1
|
Edmonson A, Iwanaga J, Olewnik Ł, Dumont AS, Tubbs RS. The function of the tensor tympani muscle: a comprehensive review of the literature. Anat Cell Biol 2022; 55:113-117. [PMID: 35586903 PMCID: PMC9256479 DOI: 10.5115/acb.21.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022] Open
Abstract
The tensor tympani muscle is structurally important in the middle ear, specifically through its involvement in the impedance of sound in response to intense auditory and non-auditory stimuli. Despite numerous studies, its true function has been debated for many years; questions still remain about its role in auditory and non-auditory reflexes and in sound damping. Some studies suggest that the tensor tympani muscle contracts as a result of non-auditory stimulation such as facial or head movements; others suggest that it contracts due to input from the cochlear nucleus, therefore by way of auditory stimulation. Whatever the cause, contraction of the tensor tympani muscle results in low frequency mixed hearing loss, either to protect the inner ear from loud sounds or to desensitize the ear to self-generated sounds. A review of these studies indicated that the tensor tympani muscle has a wide range of functions, yet the mechanisms of some of them have not been clearly demonstrated. One major question is whether the tensor tympani muscle contributes to sound damping; and if it does, what specific role it serves. The primary purpose of this review article is to explore the functions of the tensor tympani muscle in light of recent research advances.
Collapse
Affiliation(s)
- Alexis Edmonson
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joe Iwanaga
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Neurology, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.,Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Łukasz Olewnik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - R Shane Tubbs
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Neurology, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, USA.,Department of Anatomical Sciences, St. George's University, St. George's, Grenada.,Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
2
|
Bell A, Jedrzejczak WW. Muscles in and around the ear as the source of "physiological noise" during auditory selective attention: A review and novel synthesis. Eur J Neurosci 2021; 53:2726-2739. [PMID: 33484588 DOI: 10.1111/ejn.15122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/17/2021] [Indexed: 12/01/2022]
Abstract
The sensitivity of the auditory system is regulated via two major efferent pathways: the medial olivocochlear system that connects to the outer hair cells, and by the middle ear muscles-the tensor tympani and stapedius. The role of the former system in suppressing otoacoustic emissions has been extensively studied, but that of the complementary network has not. In studies of selective attention, decreases in otoacoustic emissions from contralateral stimulation have been ascribed to the medial olivocochlear system, but the acknowledged problem is that the results can be confounded by parallel muscle activity. Here, the potential role of the muscle system is examined through a wide but not exhaustive review of the selective attention literature, and the unifying hypothesis is made that the prominent "physiological noise" detected in such experiments, which is reduced during attention, is the sound produced by the muscles in proximity to the ear-including the middle ear muscles. All muscles produce low-frequency sound during contraction, but the implications for selective attention experiments-in which muscles near the ear are likely to be active-have not been adequately considered. This review and synthesis suggests that selective attention may reduce physiological noise in the ear canal by reducing the activity of muscles close to the ear. Indeed, such an experiment has already been done, but the significance of its findings have not been widely appreciated. Further sets of experiments are needed in this area.
Collapse
Affiliation(s)
- Andrew Bell
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
3
|
Yin D, Ren L, Li J, Shi Y, Duan Y, Xie Y, Zhang T, Dai P. Long-term moderate noise exposure enhances the medial olivocochlear reflex. Auris Nasus Larynx 2020; 47:769-777. [PMID: 32404262 DOI: 10.1016/j.anl.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of long-term moderate noise on hearing functions, MOCR, and MEMR. METHODS Mice were exposed to the moderate noise (11.2 - 22.4 kHz, 80 dB SPL, 6 h/day, 4 weeks). Subsequently, the hearing functions, including threshold and input-output roles of ABR (auditory brainstem response) and cubic (2f1-f2) DPOAEs (distortion product otoacoustic emissions) were evaluated. Also, MEMR and MOCR were assessed shortly after or at four weeks following the termination of exposure to the noise. RESULTS The mice's acoustic suppression reflex was strengthened, hearing functions and MEMR were unaffected four weeks after the moderate noise. For primary tones of 16, 20 and 24 kHz, the strengths of contralateral and ipsilateral suppression in the noise group were about double those recorded in the control group. In order to further determine whether the functional changes of the afferent or efferent nerves increased the strengths of acoustic suppression, the mouse's left ear was inserted the earplug, and then exposed the moderate noise for four weeks. The strengths of contralateral suppression at 16, 20 and 24 kHz were increased for the noise + earplug than for the control group and were indistinguishable between the noise + earplug and the noise group. While no significant changes were found in the strengths of ipsilateral suppression at all frequencies for the noise + earplug group compared with the control group. Under ketamine/xylazine anesthesia, the broadband suppressor noise did not stimulate the MEMR by 20 min post-induction at all frequencies in three groups. CONCLUSION Our data demonstrated that the long-term moderate noise-exposure strengthened mice's MOCR by changing its afferent nerves, and unaffected cochlear hair cells and type I spiral ganglion neurons.
