1
|
Terenina NB, Kreshchenko ND, Movsesyan SO. Serotonergic elements in the nervous system of parasite of acipenserid fishes, Acrolichanus auriculatus (Digenea: Allocreadiidae). Micron 2024; 185:103690. [PMID: 38991625 DOI: 10.1016/j.micron.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
The trematode Acrolichanus auriculatus is a widely distributed intestine parasite of acipenserid fishes. For the first time the localization and distribution of the serotonergic nerve elements in A. auriculatus was studied using immunocytochemical method and confocal laser scanning microscopy. The study revealed the presence of biogenic amine, serotonin, in the central and peripheral nervous systems of A. auriculatus, that is in the neurons and neurites of the brain ganglia, brain commissure, the longitudinal nerve cords, and the connective nerve commissures. The innervation of the attachment organs, pharynx, oesophagus and distal regions of the reproductive system by the serotonergic nerve elements is observed. The distribution of serotonergic neurons in A. auriculatus is schematically marked. The comparative analysis of findings obtained in A. auriculatus with those recorded for other digeneans reveals the presence of both conservative and distinctive features in the organization of the serotonergic nervous system in various representatives of trematodes.
Collapse
Affiliation(s)
- Nadezhda B Terenina
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prosp., 33, Moscow, Russia.
| | - Natalia D Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskya str., 3, Pushchino, Moscow Region 142290, Russia.
| | - Sergey O Movsesyan
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prosp., 33, Moscow, Russia
| |
Collapse
|
2
|
Li X, Weth O, Haimann M, Möscheid MF, Huber TS, Grevelding CG. Rhodopsin orphan GPCR20 interacts with neuropeptides and directs growth, sexual differentiation, and egg production in female Schistosoma mansoni. Microbiol Spectr 2024; 12:e0219323. [PMID: 38047698 PMCID: PMC10783048 DOI: 10.1128/spectrum.02193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Schistosomes cause schistosomiasis, one of the neglected tropical diseases as defined by the WHO. For decades, the treatment of schistosomiasis relies on a single drug, praziquantel. Due to its wide use, there is justified fear of resistance against this drug, and a vaccine is not available. Besides its biological relevance in signal transduction processes, the class of G protein-coupled receptors (GPCRs) is also well suited for drug design. Against this background, we characterized one GPCR of Schistosoma mansoni, SmGPCR20, at the molecular and functional level. We identified two potential neuropeptides (NPPs) as ligands, SmNPP26 and SmNPP40, and unraveled their roles, in combination with SmGPCR20, in neuronal processes controlling egg production, oogenesis, and growth of S. mansoni females. Since eggs are closely associated with the pathogenesis of schistosomiasis, our results contribute to the understanding of processes leading to egg production in schistosomes, which is under the control of pairing in this exceptional parasite.
Collapse
Affiliation(s)
- Xuesong Li
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Weth
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Haimann
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Max F. Möscheid
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Theresa S. Huber
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
3
|
Piao X, Duan J, Jiang N, Liu S, Hou N, Chen Q. Schistosoma japonicum Tyrosine Hydroxylase is promising targets for immunodiagnosis and immunoprotection of Schistosomiasis japonica. PLoS Negl Trop Dis 2023; 17:e0011389. [PMID: 37276235 DOI: 10.1371/journal.pntd.0011389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Identification of promising schistosome antigen targets is crucial for the development of anti-schistosomal strategies. Schistosomes rely on their neuromuscular systems to coordinate important locomotory behaviors. Tyrosine hydroxylase (TH) is critical in the initial rate-limiting step in biosynthesis of catecholamine, the important neuroactive agents, which promote the lengthening of the worm through muscular relaxation and are therefore of great importance to the movement of the organism both within and between its hosts. THs from both Schistosoma mansoni and Schistosoma japonicum and their enzyme activities have been discovered; however, the role of these proteins during infection have not been explored. Herein, a recombinant protein of the nonconserved fragment of S. japonicum TH (SjTH) was produced and the corresponding polyclonal antibody was generated. The expression and antigenicity of SjTH were detected by qRT-PCR, western blotting, immunofluorescence assays, and ELISA. Mice immunized with the recombinant SjTH were challenged with cercariae to evaluate the immunoprotective value of this protein. Our results showed SjTH not only distributed in the head associated with the central nervous system, but also expressed along the tegument and the intestinal intima, which are involved in the movement, coupling and digestion of the parasites and associated with the peripheral nervous system. This protein can effectively stimulate humoral immune responses in mammalian hosts and has high potential as a biomarker for schistosomiasis immunodiagnosis. Furthermore, immunization with recombinant SjTH showed to reduce the worm and egg burden of challenged mice, and to contribute to the systemic balance of the Th1/Th2 responses. Taken together, these results suggest that SjTH is an important pathogenic molecule in S. japonicum and may be a possible target for anti-schistosomal approaches.
