1
|
Ponte G, Roumbedakis K, Galligioni V, Dickel L, Bellanger C, Pereira J, Vidal EA, Grigoriou P, Alleva E, Santucci D, Gili C, Botta G, Imperadore P, Tarallo A, Juergens L, Northrup E, Anderson D, Aricò A, De Luca M, Pieroni EM, Fiorito G. General and species-specific recommendations for minimal requirements for the use of cephalopods in scientific research. Lab Anim 2023; 57:26-39. [PMID: 36205000 DOI: 10.1177/00236772221111261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we list species-specific recommendations for housing, care and management of cephalopod molluscs employed for research purposes with the aim of contributing to the standardization of minimum requirements for establishments, care and accommodation of these animals in compliance with the principles stated in Directive 2010/63/EU. Maximizing their psychophysical welfare was our priority. General recommendations on water surface area, water depth and tank shape here reported represent the outcome of the combined action of the analysis of the available literature and an expertise-based consensus reached - under the aegis of the COST Action FA1301 - among researchers working with the most commonly used cephalopod species in Europe. Information on water supply and quality, environmental conditions, stocking density, feeding and handling are also provided. Through this work we wish to set the stage for a more fertile ground of evidence-based approaches on cephalopod laboratory maintenance, thus facilitating standardization and replicability of research outcomes across laboratories, at the same time maximizing the welfare of these animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.,Association for Cephalopod Research 'CephRes', Napoli, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research 'CephRes', Napoli, Italy.,Ministry of Foreign Affairs and International Cooperation, Italy (MAECI) & Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | | | - Viola Galligioni
- Comparative Medicine Unit, Trinity College Dublin, Ireland.,Netherlands Institute for Neuroscience Royal Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands
| | - Ludovic Dickel
- Normandie University, UNICAEN, Ethos (Ethologie Animale et Humaine) UMR 6552, Caen, France
| | - Cécile Bellanger
- Normandie University, UNICAEN, Ethos (Ethologie Animale et Humaine) UMR 6552, Caen, France
| | - Joao Pereira
- Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Modelação e Gestão de Recursos de Pesca, Lisbon, Portugal
| | - Erica Ag Vidal
- Center for Marine Studies, University of Parana, Curitiba, Brazil
| | - Panos Grigoriou
- CRETAQUARIUM, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | | | - Claudia Gili
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Andrea Tarallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Lars Juergens
- Max-Planck-Institut for Brain Research, Frankfurt am Main, Germany
| | - Emily Northrup
- Max-Planck-Institut for Brain Research, Frankfurt am Main, Germany
| | | | - Arianna Aricò
- Association for Cephalopod Research 'CephRes', Napoli, Italy.,Merck RBM, Ivrea, Torino, Italy
| | | | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.,Association for Cephalopod Research 'CephRes', Napoli, Italy
| |
Collapse
|
2
|
Ponte G, Chiandetti C, Edelman DB, Imperadore P, Pieroni EM, Fiorito G. Cephalopod Behavior: From Neural Plasticity to Consciousness. Front Syst Neurosci 2022; 15:787139. [PMID: 35495582 PMCID: PMC9039538 DOI: 10.3389/fnsys.2021.787139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
It is only in recent decades that subjective experience - or consciousness - has become a legitimate object of scientific inquiry. As such, it represents perhaps the greatest challenge facing neuroscience today. Subsumed within this challenge is the study of subjective experience in non-human animals: a particularly difficult endeavor that becomes even more so, as one crosses the great evolutionary divide between vertebrate and invertebrate phyla. Here, we explore the possibility of consciousness in one group of invertebrates: cephalopod molluscs. We believe such a review is timely, particularly considering cephalopods' impressive learning and memory abilities, rich behavioral repertoire, and the relative complexity of their nervous systems and sensory capabilities. Indeed, in some cephalopods, these abilities are so sophisticated that they are comparable to those of some higher vertebrates. Following the criteria and framework outlined for the identification of hallmarks of consciousness in non-mammalian species, here we propose that cephalopods - particularly the octopus - provide a unique test case among invertebrates for examining the properties and conditions that, at the very least, afford a basal faculty of consciousness. These include, among others: (i) discriminatory and anticipatory behaviors indicating a strong link between perception and memory recall; (ii) the presence of neural substrates representing functional analogs of thalamus and cortex; (iii) the neurophysiological dynamics resembling the functional signatures of conscious states in mammals. We highlight the current lack of evidence as well as potentially informative areas that warrant further investigation to support the view expressed here. Finally, we identify future research directions for the study of consciousness in these tantalizing animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - David B. Edelman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