Collapse
Affiliation(s)
- Dongming Yin
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Liujie Ren
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Jieying Li
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Yuxuan Shi
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Yashan Duan
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Youzhou Xie
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Tianyu Zhang
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Peidong Dai
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China.
| |
Collapse
|
4
|
Wathier L, Venet T, Bonfanti E, Nunge H, Cosnier F, Parietti-Winkler C, Campo P, Pouyatos B. Measuring the middle-ear reflex: A quantitative method to assess effects of industrial solvents on central auditory pathways. Neurotoxicology 2019; 74:58-66. [DOI: 10.1016/j.neuro.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
5
|
Abstract
OBJECTIVES The long-term goal of this research is to determine whether the middle ear muscle reflex can be used to predict the number of healthy auditory nerve fibers in hearing-impaired ears. In this study, we develop a high-impedance source and an animal model of the middle ear muscle reflex and explore the influence of signal frequency and level on parameters of the reflex to determine an optimal signal to examine auditory nerve fiber survival. DESIGN A high-impedance source was developed using a hearing aid receiver attached to a 0.06 diameter 10.5-cm length tube. The impedance probe consisted of a microphone probe placed near the tip of a tube coupled to a sound source. The probe was calibrated by inserting it into a syringe of known volumes and impedances. The reflex in the anesthetized rat was measured with elicitor stimuli ranging from 3 to 16 kHz presented at levels ranging from 35 to 100 dB SPL to one ear while the reflex was measured in the opposite ear containing the probe and probe stimulus. RESULTS The amplitude of the reflex increased with elicitor level and was largest at 3 kHz. The lowest threshold was approximately 54 dB SPL for the 3-kHz stimulus. The rate of decay of the reflex was greatest at 16 kHz followed by 10 and 3 kHz. The rate of decay did not change significantly with elicitor signal level for 3 and 16 kHz, but decreased as the level of the 10-kHz elicitor increased. A negative feedback model accounts for the reflex decay by having the strength of feedback dependent on auditory nerve input. The rise time of the reflex varied with frequency and changed with level for the 10- and 16-kHz signals but not significantly for the 3-kHz signal. The latency of the reflex increased with a decrease in elicitor level, and the change in latency with level was largest for the 10-kHz stimulus. CONCLUSIONS Because the amplitude of the reflex in rat was largest with an elicitor signal at 3 kHz, had the lowest threshold, and yielded the least amount of decay, this may be the ideal frequency to estimate auditory nerve survival in hearing-impaired ears.
