal in the mature ovary. The full-length PpelLHR-like mRNA sequence contained 4818 bp with deduced protein predicted as seven transmembrane G-protein coupled receptor, made of 1605 amino acids. The phylogenetic tree suggested this protein belonged to the clade of invertebrate LHR/FSHR-like proteins. The PpelLHR-like mRNA expressed in various organs and real-time qPCR revealed significantly higher expression of this mRNA in the brain and lower expression in the ovary of the mature crabs. In situ hybridization of this mRNA was demonstrated in neuronal clusters of the brain, ventral nerve cord, and in the oocyte stage 1-4 of the ovary, respectively. This study was preliminary to prove the existence of LH and its receptor in the blue swimming crab. Functional assay of this receptor should be performed as the next part of experiments to firmly conclude its appearance.
Collapse
Affiliation(s)
- Uraipan Saetan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Amornrat Sanprick
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Montakan Tamtin
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Luo BY, Fang X, Wang CZ, Yao CJ, Li Z, He XY, Xiong XY, Xie CZ, Lai XL, Zhang ZH, Qiu GF. Identification of GnRH-like peptide and its potential signaling pathway involved in the oocyte meiotic maturation in the Chinese mitten crab, Eriocheir sinensis. Int J Biol Macromol 2023; 239:124326. [PMID: 37011757 DOI: 10.1016/j.ijbiomac.2023.124326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a pivotal role in reproductive regulation in vertebrates. However, GnRH was rarely isolated and its function remains poorly characterized in invertebrates. The existence of GnRH in ecdysozoa has been controversial for a long. Here, we isolated and identified two GnRH-like peptides from brain tissues in Eriocheir sinensis. Immunolocalization showed that the presence of EsGnRH-like peptide in brain, ovary and hepatopancreas. Synthetic EsGnRH-like peptides can induce germinal vesicle breakdown (GVBD) of oocyte. Similar to vertebrates, ovarian transcriptomic analysis revealed a GnRH signaling pathway in the crab, in which most genes exhibited dramatically high expression at GVBD. RNAi knockdown of EsGnRHR suppressed the expression of most genes in the pathway. Co-transfection of the expression plasmid pcDNA3.1-EsGnRHR with reporter plasmid CRE-luc or SRE-luc into 293T cells showed that EsGnRHR transduces its signal via cAMP and Ca2+ signaling transduction pathways. In vitro incubation of the crab oocyte with EsGnRH-like peptide confirmed the cAMP-PKA cascade and Ca2+ mobilization signaling cascade but lack of a PKC cascade. Our data present the first direct evidence of the existence of GnRH-like peptides in the crab and demonstrated its conserved role in the oocyte meiotic maturation as a primitive neurohormone.
Collapse
Affiliation(s)
- Bi-Yun Luo
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Fang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Cheng-Zhi Wang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Cheng-Jie Yao
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Li
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xue-Ying He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin-Yi Xiong
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Chi-Zhen Xie
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xing-Lin Lai
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen-Hua Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Yao C, Sun Y, Zhang Z, Jia X, Zou P, Wang Y. Integration of RNAi and RNA-seq uncovers the regulation mechanism of DDX20 on vitellogenin expression in Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101028. [PMID: 36244220 DOI: 10.1016/j.cbd.2022.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Vitellogenesis in crustaceans is controlled by several steroid hormones. In humans, the expression of SF-1, a gene that regulates gonadal development and the synthesis of steroid hormones, is affected by DDX20. However, how the homologous gene FTZ-F1 is regulated by DDX20 and its association with vitellogenesis remains unknown in the mud crab Scylla paramamosain. In this study, SpDDX20 and SpFTZ-F1 were identified in the transcriptome of mature ovarian tissue from the mud crab. qRT-PCR results revealed that the expression levels of SpFTZ-F1 and SpVTG in the ovaries of crab in the experimental group injected with dsDDX20 (EO) were significantly higher (P < 0.05) than those in the negative control group injected with dsEGFP (NO) and the blank control group injected with SPSS (BO). The differentially expressed genes (DEGs) identified by comparative transcriptome analysis of the EO group and NO group were enriched into five pathways related to ovarian steroidogenesis. The expression of CYP17, CYP3A4, CYP1A1 and 3β-HSD were up-regulated in pathways related to steroid hormone production and biosynthesis. The expression of the INSR, IRS and PI3K genes in the insulin signaling pathway were significantly increased (P < 0.05). The expression level of the TGF-β gene was up-regulated (P < 0.05) in the transforming growth factor pathway, whereas the expression level of the Smad2 gene was down-regulated (P < 0.05). The expression of GnRHR, GS, AC and PKA genes in the gonadotropin-releasing hormone signaling pathway were up-regulated. Our data provide a foundation for investigating the relationship between DDX20 and FTZ-F1 in the regulation of vitellogenin expression in S. paramamosain.
Collapse
Affiliation(s)
- Chengjie Yao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China.
| |
Collapse
|
4
|
Molecular cloning and expression patterns of a sex-biased transcriptional factor Foxl2 in the giant freshwater prawn (Macrobrachium rosenbergii). Mol Biol Rep 2022; 50:3581-3591. [PMID: 36422756 DOI: 10.1007/s11033-022-07526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUD Macrobrachium rosenbergii is an economically important species that is widely cultivated in some Asian nations. Foxl2 is a transcriptional regulator of ovarian differentiation and development. The aim of this study was to study the bioinformatics features and expression patterns of M. rosenbergii Foxl2 (MrFoxl2). METHODS In this study, all experimental animals were mature M. rosenbergii (9-12 cm) individuals. The foxl2 gene was identified and characterized in the genome of M. rosenbergii using molecular cloning, bioinformatic analysis, in situ hybridization, and quantitative analysis. RESULTS The identified cDNA encoded a putative 489-amino-acid MrFoxl2 protein. Bioinformatics analysis revealed a low identity of MrFoxl2 to other crustacean orthologues. The closest phylogenetic relationship was to Foxl2 of Eriocheir sinensis. The result of in situ hybridization demonstrated that transcripts of MrFoxl2 in M. rosenbergii were identified in spermatocytes, oocytes, and secretory epithelial cells of the vas deferens. The result of q-PCR suggested that a high expression of MrFoxl2 was identified in the testis, vas deferens, and ovaries. During ovarian development, MrFoxl2 expression was the highest in stage I. CONCLUSION Our findings suggest that MrFoxl2 may play a role in gonadal development in both female and male M. rosenbergii.