Collapse
Affiliation(s)
- Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiamei Duan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
4
|
Li X, Weth O, Haeberlein S, Grevelding CG. Molecular characterization of Sm tdc-1 and Sm ddc-1 discloses roles as male-competence factors for the sexual maturation of Schistosoma mansoni females. Front Cell Infect Microbiol 2023; 13:1173557. [PMID: 37305409 PMCID: PMC10252128 DOI: 10.3389/fcimb.2023.1173557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Schistosomes are the only mammalian flatworms that have evolved separate sexes. A key question of schistosome research is the male-dependent sexual maturation of the female since a constant pairing contact with a male is required for the onset of gonad development in the female. Although this phenomenon is long known, only recently a first peptide-based pheromone of males was identified that contributes to the control of female sexual development. Beyond this, our understanding of the molecular principles inducing the substantial developmental changes in a paired female is still rudimentary. Objectives Previous transcriptomic studies have consistently pointed to neuronal genes being differentially expressed and upregulated in paired males. These genes included Smp_135230 and Smp_171580, both annotated as aromatic-L-amino-acid decarboxylases (DOPA decarboxylases). Here, we characterized both genes and investigated their roles in male-female interaction of S. mansoni. Methodologies/findings Sequence analyses indicated that Smp_135230 represents an L-tyrosine decarboxylase (Smtdc-1), whereas Smp_171580 represents a DOPA decarboxylase (Smddc-1). By qRT-PCR, we confirmed the male-specific and pairing-dependent expression of both genes with a significant bias toward paired males. RNA-interference experiments showed a strong influence of each gene on gonad differentiation in paired females, which was enhanced by double knockdown. Accordingly, egg production was significantly reduced. By confocal laser scanning microscopy, a failure of oocyte maturation was found in paired knockdown females. Whole-mount in situ hybridization patterns exhibited the tissue-specific occurrence of both genes in particular cells at the ventral surface of the male, the gynecophoral canal, which represents the physical interface of both genders. These cells probably belong to the predicted neuronal cluster 2 of S. mansoni. Conclusion Our results suggest that Smtdc-1 and Smddc-2 are male-competence factors that are expressed in neuronal cells at the contact zone between the genders as a response of pairing to subsequently control processes of female sexual maturation.
Collapse
Affiliation(s)
| | | | | | - Christoph G. Grevelding
- Institute for Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Gallo KJ, Wheeler NJ, Elmi AM, Airs PM, Zamanian M. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target. Antimicrob Agents Chemother 2023; 67:e0118822. [PMID: 36602350 PMCID: PMC9872666 DOI: 10.1128/aac.01188-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The diversification of anthelmintic targets and mechanisms of action will help ensure the sustainable control of nematode infections in response to the growing threat of drug resistance. G protein-coupled receptors (GPCRs) are established drug targets in human medicine but remain unexploited as anthelmintic substrates despite their important roles in nematode neuromuscular and physiological processes. Bottlenecks in exploring the druggability of parasitic nematode GPCRs include a limited helminth genetic toolkit and difficulties establishing functional heterologous expression. In an effort to address some of these challenges, we profile the function and pharmacology of muscarinic acetylcholine receptors in the human parasite Brugia malayi, an etiological agent of human lymphatic filariasis. While acetylcholine-gated ion channels are intensely studied as targets of existing anthelmintics, comparatively little is known about metabotropic receptor contributions to parasite cholinergic signaling. Using multivariate phenotypic assays in microfilariae and adults, we show that nicotinic and muscarinic compounds disparately affect parasite fitness traits. We identify a putative G protein-linked acetylcholine receptor of B. malayi (Bma-GAR-3) that is highly expressed across intramammalian life stages and adapt spatial RNA in situ hybridization to map receptor transcripts to critical parasite tissues. Tissue-specific expression of Bma-gar-3 in Caenorhabditis elegans (body wall muscle, sensory neurons, and pharynx) enabled receptor deorphanization and pharmacological profiling in a nematode physiological context. Finally, we developed an image-based feeding assay as a reporter of pharyngeal activity to facilitate GPCR screening in parasitized strains. We expect that these receptor characterization approaches and improved knowledge of GARs as putative drug targets will further advance the study of GPCR biology across medically important nematodes.