Collapse
|
6
|
Marks KL, Siegel JH. Differentiating Middle Ear and Medial Olivocochlear Effects on Transient-Evoked Otoacoustic Emissions. J Assoc Res Otolaryngol 2017; 18:529-542. [PMID: 28432471 DOI: 10.1007/s10162-017-0621-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 03/22/2017] [Indexed: 10/19/2022] Open
Abstract
The response of the inner ear is modulated by the middle ear muscle (MEM) and olivocochlear (OC) efferent systems. Both systems can be activated reflexively by acoustic stimuli delivered to one or both ears. The acoustic middle ear muscle reflex (MEMR) controls the transmission of acoustic signals through the middle ear, while reflex activation of the medial component of the olivocochlear system (the MOCR) modulates cochlear mechanics. The relative prominence of the two efferent systems varies widely between species. Measuring the effect of either of these systems can be confounded by simultaneously activating the other. We describe a simple, sensitive online method that can identify the effects both systems have on otoacoustic emissions (OAEs) evoked by transient stimuli such as clicks or tone pips (TEOAEs). The method detects directly in the time domain the changes in the stimulus and/or emission pressures caused by contralateral noise. Measurements in human participants are consistent with other reports that the threshold for MOCR activation is consistently lower than for MEMR. The method appears to control for drift and subject-generated noise well enough to avoid the need for post hoc processing, making it promising for application in animal experiments (even if awake) and in the hearing clinic.
Collapse
Affiliation(s)
- Kendra L Marks
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208-2952, USA
| | - Jonathan H Siegel
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208-2952, USA.
| |
Collapse
|
7
|
Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice. J Assoc Res Otolaryngol 2017; 18:543-553. [PMID: 28303411 DOI: 10.1007/s10162-017-0616-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022] Open
Abstract
Descending neural pathways in the mammalian auditory system are known to modulate the function of the peripheral auditory system. These pathways include the medial olivocochlear (MOC) efferent innervation to outer hair cells (OHCs) and the acoustic reflex pathways mediating middle ear muscle (MEM) contractions. Based on measurements in humans (Marks and Siegel, companion paper), we applied a sensitive method to attempt to differentiate MEM and MOC reflexes using contralateral acoustic stimulation in mice under different levels of anesthesia. Separation of these effects is based on the knowledge that OHC-generated transient evoked otoacoustic emissions (TEOAE) are delayed relative to the stimulus, and that the MOC reflex affects the emission through its innervation of OHC. In contrast, the MEM-mediated changes in middle ear reflectance alter both the stimulus (with a short delay) and the emission. Using this approach, time averages to transient stimuli were evaluated to determine if thresholds for a contralateral effect on the delayed emission, indicating potential MOC activation, could be observed in the absence of a change in the stimulus pressure. This outcome was not observed in the majority of cases. There were also no statistically significant differences between MEM and putative MOC thresholds, and variability was high for both thresholds regardless of anesthesia level. Since the two reflex pathways could not be differentiated on the basis of activation thresholds, it was concluded that the MEM reflex dominates changes in TEOAEs induced by contralateral noise. This result complicates the identification of purely MOC-induced changes on OAEs in mice unless the MEM reflex is inactivated surgically or pharmacologically.
Collapse
|
8
|
Wathier L, Venet T, Thomas A, Nunge H, Bonfanti E, Cosnier F, Parietti-Winkler C, Campo P, Tsan P, Bouguet-Bonnet S, Gansmüller A. Membrane fluidity does not explain how solvents act on the middle-ear reflex. Neurotoxicology 2016; 57:13-21. [PMID: 27565678 DOI: 10.1016/j.neuro.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Some volatile aromatic solvents have similar or opposite effects to anesthetics in the central nervous system. Like for anesthetics, the mechanisms of action involved are currently the subject of debate. This paper presents an in vivo study to determine whether direct binding or effects on membrane fluidity best explain how solvents counterbalance anesthesia's depression of the middle-ear reflex (MER). Rats were anesthetized with a mixture of ketamine and xylazine while also exposed to solvent vapors (toluene, ethylbenzene, or one of the three xylene isomers) and the amplitude of their MER was monitored. The depth of anesthesia was standardized based on the magnitude of the contraction of the muscles involved in the MER, determined by measuring cubic distortion product oto-acoustic emissions (DPOAEs) while triggering the bilateral reflex with contralateral acoustic stimulation. The effects of the aromatic solvents were quantified based on variations in the amplitude of the DPOAEs. The amplitude of the alteration to the MER measured in anesthetized rats did not correlate with solvent lipophilocity (as indicated by logKow values). Results obtained with the three xylene isomers indicated that the positions of two methyl groups around the benzene ring played a determinant role in solvent/neuronal cell interaction. Additionally, Solid-state Nuclear Magnetic Resonance (NMR) spectra for brain microsomes confirmed that brain lipid fluidity was unaffected by solvent exposure, even after three days (6h/day) at an extremely high concentration (3000ppm). Therefore, aromatic solvents appear to act directly on the neuroreceptors involved in the acoustic reflex circuit, rather than on membrane fluidity. The affinity of this interaction is determined by stereospecific parameters rather than lipophilocity.