Collapse
|
5
|
Thongbuakaew T, Mukem S, Chaiyamoon A, Khornchatri K, Kruangkum T, Cummins SF, Sobhon P. Characterization, expression, and function of the pyrokinins (PKs) in the giant freshwater prawn, Macrobrachium rosenbergii. J Exp Biol 2022; 225:275663. [PMID: 35578905 DOI: 10.1242/jeb.243742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
Pyrokinins (PKs) are neuropeptides that have been found to regulate a variety of physiological activities including reproduction in various insect and crustacean species. However, the reproductive roles of PKs in the giant freshwater prawn have not yet been investigated. In this study, we identified the MroPK gene from next-generation sequence resources, which encodes a MroPK precursor that shares a high degree of conservation with the C-terminal sequence of FxPRLamide in other arthropods. MroPK is expressed within most tissues, except the hepatopancreas, stomach, and gill. Within developing ovarian tissue, MroPK expression was found to be significantly higher during the early stages (stages 1-2) compared with the late stages (stages 3-4), and could be localized to the oogonia, previtellogenic, and early vitellogenic oocytes. A role for PK in M. rosenbergii reproduction was supported following experimental administration of MroPK to ovarian explant cultures, showing an increase in the productions of progesterone and estradiol and upregulation of steroidogenesis-related genes (3β-HSD and 17β-HSD) and vitellogenin (Vg) expressions. Together, these results support a role for MroPK in regulating ovarian maturation via steroidogenesis.
Collapse
Affiliation(s)
| | - Sirirak Mukem
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanjana Khornchatri
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Scott F Cummins
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Amano M, Amiya N, Okumura T, Kado R. Immunohistochemical Localization of a GnRH-Like Peptide in the Nerve Ganglion of Three Classes of Crustaceans, the Tadpole Shrimp Triops longicaudatus (Branchiopoda), the Barnacle Balanus crenatus (Hexanauplia), and the Hermit Crab Pagurus filholi (Malacostraca). Zoolog Sci 2021; 38:51-59. [PMID: 33639718 DOI: 10.2108/zs200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) regulates gonadal maturation by stimulating the synthesis and release of pituitary gonadotropins. GnRH has also been identified in invertebrates. Crustacea consists of several classes including Cephalocarida, Remipedia, Branchiopoda (e.g., tadpole shrimp), Hexanauplia (e.g., barnacle) and Malacostraca (e.g., shrimp, crab). In the malacostracan crustaceans, the presence of GnRH has been detected in several species, mainly by immunohistochemistry. In the present study, we examined whether a GnRH-like peptide exists in the brain and/or nerve ganglion of three classes of crustaceans, the tadpole shrimp Triops longicaudatus (Branchiopoda), the barnacle Balanus crenatus (Hexanauplia), and the hermit crab Pagurus filholi (Malacostraca), by immunohistochemistry using a rabbit polyclonal antibody raised against chicken GnRH-II (GnRH2). This antibody was found to recognize the giant freshwater prawn Macrobrachium rosenbergii GnRH (MroGnRH). In the tadpole shrimp, GnRH-like-immunoreactive (ir) cell bodies were located in the circumesophageal connective of the deuterocerebrum, and GnRH-like-ir fibers were detected also in the ventral nerve cord. In the barnacle, GnRH-like-ir cell bodies and fibers were located in the supraesophageal ganglion (brain), the subesophageal ganglion, and the circumesophageal connective. In the hermit crab, GnRH-like-ir cell bodies were detected in the anterior-most part of the supraesophageal ganglion and the subesophageal ganglion. GnRH-like-ir fibers were observed also in the thoracic ganglion and the eyestalk. These results suggest that a GnRH-like peptide exists widely in crustacean species.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan,
| | - Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuji Okumura
- Physiological Function Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-ise, Mie 516-0193, Japan
| | - Ryusuke Kado
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
7
|
González-Castellano I, Manfrin C, Pallavicini A, Martínez-Lage A. De novo gonad transcriptome analysis of the common littoral shrimp Palaemon serratus: novel insights into sex-related genes. BMC Genomics 2019; 20:757. [PMID: 31640556 PMCID: PMC6805652 DOI: 10.1186/s12864-019-6157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The common littoral shrimp Palaemon serratus is an economically important decapod resource in some European communities. Aquaculture practices prevent the genetic deterioration of wild stocks caused by overfishing and at the same time enhance the production. The biotechnological manipulation of sex-related genes has the proved potential to improve the aquaculture production but the scarcity of genomic data about P. serratus hinders these applications. RNA-Seq analysis has been performed on ovary and testis samples to generate a reference gonadal transcriptome. Differential expression analyses were conducted between three ovary and three testis samples sequenced by Illumina HiSeq 4000 PE100 to reveal sex-related genes with sex-biased or sex-specific expression patterns. RESULTS A total of 224.5 and 281.1 million paired-end reads were produced from ovary and testis samples, respectively. De novo assembly of ovary and testis trimmed reads yielded a transcriptome with 39,186 transcripts. The 29.57% of the transcriptome retrieved at least one annotation and 11,087 differentially expressed genes (DEGs) were detected between ovary and testis replicates. Six thousand two hundred seven genes were up-regulated in ovaries meanwhile 4880 genes were up-regulated in testes. Candidate genes to be involved in sexual development and gonadal development processes were retrieved from the transcriptome. These sex-related genes were discussed taking into account whether they were up-regulated in ovary, up-regulated in testis or not differentially expressed between gonads and in the framework of previous findings in other crustacean species. CONCLUSIONS This is the first transcriptome analysis of P. serratus gonads using RNA-Seq technology. Interesting findings about sex-related genes from an evolutionary perspective (such as Dmrt1) and for putative future aquaculture applications (Iag or vitellogenesis genes) are reported here. We provide a valuable dataset that will facilitate further research into the reproductive biology of this shrimp.