- Association for Cephalopod Research ‘CephRes' a non-profit Organization, Naples, Italy
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
3
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
De Sio F, Hanke FD, Warnke K, Marazia C, Galligioni V, Fiorito G, Stravidou I, Ponte G. E Pluribus Octo - Building Consensus on Standards of Care and Experimentation in Cephalopod Research; a Historical Outlook. Front Physiol 2020; 11:645. [PMID: 32655409 PMCID: PMC7325997 DOI: 10.3389/fphys.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
The Directive 2010/63/EU "on the protection of animals used for scientific purposes" originally induced some concern among cephalopod researchers, because of the inclusion of cephalopod mollusks as the only invertebrates among the protected species. Here we reflect on the challenges and issues raised by the Directive on cephalopod science, and discuss some of the arguments that elicited discussion within the scientific community, to facilitate the implementation of the Directive 2010/63/EU in the scientific research context. A short overview of the aims of the COST Action FA1301 "CephsInAction," serves as a paradigmatic instance of a pragmatic and progressive approach adopted to respond to novel legislative concerns through community-building and expansion of the historical horizon. Between 2013 and 2017, the COST Action FA1301 has functioned as a hub for consolidation of the cephalopod research community, including about 200 representatives from 21 countries (19 European). Among its aims, CephsInAction promoted the collection, rationalization, and diffusion of knowledge relevant to cephalopods. In the Supplementary Material to this work, we present the translation of the first-published systematic set of guidelines on the care, management and maintenance of cephalopods in captivity (Grimpe, 1928), as an example of the potential advantages deriving from the confluence of pressing scientific concerns and historical interests.
Collapse
Affiliation(s)
- Fabio De Sio
- Department of the History, Philosophy and Ethics of Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | - Kerstin Warnke
- Institute of Geological Sciences, Palaeontology, Freie Universität Berlin, Berlin, Germany
| | - Chantal Marazia
- Department of the History, Philosophy and Ethics of Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Viola Galligioni
- Comparative Medicine Unit, Trinity College Dublin, Dublin, Ireland
- Association for Cephalopod Research “CephRes,” Naples, Italy
| | - Graziano Fiorito
- Association for Cephalopod Research “CephRes,” Naples, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ioanna Stravidou
- COST Association, Brussels, Belgium
- European Research Area, European Commission, Brussels, Belgium
| | - Giovanna Ponte
- Association for Cephalopod Research “CephRes,” Naples, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
5
|
Holden-Dye L, Ponte G, Allcock AL, Vidal EAG, Nakajima R, Peterson TR, Fiorito G. Editorial: Cephs InAction: Towards Future Challenges for Cephalopod Science. Front Physiol 2019; 10:980. [PMID: 31402875 PMCID: PMC6670287 DOI: 10.3389/fphys.2019.00980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Giovanna Ponte
- Association for Cephalopod Research 'CephRes', Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - A Louise Allcock
- Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Erica A G Vidal
- Centro de Estudos do Mar, Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil
| | - Ryuta Nakajima
- University of Minnesota Duluth, Duluth, MN, United States
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
6
|
Ponte G, Andrews P, Galligioni V, Pereira J, Fiorito G. Cephalopod Welfare, Biological and Regulatory Aspects: An EU Experience. Anim Welf 2019. [DOI: 10.1007/978-3-030-13947-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
O’Brien CE, Roumbedakis K, Winkelmann IE. The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Front Physiol 2018; 9:700. [PMID: 29962956 PMCID: PMC6014164 DOI: 10.3389/fphys.2018.00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Here, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored: genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
- Association for Cephalopod Research – CephRes, Naples, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research – CephRes, Naples, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Inger E. Winkelmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Lopes VM, Sampaio E, Roumbedakis K, Tanaka NK, Carulla L, Gambús G, Woo T, Martins CPP, Penicaud V, Gibbings C, Eberle J, Tedesco P, Fernández I, Rodríguez-González T, Imperadore P, Ponte G, Fiorito G. Cephalopod biology and care, a COST FA1301 (CephsInAction) training school: anaesthesia and scientific procedures. INVERTEBRATE NEUROSCIENCE 2018. [PMID: 28620831 DOI: 10.1007/s10158-017-0200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the "working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU". The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing.