Collapse
Affiliation(s)
- Ludivine Wathier
- Institut National de Recherche et de Sécurité, Rue du Morvan, F-54519 Vandoeuvre-les-Nancy, France
| | - Thomas Venet
- Institut National de Recherche et de Sécurité, Rue du Morvan, F-54519 Vandoeuvre-les-Nancy, France
| | - Aurélie Thomas
- Institut National de Recherche et de Sécurité, Rue du Morvan, F-54519 Vandoeuvre-les-Nancy, France
| | - Hervé Nunge
- Institut National de Recherche et de Sécurité, Rue du Morvan, F-54519 Vandoeuvre-les-Nancy, France
| | - Elodie Bonfanti
- Institut National de Recherche et de Sécurité, Rue du Morvan, F-54519 Vandoeuvre-les-Nancy, France
| | - Frédéric Cosnier
- Institut National de Recherche et de Sécurité, Rue du Morvan, F-54519 Vandoeuvre-les-Nancy, France
| | | | - Pierre Campo
- Institut National de Recherche et de Sécurité, Rue du Morvan, F-54519 Vandoeuvre-les-Nancy, France.
| | - Pascale Tsan
- Université de Lorraine, CRM2, UMR 7036, Vandoeuvre-les-Nancy, F-54506, France; CNRS, CRM2, UMR 7036, Vandoeuvre-les-Nancy, F-54506, France
| | - Sabine Bouguet-Bonnet
- Université de Lorraine, CRM2, UMR 7036, Vandoeuvre-les-Nancy, F-54506, France; CNRS, CRM2, UMR 7036, Vandoeuvre-les-Nancy, F-54506, France
| | - Axel Gansmüller
- Université de Lorraine, CRM2, UMR 7036, Vandoeuvre-les-Nancy, F-54506, France; CNRS, CRM2, UMR 7036, Vandoeuvre-les-Nancy, F-54506, France
| |
Collapse
|
9
|
Valero MD, Hancock KE, Liberman MC. The middle ear muscle reflex in the diagnosis of cochlear neuropathy. Hear Res 2016; 332:29-38. [PMID: 26657094 PMCID: PMC5244259 DOI: 10.1016/j.heares.2015.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 02/04/2023]
Abstract
Cochlear neuropathy, i.e. the loss of auditory nerve fibers (ANFs) without loss of hair cells, may cause hearing deficits without affecting threshold sensitivity, particularly if the subset of ANFs with high thresholds and low spontaneous rates (SRs) is preferentially lost, as appears to be the case in both aging and noise-damaged cochleas. Because low-SR fibers may also be important drivers of the medial olivocochlear reflex (MOCR) and middle-ear muscle reflex (MEMR), these reflexes might be sensitive metrics of cochlear neuropathy. To test this hypothesis, we measured reflex strength and reflex threshold in mice with noise-induced neuropathy, as documented by confocal analysis of immunostained cochlear whole-mounts. To assay the MOCR, we measured contra-noise modulation of ipsilateral distortion-product otoacoustic emissions (DPOAEs) before and after the administration of curare to block the MEMR or curare + strychnine to also block the MOCR. The modulation of DPOAEs was 1) dominated by the MEMR in anesthetized mice, with a smaller contribution from the MOCR, and 2) significantly attenuated in neuropathic mice, but only when the MEMR was intact. We then measured MEMR growth functions by monitoring contra-noise induced changes in the wideband reflectance of chirps presented to the ipsilateral ear. We found 1) that the changes in wideband reflectance were mediated by the MEMR alone, and 2) that MEMR threshold was elevated and its maximum amplitude was attenuated in neuropathic mice. These data suggest that the MEMR may be valuable in the early detection of cochlear neuropathy.