Collapse
Affiliation(s)
- Inés González-Castellano
- Universidade da Coruña, Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), 15071, A Coruña, Spain.
| | - Chiara Manfrin
- Università degli Studi di Trieste, Dipartimento di Scienze della Vita, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Università degli Studi di Trieste, Dipartimento di Scienze della Vita, 34127, Trieste, Italy
| | - Andrés Martínez-Lage
- Universidade da Coruña, Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), 15071, A Coruña, Spain.
| |
Collapse
|
8
|
Fu C, Li F, Wang L, Li T. Molecular insights into ovary degeneration induced by environmental factors in female oriental river prawns Macrobrachium nipponense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:882-888. [PMID: 31349197 DOI: 10.1016/j.envpol.2019.07.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The oriental river prawn, Macrobrachium nipponense, is an important breeding species in China. The ovary development of this prawn is regulated by the genetic factors and external environmental factors and has obvious seasonal regularity. However, the molecular mechanism of regulating ovary degradation in M. nipponense remains unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalks, cerebral ganglia (CG) and thoracic ganglia (TG) of female M. nipponense between the full ovary stage and degenerate ovary stage. Differentially expressed genes enrichment analysis results identified several important pathways such as "phototransduction-fly," "circadian rhythm-fly" and "steroid hormone biosynthesis secretion." In the period of ovarian degeneration, the expressions of Tim, Per2 and red pigment concentration hormone (RPCH) were significantly decreased in the eyestalk, CG and TG. And expression of 7 genes in the steroid synthesis pathway, including steryl-sulfatase, cytochrome P450 family 1 subfamily A polypeptide 1, estradiol 17β-dehydrogenase 2, glucuronosyltransferase, 3-oxo-5-alpha-steroid 4-dehydrogenase 1, estradiol 17-dehydrogenase 1 and estrone sulfotransferase was significantly decreased in the CG. Food and light signals affect the expression of clock genes and thereby decrease the expression of RPCH and the estradiol synthesis-related genes in the nervous system, which may be the main cause of ovarian degeneration in M. nipponense. The results will contribute to a better understanding of the molecular mechanisms of ovarian development regulation in crustaceans.
Collapse
Affiliation(s)
- Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China.
| | - Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Lifang Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Tingting Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| |
Collapse
|
9
|
Khornchatri K, Saetan J, Thongbuakaew T, Senarai T, Kruangkum T, Kornthong N, Tinikul Y, Sobhon P. Distribution of abalone egg-laying hormone-like peptide in the central nervous system and reproductive tract of the male mud crab, Scylla olivacea. Acta Histochem 2019; 121:143-150. [PMID: 30497687 DOI: 10.1016/j.acthis.2018.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022]
Abstract
The mud crab, Scylla olivacea, is a high value economic marine animal in Thailand. However, collection of these crabs from natural habitat for local consumption and export has caused rapid population decline. Hence, aquaculture of this species is required and to this measure understanding of endocrine control of their reproduction must be understood. Egg laying hormone (ELH) is a neuropeptide synthesized by the bag cells (neurons) in the abdominal ganglia of Aplysia gastropods. It plays a critical role in controlling egg production and laying in gastropods, and its possible homolog (ELH-like peptide) was reported in the neural and ovarian tissues of prawns and recently in female reproductive tract of the blue swimming crab, Portunus pelagicus. In this study, we have studied the histology of the male reproductive tract in Scylla olivacea which are comprised of anterior testis, posterior testis, early proximal spermatic duct (ePSD), proximal spermatic duct (PSD), middle spermatic duct (MSD) and distal spermatic duct (DSD), by immunohistochemistry, detected an abalone ELH- immunoreactivity (aELH-ir) in epithelium of ducts in posterior testis and epithelium of all parts of spermatic duct. Furthermore, we could detect aELH-ir in neurons of cluster 9, 11, olfactory neuropil (ON) in the brain and in the small neurons located between the third and the fourth thoracic neuropils (T3-T4) and between the fourth and the fifth thoracic neuropils (T4-T5) of thoracic ganglia. Thus, the presence of aELH in male S. olivacea was designated the role of female egg laying behavior in the male mud crab.
Collapse
Affiliation(s)
- Kanjana Khornchatri
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand.
| | - Jirawat Saetan
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Thanyaporn Senarai
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Science, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
10
|
Kruangkum T, Saetan J, Chotwiwatthanakun C, Vanichviriyakit R, Cummins SF, Wanichanon C, Sobhon P. Existence of an egg-laying hormone-like peptide in male reproductive system of the giant freshwater prawn, Macrobrachium rosenbergii. Acta Histochem 2019; 121:156-163. [PMID: 30558912 DOI: 10.1016/j.acthis.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important aquaculture species. A better understanding of the molecular components of reproduction in this species would help to advance the prawn production. In the present study, we demonstrated the presence of an egg laying hormone (ELH)-like peptide in the male reproductive system. First, an antibody to the abalone (a)ELH was generated, and by Western blot it was shown to specifically bound to a protein from the male M. rosenbergii reproductive tissues with a similar size to molluscan ELH. This aELH-like peptide was localized in spermatogonia in the testes of all three male morphotypes: blue claw, orange claw and small males. Moreover, the aELH-like peptide was detected in the epithelium of the spermatic duct and its associated smooth muscle cell layers and on the outer surface of spermatozoa. As well, the aELH-like peptide was detected in the spermatophore located in the female thelycum at 4-6 h post-mating, indicating that it was transferred to the female during copulation. Taken together, we suggest that this aELH-like peptide could be as a male inducing factor that helped to accelerate female spawning. Liquid chromatography of crude extracts and immunoblot analysis suggested that the aELH-like peptide could be further purified for ultimate characterization.