Collapse
Affiliation(s)
- Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abdifatah M. Elmi
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Kamara IK, Thao JT, Kaur K, Wheeler NJ, Chan JD. Annotation of G-Protein Coupled Receptors in the Genomes of Parasitic Blood Flukes. MICROPUBLICATION BIOLOGY 2023; 2023. [PMID: 36713056 PMCID: PMC9874797 DOI: 10.17912/micropub.biology.000704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Infection with Schistosoma parasitic flatworms ( Schistosoma haematobium, Schistosoma mansoni and Schistosoma japonicum ) causes the neglected tropical disease schistosomiasis. There is a need to identify new chemotherapies to treat these parasites, and G-protein coupled receptors (GPCRs) are a logical druggable targets to explore given they control key aspects of schistosome biology such as neuromuscular function and reproduction. Updated chromosome level genome assemblies for each of the three major species have recently been released. However, studies on these GPCRs require accurate, updated genome annotations. Here, we have re-annotated the GPCRs present in each of the three major schistosome species.
Collapse
Affiliation(s)
| | - Javit T Thao
- University of Wisconsin - Oshkosh, Oshkosh, WI, USA
| | | | | | - John D Chan
- University of Wisconsin - Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
7
|
Terenina NB, Kreshchenko ND, Mochalova NV, Nikoghosyan MA, Petrosyan RA, Movsesyan SO. Neuromuscular system of the causative agent of dicrocoeliosis, Dicrocoelium lanceatum. I. 5-Hydroxytryptamine in the nervous system. Vet Parasitol 2022; 309:109768. [PMID: 35914354 DOI: 10.1016/j.vetpar.2022.109768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
The trematode Dicrocoelium lanceatum known as lancet fluke, is a causative agent of dicrocoeliosis, a widespread parasitic disease of the grazing ruminants. The investigation of the major neurotransmitters and their functions are an important step in the development of a new pharmacological strategy of the struggle against the dicrocoeliosis affecting the neuronal signal substances and the functions of its nervous system. The aim of this work was to study the presence and localization of the neurotransmitter serotonin (5-HT, 5-Hydroxytryptamine) in the nervous system of D. lanceatum using immunocytochemical technique and confocal laser scanning microscopy. For the first time the data on the presence and distribution of serotonin-immunopositive components in the central and peripheral compartments of the nervous system of D. lanceatum has been obtained. Serotonin-immunopositive neurons and neurites were identified in paired brain ganglia, in the brain commissure, longitudinal nerve cords and connective nerve commissures. The innervation of the oral and ventral suckers by serotonergic nerve structures was revealed. The distal part of the reproductive system and the region of the reproductive pore were intensively innervated by serotonergic neurites. Serotonin-immunopositive neurons and neurites were also revealed in the proximal region of the reproductive system. The data obtained suggest that the serotonergic nervous system is involved in the regulation of the attachment organs and the reproductive system functions in D. lanceatum. The new results on the morphological and functional organization of the D. lanceatum nervous system increase our knowledge of the structure and function of nervous system of trematodes of various taxonomic groups and support the possibility of the exploitation of the serotonergic system of the parasite as a target for anthelmintic drugs.
Collapse
Affiliation(s)
- N B Terenina
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, 119071, Moscow, Russia.