Collapse
Affiliation(s)
- Michelle D Valero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Kugler K, Wiegrebe L, Gürkov R, Krause E, Drexl M. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear. J Assoc Res Otolaryngol 2015; 16:713-25. [PMID: 26264256 DOI: 10.1007/s10162-015-0538-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
>Human hearing is rather insensitive for very low frequencies (i.e. below 100 Hz). Despite this insensitivity, low-frequency sound can cause oscillating changes of cochlear gain in inner ear regions processing even much higher frequencies. These alterations outlast the duration of the low-frequency stimulation by several minutes, for which the term 'bounce phenomenon' has been coined. Previously, we have shown that the bounce can be traced by monitoring frequency and level changes of spontaneous otoacoustic emissions (SOAEs) over time. It has been suggested elsewhere that large receptor potentials elicited by low-frequency stimulation produce a net Ca(2+) influx and associated gain decrease in outer hair cells. The bounce presumably reflects an underdamped, homeostatic readjustment of increased Ca(2+) concentrations and related gain changes after low-frequency sound offset. Here, we test this hypothesis by activating the medial olivocochlear efferent system during presentation of the bounce-evoking low-frequency (LF) sound. The efferent system is known to modulate outer hair cell Ca(2+) concentrations and receptor potentials, and therefore, it should modulate the characteristics of the bounce phenomenon. We show that simultaneous presentation of contralateral broadband noise (100 Hz-8 kHz, 65 and 70 dB SPL, 90 s, activating the efferent system) and ipsilateral low-frequency sound (30 Hz, 120 dB SPL, 90 s, inducing the bounce) affects the characteristics of bouncing SOAEs recorded after low-frequency sound offset. Specifically, the decay time constant of the SOAE level changes is shorter, and the transient SOAE suppression is less pronounced. Moreover, the number of new, transient SOAEs as they are seen during the bounce, are reduced. Taken together, activation of the medial olivocochlear system during induction of the bounce phenomenon with low-frequency sound results in changed characteristics of the bounce phenomenon. Thus, our data provide experimental support for the hypothesis that outer hair cell calcium homeostasis is the source of the bounce phenomenon.
Collapse
Affiliation(s)
- Kathrin Kugler
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Lutz Wiegrebe
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Robert Gürkov
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Eike Krause
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany.
| |
Collapse
|
11
|
Henin S, Long GR, Thompson S. Wideband detection of middle ear muscle activation using swept-tone distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:272-283. [PMID: 24993213 DOI: 10.1121/1.4883361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The measurement of efferent-induced suppression of otoacoustic emissions (OAEs) using contralateral acoustic stimulation (CAS) is complicated by potential contamination by the middle ear muscle reflex (MEMR), particularly at moderate to high CAS levels. When logarithmically sweeping primaries are used to measure distortion product otoacoustic emissions, the level and phase of the primaries at the entrance of the ear canal may be monitored simultaneously along with the OAEs elicited by the swept-tones. A method of detecting MEMR activation using swept-tones is presented in which the differences in the primaries in the ear canal with and without CAS are examined, permitting evaluation of MEMR effects over a broad frequency range. A range of CAS levels above and below expected contralateral acoustic reflex thresholds permitted evaluation of conditions with and without MEMR activation.