Collapse
Affiliation(s)
- Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; Center of Excellence for Shrimp Biotechnology and Molecular Biology (CENTEX), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jirawat Saetan
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; Center of Excellence for Shrimp Biotechnology and Molecular Biology (CENTEX), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Scott F Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD, 4558, Australia
| | - Chaitip Wanichanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand.
| |
Collapse
|
11
|
Ma KY, Zhang SF, Wang SS, Qiu GF. Molecular cloning and characterization of a gonadotropin-releasing hormone receptor homolog in the Chinese mitten crab, Eriocheir sinensis. Gene 2018; 665:111-118. [PMID: 29730424 DOI: 10.1016/j.gene.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
As an essential mediator in the Gonadotropin-releasing hormone (GnRH) signaling pathway, GnRH receptor (GnRHR) coupled to GnRH, plays an important role in activating the downstream pathway after stimulating a series of cascades to regulate reproduction. To detect the existence of GnRHR and potential GnRH signaling pathway, we cloned and characterized GnRHR in the Chinese mitten crab, Eriocheir sinensis (named EsGnRHR). The full-length EsGnRHR cDNA is 2038 bp in length, including an open reading frame (ORF) of 1566 bp, a 57 bp 5'-untranslated region (5'-UTR) and a 415 bp 3'-UTR. Prediction of transmembrane domains in protein sequence revealed that the EsGnRHR protein contained seven hydrophobic transmembrane regions (TMs). Reverse transcription PCR revealed that EsGnRHR was mainly expressed in the thoracic nerve group and ovary, and weakly distributed in the testis and brain. In situ hybridization further demonstrated that EsGnRHR mRNA was localized at the protocerebrum and deutocerebrum. In the ovary and testis, the hybridization signal was dominantly at the earlier developmental stages. The signal was mainly localized in the cytoplasm cell in the ovary, and in the epithelium cell in the testis. During the different stages of gonadal development, EsGnRHR displayed increasing trends in both female and male when analyzed by quantitative real-time PCR, suggesting that EsGnRHR was involved in controlling gonadal development. Our study provides important information for further research on the molecular mechanisms underlying crab development.
Collapse
Affiliation(s)
- Ke-Yi Ma
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China
| | - Shu-Fang Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China
| | - Si-Si Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China.
| |
Collapse
|
12
|
Nguyen TV, Rotllant GE, Cummins SF, Elizur A, Ventura T. Insights Into Sexual Maturation and Reproduction in the Norway Lobster ( Nephrops norvegicus) via in silico Prediction and Characterization of Neuropeptides and G Protein-coupled Receptors. Front Endocrinol (Lausanne) 2018; 9:430. [PMID: 30100897 PMCID: PMC6073857 DOI: 10.3389/fendo.2018.00430] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple biological processes across development and reproduction are modulated by neuropeptides that are predominantly produced and secreted from an animal's central nervous system. In the past few years, advancement of next-generation sequencing technologies has enabled large-scale prediction of putative neuropeptide genes in multiple non-model species, including commercially important decapod crustaceans. In contrast, knowledge of the G protein-coupled receptors (GPCRs), through which neuropeptides act on target cells, is still very limited. In the current study, we have used in silico transcriptome analysis to elucidate genes encoding neuropeptides and GPCRs in the Norway lobster (Nephrops norvegicus), which is one of the most valuable crustaceans in Europe. Fifty-seven neuropeptide precursor-encoding transcripts were detected, including phoenixin, a vertebrate neurohormone that has not been detected in any invertebrate species prior to this study. Neuropeptide gene expression analysis of immature and mature female N. norvegicus, revealed that some reproduction-related neuropeptides are almost exclusively expressed in immature females. In addition, a total of 223 GPCR-encoding transcripts were identified, of which 116 encode GPCR-A (Rhodopsin), 44 encode GPCR-B (Secretin) and 63 encode other GPCRs. Our findings increase the molecular toolbox of neural signaling components in N. norvegicus, allowing for further advances in the fisheries/larvae culture of this species.
Collapse
Affiliation(s)
- Tuan V. Nguyen
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Guiomar E. Rotllant
- Institute de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Scott F. Cummins
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Abigail Elizur
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
- *Correspondence: Tomer Ventura
| |
Collapse
|
13
|
Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus. Sci Rep 2016; 6:38658. [PMID: 27924858 PMCID: PMC5141488 DOI: 10.1038/srep38658] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022] Open
Abstract
The Australian redclaw crayfish (Cherax quadricarinatus) has recently received attention as an emerging candidate for sustainable aquaculture production in Australia and worldwide. More importantly, C. quadricarinatus serves as a good model organism for the commercially important group of decapod crustaceans as it is distributed worldwide, easy to maintain in the laboratory and its reproductive cycle has been well documented. In order to better understand the key reproduction and development regulating mechanisms in decapod crustaceans, the molecular toolkit available for model organisms such as C. quadricarinatus must be expanded. However, there has been no study undertaken to establish the C. quadricarinatus neuropeptidome. Here we report a comprehensive study of the neuropeptide genes expressed in the eyestalk in the Australian crayfish C. quadricarinatus. We characterised 53 putative neuropeptide-encoding transcripts based on key features of neuropeptides as characterised in other species. Of those, 14 neuropeptides implicated in reproduction regulation were chosen for assessment of their tissue distribution using RT-PCR. Further insights are discussed in relation to current knowledge of neuropeptides in other species and potential follow up studies. Overall, the resulting data lays the foundation for future gene-based neuroendocrinology studies in C. quadricarinatus.