| | - N D Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | - N V Mochalova
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, 119071, Moscow, Russia
| | - M A Nikoghosyan
- Institute of Zoology, Scientific Center for Zoology and Hydroecology, National Academy of Sciences of Republic of Armenia, P. Sevaka str., 7, Erevan 0014, Armenia
| | - R A Petrosyan
- Institute of Zoology, Scientific Center for Zoology and Hydroecology, National Academy of Sciences of Republic of Armenia, P. Sevaka str., 7, Erevan 0014, Armenia
| | - S O Movsesyan
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, 119071, Moscow, Russia
| |
Collapse
|
8
|
Kreshchenko N, Terenina N, Ermakov A. Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT 7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules 2021; 11:1212. [PMID: 34439878 PMCID: PMC8394519 DOI: 10.3390/biom11081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
The study is dedicated to the investigation of serotonin (5-hydroxytryptamine, 5-HT) and 5-HT7 type serotonin receptor of localisation in larvae of two parasitic flatworms Opisthorchis felineus (Rivolta, 1884) Blanchard, 1895 and Hymenolepis diminuta Rudolphi, 1819, performed using the immunocytochemical method and confocal laser scanning microscopy (CLSM). Using whole mount preparations and specific antibodies, a microscopic analysis of the spatial distribution of 5-HT7-immunoreactivity(-IR) was revealed in worm tissue. In metacercariae of O. felineus 5-HT7-IR was observed in the main nerve cords and in the head commissure connecting the head ganglia. The presence of 5-HT7-IR was also found in several structures located on the oral sucker. 5-HT7-IR was evident in the round glandular cells scattered throughout the larva body. In cysticercoids of H. diminuta immunostaining to 5-HT7 was found in flame cells of the excretory system. Weak staining to 5-HT7 was observed along the longitudinal and transverse muscle fibres comprising the body wall and musculature of suckers, in thin longitudinal nerve cords and a connective commissure of the central nervous system. Available publications on serotonin action in flatworms and serotonin receptors identification were reviewed. Own results and the published data indicate that the muscular structures of flatworms are deeply supplied by 5-HT7-IR elements. It suggests that the 5-HT7 type receptor can mediate the serotonin action in the investigated species and is an important component of the flatworm motor control system. The study of the neurochemical basis of parasitic flatworms can play an important role in the solution of fundamental problems in early development of the nervous system and the evolution of neuronal signalling components.
Collapse
Affiliation(s)
- Natalia Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nadezhda Terenina
- Center of Parasitology A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Artem Ermakov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 142290 Pushchino, Russia;
| |
Collapse
|
9
|
Duguet TB, Glebov A, Hussain A, Kulkarni S, Mochalkin I, Geary TG, Rashid M, Spangenberg T, Ribeiro P. Identification of annotated bioactive molecules that impair motility of the blood fluke Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:73-88. [PMID: 32531750 PMCID: PMC7284125 DOI: 10.1016/j.ijpddr.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Neglected tropical diseases are of growing worldwide concern and schistosomiasis, caused by parasitic flatworms, continues to be a major threat with more than 200 million people requiring preventive treatment. As praziquantel (PZQ) remains the treatment of choice, an urgent need for alternative treatments motivates research to identify new lead compounds that would complement PZQ by filling the therapeutic gaps associated with this treatment. Because impairing parasite neurotransmission remains a core strategy for control of parasitic helminths, we screened a library of 708 compounds with validated biological activity in humans on the blood fluke Schistosoma mansoni, measuring their effect on the motility on schistosomulae and adult worms. The primary phenotypic screen performed on schistosomulae identified 70 compounds that induced changes in viability and/or motility. Screening different concentrations and incubation times identified molecules with fast onset of activity on both life stages at low concentration (1 μM). To complement this study, similar assays were performed with chemical analogs of the cholinomimetic drug arecoline and the calcilytic molecule NPS-2143, two compounds that rapidly inhibited schistosome motility; 17 arecoline and 302 NPS-2143 analogs were tested to enlarge the pool of schistosomicidal molecules. Finally, validated hit compounds were tested on three functionally-validated neuroregulatory S. mansoni G-protein coupled receptors (GPCRs): Sm5HTR (serotonin-sensitive), SmGPR2 (histamine) and SmD2 (dopamine), revealing NPS-2143 and analogs as potent inhibitors of dopamine/epinine responses on both human and S. mansoni GPCRs. This study highlights the potential for repurposing known human therapeutic agents for potential schistosomicidal effects and expands the list of hits for further progression.
Collapse
Affiliation(s)
- Thomas B Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Anastasia Glebov
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Asimah Hussain
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Igor Mochalkin
- EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mohammed Rashid
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland.