Collapse
Affiliation(s)
- Simon Henin
- Speech, Language and Hearing Sciences, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016
| | - Glenis R Long
- Speech, Language and Hearing Sciences, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016
| | - Suzanne Thompson
- Speech, Language and Hearing Sciences, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016
| |
Collapse
|
12
|
Luebke AE, Stagner BB, Martin GK, Lonsbury-Martin BL. Adaptation of distortion product otoacoustic emissions predicts susceptibility to acoustic over-exposure in alert rabbits. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:1941-1949. [PMID: 25234992 PMCID: PMC4167750 DOI: 10.1121/1.4868389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 05/29/2023]
Abstract
A noninvasive test was developed in rabbits based on fast adaptation measures for 2f1-f2 distortion-product otoacoustic emissions (DPOAEs). The goal was to evaluate the effective reflex activation, i.e., "functional strength," of both the descending medial olivocochlear efferent reflex (MOC-R) and the middle-ear muscle reflex (MEM-R) through sound activation. Classically, it is assumed that both reflexes contribute toward protecting the inner ear from cochlear damage caused by noise exposure. The DP-gram method described here evaluated the MOC-R effect on DPOAE levels over a two-octave (oct) frequency range. To estimate the related activation of the middle-ear muscles (MEMs), the MEM-R was measured by monitoring the level of the f1-primary tone throughout its duration. Following baseline measures, rabbits were subjected to noise over-exposure. A main finding was that the measured adaptive activity was highly variable between rabbits but less so between the ears of the same animal. Also, together, the MOC-R and MEM-R tests showed that, on average, DPOAE adaptation consisted of a combined contribution from both systems. Despite this shared involvement, the amount of DPOAE adaptation measured for a particular animal's ear predicted that ear's subsequent susceptibility to the noise over-exposure for alert but not for deeply anesthetized rabbits.
Collapse
Affiliation(s)
- Anne E Luebke
- Departments of Neurobiology and Anatomy and Biomedical Engineering, University of Rochester Medical Center, Rochester, New York 14534
| | - Barden B Stagner
- Research Service, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California 92357
| | - Glen K Martin
- Research Service, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California 92357
| | | |
Collapse
|
13
|
Wolter NE, Harrison RV, James AL. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels. Audiol Neurootol 2013; 19:41-8. [PMID: 24335024 DOI: 10.1159/000356174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Mediated by the medial olivocochlear system (MOCS), distortion product otoacoustic emission (DPOAE) levels are reduced by presentation of contralateral acoustic stimuli. Such acoustic signals can also evoke a middle ear muscle reflex (MEMR) that also attenuates recorded DPOAE levels. Our aim is to clearly differentiate these two inhibitory mechanisms and to analyze each separately, perhaps allowing the development of novel tests of hearing function. METHODS DPOAE were recorded in real time from chinchillas with normal auditory brainstem response thresholds and middle ear function. Amplitude reduction and its onset latency caused by contralateral presentation of intermittent narrow-band noise (NBN) were measured. Stapedius and tensor tympani muscle tendons were divided without disturbing the ossicular chain, and DPOAE testing was repeated. RESULTS Peak reduction of (2f1 - f2) DPOAE levels occurred when the center frequency of contralateral NBN approximated the primary tone f2, indicating an f2-frequency-specific response. For a 4.5-kHz centered NBN, DPOAE (f2 = 4.4 kHz) inhibition was 0.1 dB (p < 0.001). This response remained present after tendon division, consistent with an MOCS origin. Low-frequency NBN (center frequency: 0.5 kHz) reduced otoacoustic emission levels (0.1 dB, p < 0.001) across a wide range of DPOAE frequencies. This low-frequency response was abolished by division of the middle ear muscle tendons, clearly indicating MEMR involvement. CONCLUSIONS Following middle ear muscle tendon division, DPOAE inhibition by contralateral stimuli approximating the primary tone f2 persists, whereas responses evoked by lower contralateral frequencies are abolished. This distinguishes the different roles of the MOCS (f2 frequency specific) and MEMR (low frequency only) in contralateral modulation of DPOAE. This analysis helps clarify the pathways involved in an objective test that might have clinical benefit in the testing of neonates.
Collapse
Affiliation(s)
- Nikolaus E Wolter
- Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ont., Canada
| | | | | |
Collapse
|
14
|
Christian Brown M, Lee DJ, Benson TE. Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input. Brain Res 2013; 1516:1-10. [PMID: 23602963 DOI: 10.1016/j.brainres.2013.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/26/2013] [Accepted: 04/03/2013] [Indexed: 12/01/2022]
Abstract
Spines are unique cellular appendages that isolate synaptic input to neurons and play a role in synaptic plasticity. Using the electron microscope, we studied spines and their associated synaptic terminals on three groups of brainstem neurons: tensor tympani motoneurons, stapedius motoneurons, and medial olivocochlear neurons, all of which exert reflexive control of processes in the auditory periphery. These spines are generally simple in shape; they are infrequent and found on the somata as well as the dendrites. Spines do not differ in volume among the three groups of neurons. In all cases, the spines are associated with a synaptic terminal that engulfs the spine rather than abuts its head. The positions of the synapses are variable, and some are found at a distance from the spine, suggesting that the isolation of synaptic input is of diminished importance for these spines. Each group of neurons receives three common types of synaptic terminals. The type of terminal associated with spines of the motoneurons contains pleomorphic vesicles, whereas the type associated with spines of olivocochlear neurons contains large round vesicles. Thus, spine-associated terminals in the motoneurons appear to be associated with inhibitory processes but in olivocochlear neurons they are associated with excitatory processes.