Collapse
|
14
|
Suwansa-Ard S, Zhao M, Thongbuakaew T, Chansela P, Ventura T, Cummins SF, Sobhon P. Gonadotropin-releasing hormone and adipokinetic hormone/corazonin-related peptide in the female prawn. Gen Comp Endocrinol 2016; 236:70-82. [PMID: 27401259 DOI: 10.1016/j.ygcen.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/02/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
Abstract
Crustacean neuropeptides (NPs) play important roles in the regulation of most physiological activities, including growth, molting and reproduction. In this study, we have performed an in silico analysis of female prawn (Macrobrachium rosenbergii) neural transcriptomes to identify NPs not previously identified. We predict that approximately 1309 proteins are destined for the secretory pathway, many of which are likely post-translationally processed to generate active peptides. Within this neural secretome, we identified a gene transcript that encoded a precursor protein with striking similarity to a gonadotropin-releasing hormone (GnRH). We additionally identified another GnRH NP superfamily member, the adipokinetic hormone/corazonin-related peptide (ACP). M. rosenbergii GnRH and ACP were widespread throughout the nervous tissues, implicating them as potential neuromodulators. Furthermore, GnRH was found in non-neural tissues, including the stomach, gut, heart, testis and ovary, in the latter most prominently within secondary oocytes. The GnRH/corazonin receptor-like gene is specific to the ovary, whereas the receptor-like gene expression is more widespread. Administration of GnRH had no effect on ovarian development and maturation, nor any effect on total hemolymph lipid levels, while ACP administration decreased oocyte proliferation (at high dose) and stimulated a significant increase in total hemolymph lipids. In conclusion, our targeted analysis of the M. rosenbergii neural secretome has revealed the decapod GnRH and ACP genes. We propose that ACP in crustaceans plays a role in the lipid metabolism and the inhibition of oocyte proliferation, while the role of the GnRH remains to be clearly defined, possibly through experiments involving gene silencing.
Collapse
Affiliation(s)
- Saowaros Suwansa-Ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Min Zhao
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Piyachat Chansela
- Department of Anatomy, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | - Tomer Ventura
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Scott F Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia.
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
15
|
Presence of gonadotropin-releasing hormone-like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis. Cell Tissue Res 2016; 365:265-77. [DOI: 10.1007/s00441-016-2375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 02/01/2016] [Indexed: 02/02/2023]
|
16
|
Song Y, Miao J, Cai Y, Pan L. Molecular cloning, characterization, and expression analysis of a gonadotropin-releasing hormone-like cDNA in the clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2015. [DOI: 10.1016/j.cbpb.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Suwansa-ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna PJ, Sretarugsa P, Cummins SF, Sobhon P. In silico Neuropeptidome of Female Macrobrachium rosenbergii Based on Transcriptome and Peptide Mining of Eyestalk, Central Nervous System and Ovary. PLoS One 2015; 10:e0123848. [PMID: 26023789 PMCID: PMC4449106 DOI: 10.1371/journal.pone.0123848] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/08/2015] [Indexed: 01/13/2023] Open
Abstract
Macrobrachium rosenbergii is the most economically important of the cultured freshwater crustacean species, yet there is currently a deficiency in genomic and transcriptomic information for research requirements. In this study, we present an in silico analysis of neuropeptide genes within the female M. rosenbergii eyestalk, central nervous system, and ovary. We could confidently predict 37 preproneuropeptide transcripts, including those that encode bursicons, crustacean cardioactive peptide, crustacean hyperglycemic hormones, eclosion hormone, pigment-dispersing hormones, diuretic hormones, neuropeptide F, neuroparsins, SIFamide, and sulfakinin. These transcripts are most prominent within the eyestalk and central nervous system. Transcript tissue distribution as determined by reverse transcription-polymerase chain reaction revealed the presence of selected neuropeptide genes of interest mainly in the nervous tissues while others were additionally present in the non-nervous tissues. Liquid chromatography-mass spectrometry analysis of eyestalk peptides confirmed the presence of the crustacean hyperglycemic hormone precursor. This data set provides a strong foundation for further studies into the functional roles of neuropeptides in M. rosenbergii, and will be especially helpful for developing methods to improve crustacean aquaculture.
Collapse
Affiliation(s)
- Saowaros Suwansa-ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianfang Wang
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Min Zhao
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Peter J. Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pro Vice-Chancellor’s Office, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Scott F. Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- * E-mail: (SFC); (P. Sobhon)
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SFC); (P. Sobhon)
| |
Collapse
|
18
|
Nuurai P, Primphon J, Seangcharoen T, Tinikul Y, Wanichanon C, Sobhon P. Immunohistochemical detection of GnRH-like peptides in the neural ganglia and testis of Haliotis asinina. Microsc Res Tech 2014; 77:110-9. [PMID: 24446352 DOI: 10.1002/jemt.22304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/13/2013] [Accepted: 10/08/2013] [Indexed: 11/11/2022]
Abstract
Gonadotropin releasing hormone (GnRH) is a peptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the distribution pattern of two isoforms of GnRH-like peptides in the neural ganglia and testis of reproductively mature male abalone, H. asinina, by immunohistochemistry and whole mount immunofluorescence. We found octopus (oct) GnRH and tunicate-I (t) GnRH-I immunoreactivities (ir) in type 1 neurosecretory cells (NS1) and they were expressed mostly within the ventral horn of the cerebral ganglion, whereas in pleuropedal ganglia they were localized primarily in the dorsal horn. Furthermore, tGnRH-I-ir were strongly detected in fibers at the caudal part of the cerebral ganglia and both ventral and dorsal horns of the pleuropedal ganglia. In the testis, only octGnRH-ir was found primarily in the granulated cell and central capillaries within the trabeculae. These results suggest that multiple GnRH-like peptides are present in the neural ganglia which could be the principal source of their production, whereas GnRH may also be synthesized locally in the testis and act as the paracrine control of testicular maturation.