Collapse
Affiliation(s)
- Vanessa M Lopes
- MARE - Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da, Universidade de Lisboa, Lisbon, Portugal
- IPMA - Instituto Português do Mar e da Atmosfera, Avenida Brasília, 1449-006, Lisbon, Portugal
| | - Eduardo Sampaio
- MARE - Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da, Universidade de Lisboa, Lisbon, Portugal
| | - Katina Roumbedakis
- AQUOS - Sanidade de Organismos Aquáticos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nobuaki K Tanaka
- Creative Research Institution, Hokkaido University, Sapporo, 001-0021, Japan
| | - Lucía Carulla
- L'Aquàrium de Barcelona, Aspro Ocio S.A, Moll d'Espanya del Port Vell S/N, Barcelona, Spain
| | - Guillermo Gambús
- ICM-CSIC - Instituto de Ciencias del Mar, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Theodosia Woo
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438, Frankfurt am Main, Germany
| | - Catarina P P Martins
- ICM-CSIC - Instituto de Ciencias del Mar, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Virginie Penicaud
- LIENSs - Littoral Environnement et Sociétés, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Jessica Eberle
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438, Frankfurt am Main, Germany
| | - Perla Tedesco
- Sezione Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Naples, Italy
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, CoNISMa, Lecce, Italy
| | - Isabel Fernández
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Spain
| | - Tania Rodríguez-González
- IMIDA - Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Estación de Acuicultura Marina, Carretera del puerto s/n, Puerto de San Pedro del Pinatar, 30740, San Pedro del Pinatar, Murcia, Spain
| | | | - Giovanna Ponte
- Sezione Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Naples, Italy
- Association for Cephalopod Research - CephRes, Naples, Italy
| | - Graziano Fiorito
- Sezione Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Naples, Italy.
- Association for Cephalopod Research - CephRes, Naples, Italy.
| |
Collapse
|
9
|
Ponte G, Sykes AV, Cooke GM, Almansa E, Andrews PLR. The Digestive Tract of Cephalopods: Toward Non-invasive In vivo Monitoring of Its Physiology. Front Physiol 2017; 8:403. [PMID: 28674501 PMCID: PMC5474479 DOI: 10.3389/fphys.2017.00403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/29/2017] [Indexed: 12/24/2022] Open
Abstract
Ensuring the health and welfare of animals in research is paramount, and the normal functioning of the digestive tract is essential for both. Here we critically assess non- or minimally-invasive techniques which may be used to assess a cephalopod's digestive tract functionality to inform health monitoring. We focus on: (i) predatory response as an indication of appetitive drive; (ii) body weight assessment and interpretation of deviations (e.g., digestive gland weight loss is disproportionate to body weight loss in starvation); (iii) oro-anal transit time requiring novel, standardized techniques to facilitate comparative studies of species and diets; (iv) defecation frequency and analysis of fecal color (diet dependent) and composition (parasites, biomarkers, and cytology); (v) digestive tract endoscopy, but passage of the esophagus through the brain is a technical challenge; (vi) high resolution ultrasound that offers the possibility of imaging the morphology of the digestive tract (e.g., food distribution, indigestible residues, obstruction) and recording contractile activity; (vii) needle biopsy (with ultrasound guidance) as a technique for investigating digestive gland biochemistry and pathology without the death of the animal. These techniques will inform the development of physiologically based assessments of health and the impact of experimental procedures. Although intended for use in the laboratory they are equally applicable to cephalopods in public display and aquaculture.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy.,Association for Cephalopod Research (CephRes)Naples, Italy
| | - Antonio V Sykes
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do AlgarveFaro, Portugal
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin UniversityCambridge, United Kingdom
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Paul L R Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy.,Association for Cephalopod Research (CephRes)Naples, Italy
| |
Collapse
|