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
10
|
Comparative serum metabolomics between SCID mice and BALB/c mice with or without Schistosoma japonicum infection: Clues to the abnormal growth and development of schistosome in SCID mice. Acta Trop 2019; 200:105186. [PMID: 31542371 DOI: 10.1016/j.actatropica.2019.105186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
The small blood flukes of genus Schistosoma, which cause one of the most prevalent and serious parasitic zoonosis schistosomiasis, are dependent on immune-related factors of their mammalian host to facilitate their growth and development, and the formation of granulomatous pathology caused by eggs deposited in host's liver and intestinal wall. Schistosome development is hampered in the mice lacking just T cells, and is even more heavily retarded in the severe combined immunodeficient (SCID) mice lacking both T and B lymphocytes. Nevertheless, it's still not clear about the underlying regulatory molecular mechanisms of schistosome growth and development by host's immune system. This study, therefore, detected and compared the serum metabolic profiles between the immunodeficient mice and immunocompetent mice (SCID mice vs. BALB/c mice) before and after S. japonicum infection (on the thirty-fifth day post infection using liquid chromatography-mass spectrometry (LC-MS). Totally, 705 ion features in electrospray ionization in positive-ion mode (ESI+) and 242 ion features in ESI- mode were identified, respectively. First, distinct serum metabolic profiles were identified between SCID mice and BALB/c mice without S. japonicum worms infection. Second, uniquely perturbed serum metabolites and their enriched pathways were also obtained between SCID mice and BALB/c mice after S. japonicum infection, which included differential metabolites due to both species differences and differential responses to S. japonicum infection. The metabolic pathways analysis revealed that arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and purine metabolism were enriched based on the differential serum metabolites between SCID mice and BALB/c mice after S. japonicum infection, which was addressed to be related to the retarded growth and development of S. japonicum in SCID mice. These findings provide new clues to the underlying molecular events of host's systemic metabolic changes on the growth and development of S. japonicum worms, and also provide quite promising candidates for exploitation of drugs or vaccines against schistosome and schistosomiasis.
Collapse
|
11
|
Gao J, Yang N, Lewis FA, Yau P, Collins JJ, Sweedler JV, Newmark PA. A rotifer-derived paralytic compound prevents transmission of schistosomiasis to a mammalian host. PLoS Biol 2019; 17:e3000485. [PMID: 31622335 PMCID: PMC6797223 DOI: 10.1371/journal.pbio.3000485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Schistosomes are parasitic flatworms that infect over 200 million people, causing the neglected tropical disease, schistosomiasis. A single drug, praziquantel, is used to treat schistosome infection. Limitations in mass drug administration programs and the emergence of schistosomiasis in nontropical areas indicate the need for new strategies to prevent infection. It has been known for several decades that rotifers colonizing the schistosome's snail intermediate host produce a water-soluble factor that paralyzes cercariae, the life cycle stage infecting humans. In spite of its potential for preventing infection, the nature of this factor has remained obscure. Here, we report the purification and chemical characterization of Schistosome Paralysis Factor (SPF), a novel tetracyclic alkaloid produced by the rotifer Rotaria rotatoria. We show that this compound paralyzes schistosome cercariae and prevents infection and does so more effectively than analogous compounds. This molecule provides new directions for understanding cercariae motility and new strategies for preventing schistosome infection.
Collapse
Affiliation(s)
- Jiarong Gao
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ning Yang
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Fred A. Lewis
- Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Peter Yau
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - James J. Collins
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Haeberlein S, Angrisano A, Quack T, Lu Z, Kellershohn J, Blohm A, Grevelding CG, Hahnel SR. Identification of a new panel of reference genes to study pairing-dependent gene expression in Schistosoma mansoni. Int J Parasitol 2019; 49:615-624. [PMID: 31136746 DOI: 10.1016/j.ijpara.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Facilitated by the Schistosoma mansoni genome project, multiple transcriptomic studies were performed over the last decade to elucidate gene expression patterns among different developmental stages of the complex schistosome life cycle. While these analyses enable the identification of candidate genes with key functions in schistosome biology, a diverse molecular tool set is needed that allows comprehensive functional characterization at the single gene level. This includes the availability of reliable reference genes to confirm changes in the transcription of genes of interest over different biological samples and experimental conditions. In particular, the investigation of one key aspect of schistosome biology, the pairing-dependent gene expression in females and males, requires knowledge on reference genes that are expressed independently of both pairing and of in vitro culture effects. Therefore, the present study focused on the identification of quantitative reverse transcription (qRT)-PCR reference genes suitable for the investigation of pairing-dependent gene expression in the S. mansoni male. The "pipeline" we present here is based on qRT-PCR analyses of high biological replication combined with three different statistical analysis tools, BestKeeper, geNorm, and NormFinder. Our approach resulted in a statistically robust ranking of 15 selected reference genes with respect to their transcription stability between pairing-unexperienced and -experienced males. We further tested the top seven candidate genes for their transcription stability during invitro culture of adult S. mansoni. Of these, the two most suitable reference genes were used to investigate the influence of the pairing contact on the transcription of genes of interest, comprising a tyrosine decarboxylase gene Smtdc1, an ebony ortholog Smebony, and the follistatin ortholog Smfst in S. mansoni males. Performing pairing, separation and re-pairing experiments with adult S. mansoni in vitro, our results indicate for the first time that pairing can act as a molecular on/off-switch of specific genes to strictly control their expression in schistosome males.