Collapse
Affiliation(s)
- Parinyaporn Nuurai
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | | | | | | | | | | |
Collapse
|
19
|
Siangcham T, Tinikul Y, Poljaroen J, Sroyraya M, Changklungmoa N, Phoungpetchara I, Kankuan W, Sumpownon C, Wanichanon C, Hanna PJ, Sobhon P. The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 2013; 193:10-8. [PMID: 23867230 DOI: 10.1016/j.ygcen.2013.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Neurotransmitters and neurohormones are agents that control gonad maturation in decapod crustaceans. Of these, serotonin (5-HT) and dopamine (DA) are neurotransmitters with known antagonist roles in female reproduction, whilst gonadotropin-releasing hormones (GnRHs) and corazonin (Crz) are neurohormones that exercise both positive and negative controls in some invertebrates. However, the effects of these agents on the androgenic gland (AG), which controls testicular maturation and male sex development in decapods, via insulin-like androgenic gland hormone (IAG), are unknown. Therefore, we set out to assay the effects of 5-HT, DA, l-GnRH-III, oct-GnRH and Crz, on the AG of small male Macrobrachium rosenbergii (Mr), using histological studies, a BrdU proliferative cell assay, immunofluorescence of Mr-IAG, and ELISA of Mr-IAG. The results showed stimulatory effects by 5-HT and l-GnRH-III through significant increases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). In contrast, DA and Crz caused inhibitory effects on the AG through significant decreases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). Moreover, the prawns treated with Crz died before day 16 of the experimental period. We propose that 5-HT and certain GnRHs can be now used to stimulate reproduction in male M. rosenbergii, as they induce increases in AG and testicular size, IAG production, and spermatogenesis. The mechanisms by which these occur are part of our on-going research.
Collapse
Affiliation(s)
- Tanapan Siangcham
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Saetan J, Senarai T, Tamtin M, Weerachatyanukul W, Chavadej J, Hanna PJ, Parhar I, Sobhon P, Sretarugsa P. Histological organization of the central nervous system and distribution of a gonadotropin-releasing hormone-like peptide in the blue crab, Portunus pelagicus. Cell Tissue Res 2013; 353:493-510. [PMID: 23733265 DOI: 10.1007/s00441-013-1650-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
We present a detailed histological description of the central nervous system (CNS: brain, subesophageal ganglion, thoracic ganglia, abdominal ganglia) of the blue crab, Portunus pelagicus. Because the presence of gonadotropin-releasing hormone (GnRH) in crustaceans has been disputed, we examine the presence and localization of a GnRH-like peptide in the CNS of the blue crab by using antibodies against lamprey GnRH (lGnRH)-III, octopus GnRH (octGnRH) and tunicate GnRH (tGnRH)-I. These antibodies showed no cross-reactivity with red-pigment-concentrating hormone, adipokinetic hormone, or corazonin. In the brain, strong lGnRH-III immunoreactivity (-ir) was detected in small (7-17 μm diameter) neurons of clusters 8, 9 and 10, in medium-sized (21-36 μm diameter) neurons of clusters 6, 7 and 11 and in the anterior and posterior median protocerebral neuropils, olfactory neuropil, median and lateral antenna I neuropils, tegumentary neuropil and antenna II neuropil. In the subesophageal ganglion, lGnRH-III-ir was detected in medium-sized neurons and in the subesophageal neuropil. In the thoracic and abdominal ganglia, lGnRH-III-ir was detected in medium-sized and small neurons and in the neuropils. OctGnRH-ir was observed in neurons of the same clusters with moderate staining, particularly in the deutocerebrum, whereas tGnRH-I-ir was only detected in medium-sized neurons of cluster 11 in the brain. Thus, anti-lGnRH-III shows greater immunoreactivity in the crab CNS than anti-octGnRH and anti-tGnRH-I. Moreover, our functional bioassay demonstrates that only lGnRH-III has significant stimulatory effects on ovarian growth and maturation. We therefore conclude that, although the true identity of the crab GnRH eludes us, crabs possess a putative GnRH hormone similar to lGnRH-III. The identification and characterization of this molecule is part of our ongoing research.
Collapse
Affiliation(s)
- Jirawat Saetan
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Treen N, Itoh N, Miura H, Kikuchi I, Ueda T, Takahashi KG, Ubuka T, Yamamoto K, Sharp PJ, Tsutsui K, Osada M. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction. Gen Comp Endocrinol 2012; 176:167-72. [PMID: 22326349 DOI: 10.1016/j.ygcen.2012.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is central to the control of vertebrate reproductive cycles and since GnRH orthologs are also present in invertebrates, it is likely that the common ancestor of bilateral animals possessed a GnRH-like peptide. In order to understand the evolutionary and comparative biology of GnRH peptides we cloned the cDNA transcripts of prepro GnRH-like peptides from two species of bivalve molluscs, the Yesso scallop Patinopecten yessoensis and the Pacific oyster Crassostrea gigas. We compared their deduced uncleaved and mature amino acid sequences with those from other invertebrates and vertebrates, and determined their sites of expression and biological activity. The two molluscan GnRH sequences increased the number of known protostome GnRHs to six different forms, indicating the current classification of protostome GnRHs requires further revision. In both molluscs, RT-PCR analysis showed that the genes were highly expressed in nervous tissue with lower levels present in peripheral tissues including the gonads, while immunocytochemistry, using anti-octopus GnRH-like peptide, demonstrated the presence of GnRH-like peptide in neural tissue. Putative scallop GnRH-like peptide stimulated spermatogonial cell division in cultured scallop testis, but the scallop GnRH-like peptide did not stimulate LH release from cultured quail pituitary cells. This is the first report of the cloning of bivalve GnRH-like peptide genes and of molluscan GnRH-like peptides that are biologically active in molluscs, but not in a vertebrate.