Collapse
Affiliation(s)
- Simone Haeberlein
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Thomas Quack
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Josina Kellershohn
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
13
|
Hahnel S, Wheeler N, Lu Z, Wangwiwatsin A, McVeigh P, Maule A, Berriman M, Day T, Ribeiro P, Grevelding CG. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLoS Pathog 2018; 14:e1006718. [PMID: 29346437 PMCID: PMC5773224 DOI: 10.1371/journal.ppat.1006718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Schistosomes are blood-dwelling trematodes with global impact on human and animal health. Because medical treatment is currently based on a single drug, praziquantel, there is urgent need for the development of alternative control strategies. The Schistosoma mansoni genome project provides a platform to study and connect the genetic repertoire of schistosomes to specific biological functions essential for successful parasitism. G protein-coupled receptors (GPCRs) form the largest superfamily of transmembrane receptors throughout the Eumetazoan phyla, including platyhelminths. Due to their involvement in diverse biological processes, their pharmacological importance, and proven druggability, GPCRs are promising targets for new anthelmintics. However, to identify candidate receptors, a more detailed understanding of the roles of GPCR signalling in schistosome biology is essential. An updated phylogenetic analysis of the S. mansoni GPCR genome (GPCRome) is presented, facilitated by updated genome data that allowed a more precise annotation of GPCRs. Additionally, we review the current knowledge on GPCR signalling in this parasite and provide new insights into the potential roles of GPCRs in schistosome reproduction based on the findings of a recent tissue-specific transcriptomic study in paired and unpaired S. mansoni. According to the current analysis, GPCRs contribute to gonad-specific functions but also to nongonad, pairing-dependent processes. The latter may regulate gonad-unrelated functions during the multifaceted male-female interaction. Finally, we compare the schistosome GPCRome to that of another parasitic trematode, Fasciola, and discuss the importance of GPCRs to basic and applied research. Phylogenetic analyses display GPCR diversity in free-living and parasitic platyhelminths and suggest diverse functions in schistosomes. Although their roles need to be substantiated by functional studies in the future, the data support the selection of GPCR candidates for basic and applied studies, invigorating the exploitation of this important receptor class for drug discovery against schistosomes but also other trematodes.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nic Wheeler
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Arporn Wangwiwatsin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Paul McVeigh
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Aaron Maule
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Timothy Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Montreal, Canada
| | | |
Collapse
|
14
|
Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerg Top Life Sci 2017; 1:633-639. [PMID: 33525854 DOI: 10.1042/etls20170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
Abstract
Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.
Collapse
|
15
|
Dynamic transcriptomes identify biogenic amines and insect-like hormonal regulation for mediating reproduction in Schistosoma japonicum. Nat Commun 2017; 8:14693. [PMID: 28287085 PMCID: PMC5355954 DOI: 10.1038/ncomms14693] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
Eggs produced by the mature female parasite are responsible for the pathogenesis and transmission of schistosomiasis. Female schistosomes rely on a unique male-induced strategy to accomplish reproductive development, a process that is incompletely understood. Here we map detailed transcriptomic profiles of male and female Schistosoma japonicum across eight time points throughout the sexual developmental process from pairing to maturation. The dynamic gene expression pattern data reveal clear sex-related characteristics, indicative of an unambiguous functional division between males and females during their interplay. Cluster analysis, in situ hybridization and RNAi assays indicate that males likely use biogenic amine neurotransmitters through the nervous system to control and maintain pairing with females. In addition, the analyses indicate that reproductive development of females involves an insect-like hormonal regulation. These data sets and analyses serve as a foundation for deeper study of sexual development in this pathogen and identification of novel anti-schistosomal interventions.
Collapse
|
16
|
Tolstenkov OO, Prokofiev VV, Pleskacheva MV, Gustafsson MKS, Zhukovskaya MI. Age and serotonin effects on locomotion in marine trematode cercariae. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567817020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Hirst NL, Lawton SP, Walker AJ. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules. Int J Parasitol 2016; 46:425-37. [PMID: 26777870 DOI: 10.1016/j.ijpara.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host.
Collapse
Affiliation(s)
- Natasha L Hirst
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK.
| |
Collapse
|
18
|
Chan JD, Agbedanu PN, Grab T, Zamanian M, Dosa PI, Day TA, Marchant JS. Ergot Alkaloids (Re)generate New Leads as Antiparasitics. PLoS Negl Trop Dis 2015; 9:e0004063. [PMID: 26367744 PMCID: PMC4569474 DOI: 10.1371/journal.pntd.0004063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/17/2015] [Indexed: 12/04/2022] Open
Abstract
Praziquantel (PZQ) is a key therapy for treatment of parasitic flatworm infections of humans and livestock, but the mechanism of action of this drug is unresolved. Resolving PZQ-engaged targets and effectors is important for identifying new druggable pathways that may yield novel antiparasitic agents. Here we use functional, genetic and pharmacological approaches to reveal that serotonergic signals antagonize PZQ action in vivo. Exogenous 5-hydroxytryptamine (5-HT) rescued PZQ-evoked polarity and mobility defects in free-living planarian flatworms. In contrast, knockdown of a prevalently expressed planarian 5-HT receptor potentiated or phenocopied PZQ action in different functional assays. Subsequent screening of serotonergic ligands revealed that several ergot alkaloids possessed broad efficacy at modulating regenerative outcomes and the mobility of both free living and parasitic flatworms. Ergot alkaloids that phenocopied PZQ in regenerative assays to cause bipolar regeneration exhibited structural modifications consistent with serotonergic blockade. These data suggest that serotonergic activation blocks PZQ action in vivo, while serotonergic antagonists phenocopy PZQ action. Importantly these studies identify the ergot alkaloid scaffold as a promising structural framework for designing potent agents targeting parasitic bioaminergic G protein coupled receptors.
Collapse
Affiliation(s)
- John D. Chan
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prince N. Agbedanu
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Thomas Grab
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Peter I. Dosa
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
19
|
Ribeiro P. Exploring the role of biogenic amines in schistosome host-parasite interactions. Trends Parasitol 2015; 31:404-5. [PMID: 26254959 DOI: 10.1016/j.pt.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 02/02/2023]
Abstract
Biogenic amines (BAs) are important neurotransmitters of the schistosome nervous system, but their role in the host-parasite interaction is poorly understood. Recent findings suggest that BAs may play an important role in the interaction with the snail intermediate host. This new evidence adds an important piece of information to our understanding of this complex system.
Collapse
Affiliation(s)
- Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte Anne de Bellevue Quebec, H9X 3V9, Canada.
| |
Collapse
|
20
|
MacDonald K, Kimber MJ, Day TA, Ribeiro P. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni. Mol Biochem Parasitol 2015; 202:29-37. [PMID: 26365538 PMCID: PMC4607267 DOI: 10.1016/j.molbiopara.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
Abstract
The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting.
Collapse
Affiliation(s)
- Kevin MacDonald
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue Quebec, H9X 3V9, Canada
| | - Michael J Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Tim A Day
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue Quebec, H9X 3V9, Canada.
| |
Collapse
|
21
|
Campos TDL, Young ND, Korhonen PK, Hall RS, Mangiola S, Lonie A, Gasser RB. Identification of G protein-coupled receptors in Schistosoma haematobium and S. mansoni by comparative genomics. Parasit Vectors 2014; 7:242. [PMID: 24884876 PMCID: PMC4100253 DOI: 10.1186/1756-3305-7-242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease affecting ~200 million people worldwide. Schistosoma haematobium and S. mansoni are two relatively closely related schistosomes (blood flukes), and the causative agents of urogenital and hepatointestinal schistosomiasis, respectively. The availability of genomic, transcriptomic and proteomic data sets for these two schistosomes now provides unprecedented opportunities to explore their biology, host interactions and schistosomiasis at the molecular level. A particularly important group of molecules involved in a range of biological and developmental processes in schistosomes and other parasites are the G protein-coupled receptors (GPCRs). Although GPCRs have been studied in schistosomes, there has been no detailed comparison of these receptors between closely related species. Here, using a genomic-bioinformatic approach, we identified and characterised key GPCRs in S. haematobium and S. mansoni (two closely related species of schistosome). METHODS Using a Hidden Markov Model (HMM) and Support Vector Machine (SVM)-based pipeline, we classified and sub-classified GPCRs of S. haematobium and S. mansoni, combined with phylogenetic and transcription analyses. RESULTS We identified and classified classes A, B, C and F as well as an unclassified group of GPCRs encoded in the genomes of S. haematobium and S. mansoni. In addition, we characterised ligand-specific subclasses (i.e. amine, peptide, opsin and orphan) within class A (rhodopsin-like). CONCLUSIONS Most GPCRs shared a high degree of similarity and conservation, except for members of a particular clade (designated SmGPR), which appear to have diverged between S. haematobium and S. mansoni and might explain, to some extent, some of the underlying biological differences between these two schistosomes. The present set of annotated GPCRs provides a basis for future functional genomic studies of cellular GPCR-mediated signal transduction and a resource for future drug discovery efforts in schistosomes.