Collapse
Affiliation(s)
- Nicholas Treen
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Palasoon R, Panasophonkul S, Sretarugsa P, Hanna P, Sobhon P, Chavadej J. The distribution of APGWamide and RFamides in the central nervous system and ovary of the giant freshwater prawn, Macrobrachium rosenbergii. INVERTEBRATE NEUROSCIENCE 2011; 11:29-42. [PMID: 21476046 DOI: 10.1007/s10158-011-0115-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
Abstract
Immunohistochemistry was used to identify the distribution of both APGWamide-like and RFamide-like peptides in the central nervous system (CNS) and ovary of the mature female giant freshwater prawn, Macrobrachium rosenbergii. APGWamide-like immunoreactivity (ALP-ir) was found only within the sinus gland (SG) of the eyestalk, in small- and medium-sized neurons of cluster 4, as well as their varicosed axons. RFamide-like immunoreactivity (RF-ir) was detected in neurons of all neuronal clusters of the eyestalk and CNS, except clusters 1 and 5 of the eyestalk, and dorsal clusters of the subesophageal, thoracic, and abdominal ganglia. The RF-ir was also found in all neuropils of the CNS and SG, except the lamina ganglionaris. These immunohistochemical locations of the APGWamide-like and RF-like peptides in the eyestalk indicate that these neuropeptides could modulate the release of the neurohormones in the sinus gland. The presence of RFamide-like peptides in the thoracic and abdominal ganglia suggests that it may act as a neurotransmitter which controls muscular contractions. In the ovary, RF-ir was found predominantly in late previtellogenic and early vitellogenic oocytes, and to a lesser degree in late vitellogenic oocytes. These RFs may be involved with oocyte development, but may also act with other neurohormones and/or neurotransmitters within the oocyte in an autocrine or paracrine manner.
Collapse
|
23
|
Existence and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei. Cell Tissue Res 2011; 343:579-93. [PMID: 21243376 DOI: 10.1007/s00441-010-1112-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
We used antibodies against octopus gonadotropin-releasing hormone (octGnRH) and tunicate GnRH (tGnRH-I) in order to investigate the existence and distribution of GnRH-like peptides in the central nervous system (CNS) and in the ovary during various stages of the ovarian cycle of the white shrimp, Litopenaeus vannamei. OctGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in several regions of the supraesophageal ganglion (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. In the brain, both octGnRH immunoreactivity (ir) and tGnRH-I-ir were detected in neurons of clusters 6, 11, 17, and associated fibers, and the anterior medial protocerebral, posterior medial protocerebral, olfactory, and tegumentary neuropils. In the SEG and thoracic ganglia, octGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in dorsolateral and ventromedial cell clusters and in surrounding fibers. Only immunoreactive fibers were detected in the abdominal ganglia. In the ovary, both octGnRH and tGnRH-I were detected at medium intensity in the cytoplasm of early step oocytes (Oc2) and, at high intensity, in Oc3. Furthermore, octGnRH-ir and tGnRH-I-ir were intense in follicular cells surrounding Oc2 and Oc3. The presence of GnRH-ir in the CNS and ovary indicates that GnRH-like peptides occur in the white shrimp, and that GnRHs are involved in the reproductive process, especially ovarian maturation and the differentiation of oocytes, as reported in other species.
Collapse
|
24
|
The existence of gonadotropin-releasing hormone-like peptides in the neural ganglia and ovary of the abalone, Haliotis asinina L. Acta Histochem 2010; 112:557-66. [PMID: 19604545 DOI: 10.1016/j.acthis.2009.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuropeptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the presence and distribution of two isoforms of GnRH-like peptides in neural ganglia and ovary of reproductively mature female abalone, Haliotis asinina, using immunohistochemistry. We found significant immunoreactivities (ir) of anti-lamprey(l) GnRH-III and anti-tunicate(t) GnRH, but with variation of labeling intensity by each anti-GnRH type. lGnRH-III-ir was detected in numerous type 1 neurosecretory cells (NS1) throughout the cerebral and pleuropedal ganglia, whereas tGnRH-I-ir was detected in only a few NS1 cells in the dorsal region of cerebral and pleuropedal ganglia. In addition, a small number of type 2 neurosecretory cells (NS2) in cerebral ganglion showed lGnRH-III-ir. Long nerve fibers in the neuropil of ventral regions of the cerebral and pluropedal ganglia showed strong tGnRH-I-ir. In the ovary, lGnRH-III-ir was found primarily in oogonia and stage I oocytes, whereas tGnRH-ir was observed in stage I oocytes and some stage II oocytes. These results indicate that GnRH produced in neural ganglia may act in neural signaling. Alternatively, GnRH may also be synthesized locally in the ovary where it could induce oocyte development.
Collapse
|
25
|
Amano M, Moriyama S, Okubo K, Amiya N, Takahashi A, Oka Y. Biochemical and immunohistochemical analyses of a GnRH-like peptide in the neural ganglia of the Pacific abalone Haliotis discus hannai (Gastropoda). Zoolog Sci 2010; 27:656-61. [PMID: 20695781 DOI: 10.2108/zsj.27.656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined whether gonadotropin-releasing hormone (GnRH)-like peptides are present in the neural ganglia of the gastropod Pacific abalone (Haliotis discus hannai) by reverse-phase high performance liquid chromatography (rpHPLC) combined with time-resolved fluoroimmunoassay (TR-FIA) analysis and by immunohistochemistry. Cerebral ganglion extracts showed a similar retention time to lamprey GnRH-II (lGnRH-II) in rpHPLC combined with TR-FIA analysis. GnRH-like-immunoreactive (ir) cell bodies (which reacted with a mouse monoclonal antibody raised against the common amino acid sequence of vertebrate GnRH) were detected in the peripheral region of the cerebral ganglion, and they were observed to send fibers into the neuropil. GnRH-like-ir fibers were also detected in the neuropil of the pedal ganglion, the visceral nerve, and the nerve originating from the pedal ganglion. Chicken GnRH-II (cGnRH-II)-like-ir fibers (which reacted with a rabbit polyclonal antibody raised against cGnRH-II) were also observed in the neuropil of the cerebral ganglion. GnRH-like-ir fibers and cGnRH-II-like-ir fibers were distinguishable in the neuropil of the cerebral ganglion by double-staining immunohistochemistry. These results suggest that multiple GnRH-like peptides exist in the neural ganglia of the Pacific abalone.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Biosciences, Kitasato University, Ofunato, Iwate, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Minakata H. Oxytocin/vasopressin and gonadotropin-releasing hormone from cephalopods to vertebrates. Ann N Y Acad Sci 2010; 1200:33-42. [PMID: 20633131 DOI: 10.1111/j.1749-6632.2010.05569.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent advances in peptide search methods have revealed two peptide systems that have been conserved through metazoan evolution. Members of the oxytocin/vasopressin-superfamily have been identified from protostomian and deuterostomian animals, indicating that the oxytocin/vasopressin hormonal system represents one of the most ancient systems. In most protostomian animals, a single member of the superfamily shares oxytocin-like and vasopressin-like actions. Co-occurrence of two members has been discovered in modern cephalopods, octopus, and cuttlefish. We propose that cephalopods have developed two peptides in the molluscan evolutionary lineage like vertebrates have established two lineages in the oxytocin/vasopressin superfamily. The existence of gonadotropin-releasing hormone (GnRH) in protostomian animals was initially suggested by immunohistochemical analysis using chordate GnRH antibodies. A peptide with structural features similar to those of chordate GnRHs was originally isolated from octopus, and an identical peptide has been characterized from squid and cuttlefish. Novel forms of GnRH-like molecules from other molluscs, an annelid, arthropods, and nematodes demonstrate somewhat conserved structures at the N-terminal regions; but structures of the C-terminal regions critical to gonadotropin-releasing activity are diverse. These findings may be important for the study of the molecular evolution of GnRH in protostomian animals.
Collapse
|
27
|
Amano M, Okumura T, Okubo K, Amiya N, Takahashi A, Oka Y. Biochemical analysis and immunohistochemical examination of a GnRH-like immunoreactive peptide in the central nervous system of a decapod crustacean, the kuruma prawn (Marsupenaeus japonicus). Zoolog Sci 2010; 26:840-5. [PMID: 19968471 DOI: 10.2108/zsj.26.840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined whether a gonadotropin-releasing hormone (GnRH)-like peptide exists in the central nervous system (CNS) of the kuruma prawn, Marsupenaeus japonicus, by reverse-phase high performance liquid chromatography (rpHPLC) combined with time-resolved fluoroimmunoassay (TR-FIA) analysis and by immunohistochemistry. The displacement curve obtained for serially diluted extracts of the kuruma prawn brain paralleled the chicken GnRH-II (cGnRH-II) standard curve obtained by cGnRH-II TR-FIA using the anti-cGnRH-II antibody, which cross-reacts not only with cGnRH-II but also with lamprey GnRH-II (lGnRH-II) and octopus GnRH (octGnRH). Extracts of kuruma prawn brains and eyestalks showed a similar retention time to synthetic lGnRH-II and octGnRH in rpHPLC combined with TR-FIA analysis. Using this antibody, we detected GnRH-like-immunoreactive (ir) cell bodies in the anterior-most part of the supraesophageal ganglion (brain), the protocerebrum. Furthermore, GnRH-like-ir fibers were observed in the protocerebrum and deutocerebrum. In the eyestalk, GnRH-like-ir cell bodies were detected in the medulla interna, and GnRH-like-ir fibers were distributed in the medulla interna, medulla externa, and lamina ganglionalis. In the thoracic ganglion, GnRH-like-ir fibers, but not GnRH-like-ir cell bodies, were detected. No GnRH-like-ir cell bodies or fibers were detected in the abdominal ganglion or ovary. Thus, we have shown the existence and distribution of a GnRH-like peptide in the CNS of the kuruma prawn.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Bioscíences, Kitasato University, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Tinikul Y, Mercier AJ, Sobhon P. Distribution of dopamine and octopamine in the central nervous system and ovary during the ovarian maturation cycle of the giant freshwater prawn, Macrobrachium rosenbergii. Tissue Cell 2009; 41:430-42. [DOI: 10.1016/j.tice.2009.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/11/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
29
|
Onitsuka C, Yamaguchi A, Kanamaru H, Oikawa S, Takeda T, Matsuyama M. Molecular Cloning and Expression Analysis of a GnRH-Like Dodecapeptide in the Swordtip Squid,Loligo edulis. Zoolog Sci 2009; 26:203-8. [DOI: 10.2108/zsj.26.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Di Cristo C, De Lisa E, Di Cosmo A. GnRH in the brain and ovary of Sepia officinalis. Peptides 2009; 30:531-7. [PMID: 18692104 DOI: 10.1016/j.peptides.2008.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 06/29/2008] [Accepted: 07/10/2008] [Indexed: 11/20/2022]
Abstract
We have cloned from brain, ovary and eggs of the cephalopod Sepia officinalis a 269-bp PCR product, which shares 100% sequence identity with the open reading frame of GnRH isoform isolated from Octopus vulgaris. Similar to Octopus, this sequence encodes a peptide that is organized as a preprohormone from which, after enzymatic cleavage, a dodecapeptide is released. Apart from its length, this peptide shares all the common features of vertebrate GnRHs. Reverse transcriptase-polymerase chain reaction (RT-PCR) analyses followed by sequencing have confirmed that the same peptide transcript is also present in the ovary, as well as in eggs released in the mantle cavity. The use of an antibody made specifically against the oct-GnRH has revealed that the peptide is localized in the dorso-lateral basal and olfactory lobes, the two neuropeptidergic centers controlling the activity of the gonadotropic optic gland. Immunoreactive nerve endings are also present on the glandular cells of the optic glands. These results confirm the fact that, regardless of the evolutionary distances among animal phyla, GnRH is an ancient peptide present also in invertebrates, and also reinforce the notion that, despite the name "gonadotropin releasing-hormone" was attributed according to its role in vertebrates, probably this family of peptides always had a role in the broad context of animal reproduction. The divergence and spread of several different isoforms of this peptide among animals seem to be balanced, in both invertebrates and vertebrates, by the class-specificity of the GnRH isoform involved in reproductive processes.
Collapse
Affiliation(s)
- Carlo Di Cristo
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | | | | |
Collapse
|
31
|
NGERNSOUNGNERN PIYADA, NGERNSOUNGNERN APICHART, SOBHON PRASERT, SRETARUGSA PRAPEE. Gonadotropin-releasing hormone (GnRH) and a GnRH analog induce ovarian maturation in the giant freshwater prawn,Macrobrachium rosenbergii. INVERTEBR REPROD DEV 2009. [DOI: 10.1080/07924259.2009.9652298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|