Collapse
Affiliation(s)
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Chan JD, Agbedanu PN, Zamanian M, Gruba SM, Haynes CL, Day TA, Marchant JS. 'Death and axes': unexpected Ca²⁺ entry phenologs predict new anti-schistosomal agents. PLoS Pathog 2014; 10:e1003942. [PMID: 24586156 PMCID: PMC3930560 DOI: 10.1371/journal.ppat.1003942] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents. Schistosomiasis (Bilharzia) is one of the most burdensome parasitic worm infections, encumbering third world economies with an annual loss of several million disability-adjusted life years. The key treatment for schistosome infections is the drug praziquantel but the mechanism of action of this drug remains controversial hampering targeted development of next generation antischistosomal agents. Here we provide fresh insight into the signaling pathways engaged by PZQ, by resolving commonalities in the action of PZQ with the process of regenerative signaling in free-living planarian flatworms. A similar calcium-dependent network is engaged in both model systems, but with divergent phenotypic outcomes. This relationship provides predictive insight such that basic research on signaling pathways involved in tissue regeneration reveals novel drug leads for schistosomiasis, and reciprocally schistosomal drug screens reveal targets involved in regenerative signaling. We believe this phenology will be helpful for uncovering new antischistosomal drug targets by exploiting broader vulnerabilities within the PZQ interactome.
Collapse
Affiliation(s)
- John D. Chan
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prince N. Agbedanu
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sarah M. Gruba
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- The Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ribeiro P, Patocka N. Neurotransmitter transporters in schistosomes: Structure, function and prospects for drug discovery. Parasitol Int 2013; 62:629-38. [DOI: 10.1016/j.parint.2013.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/23/2022]
|
24
|
The functional role of a serotonin transporter in Schistosoma mansoni elucidated through immunolocalization and RNA interference (RNAi). Mol Biochem Parasitol 2012; 187:32-42. [PMID: 23246818 DOI: 10.1016/j.molbiopara.2012.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/14/2022]
Abstract
Serotonin is an important neurotransmitter in both vertebrates and invertebrates. In the parasitic flatworm, Schistosoma mansoni, serotonin stimulates worm movement and potentiates muscle contraction. A specific serotonin transporter (SmSERT) was previously cloned from S. mansoni and characterized in vitro. Here we conduct a first investigation of the native protein in the worm so as to elucidate the biological role of SmSERT and to assess its drug targeting potential. Confocal immunofluorescence studies using specific antibodies determined that SmSERT is expressed predominantly in the nervous system both in adult worms and larvae (schistosomula). SmSERT immunoreactivity was detected in the main nerve cords of the central nervous system and the peripheral nerve plexus of the body wall in adult males and females, in apparent nerve endings of the male tubercles and possibly the male tegument. In the larvae, SmSERT localized mainly to the peripheral nerve plexus of the body wall. Co-localization experiments showed that the pattern of SmSERT expression coincides with that of serotonin itself, suggesting that SmSERT is present in serotonergic neurons. To test whether SmSERT is involved in the motor effects of serotonin, we treated S. mansoni schistosomula with SmSERT blockers or SmSERT-specific short-interfering RNAs (siRNAs) and then recorded larval motility, using a quantitative imaging assay. In both cases, the treatment produced a strongly hyperactive phenotype, corresponding to a ~3-fold increase in larval motility, roughly the same effect as treatment with an excess of exogenous serotonin. The siRNA effect correlated with a ≈50% decrease in expression of the SmSERT when tested by real-time qPCR. To test if SmSERT mediates transport of exogenous serotonin across the tegument, uptake assays were also performed in intact schistosomula treated with SmSERT siRNAs or an irrelevant siRNA. We found a significant but modest decrease (~25%) in serotonin uptake in the siRNA-suppressed larvae when compared to the negative controls. These results suggest that the SmSERT's function is primarily neuromuscular and may also play a secondary role in the uptake of exogenous (host-derived) serotonin.
Collapse
|