Collapse
Affiliation(s)
- M Christian Brown
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
15
|
Benson TE, Lee DJ, Brown MC. Tensor tympani motoneurons receive mostly excitatory synaptic inputs. Anat Rec (Hoboken) 2012; 296:133-45. [PMID: 23165747 DOI: 10.1002/ar.22620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022]
Abstract
The tensor tympani is a middle ear muscle that contracts in two different situations: in response to sound or during voluntary movements. To gain insight into the inputs and neural regulation of the tensor tympani, we examined the ultrastructure of synaptic terminals on labeled tensor tympani motoneurons (TTMNs) using transmission electron microscopy. Our sample of six TTMNs received 79 synaptic terminals that formed 126 synpases. Two types of synapses are associated with round vesicles and form asymmetric junctions (excitatory morphology). One of these types has vesicles that are large and round (Lg Rnd) and the other has vesicles that are smaller and round (Sm Rnd) and also contains at least one dense core vesicle. A third synapse type has inhibitory morphology because it forms symmetric synapses with pleomorphic vesicles (Pleo). These synaptic terminals can be associated with TTMN spines. Two other types of synapse are found on TTMNs but they are uncommon. Synaptic terminals of all types form multiple synapses but those from a single terminal are always the same type. Terminals with Lg Rnd vesicles formed the most synpases per terminal (avg. 2.73). Together, the synaptic terminals with Lg Rnd and Sm Rnd vesicles account for 62% of the terminals on TTMNs, and they likely represent the pathways driving the contractions in response to sound or during voluntary movements. Having a high proportion of excitatory inputs, the TTMN innervation is like that of stapedius motoneurons but proportionately different from other types of motoneurons.
Collapse
Affiliation(s)
- Thane E Benson
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
16
|
Srinivasan S, Keil A, Stratis K, Woodruff Carr KL, Smith DW. Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention. Neuroscience 2012; 223:325-32. [PMID: 22871520 PMCID: PMC3471141 DOI: 10.1016/j.neuroscience.2012.07.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
There is increasing evidence that alterations in the focus of attention result in changes in neural responding at the most peripheral levels of the auditory system. To date, however, those studies have not ruled out differences in task demands or overall arousal in explaining differences in responding across intermodal attentional conditions. The present study sought to compare changes in the response of cochlear outer hair cells, employing distortion product otoacoustic emissions (DPOAEs), under different, balanced conditions of intermodal attention. DPOAEs were measured while the participants counted infrequent, brief exemplars of the DPOAE primary tones (auditory attending), and while counting visual targets, which were instances of Gabor gradient phase shifts (visual attending). Corroborating an earlier study from our laboratory, the results show that DPOAEs recorded in the auditory-ignoring condition were significantly higher in overall amplitude, compared with DPOAEs recorded while participants attended to the eliciting primaries; a finding in apparent contradiction with more central measures of intermodal attention. Also consistent with our previous findings, DPOAE rapid adaptation, believed to be mediated by the medial olivocochlear efferents (MOC), was unaffected by changes in intermodal attention. The present findings indicate that manipulations in the conditions of attention, through the corticofugal pathway, and its last relay to cochlear outer hair cells (OHCs), the MOC, alter cochlear sensitivity to sound. These data also suggest that the MOC influence on OHC sensitivity is composed of two independent processes, one of which is under attentional control.
Collapse
Affiliation(s)
- Sridhar Srinivasan
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Andreas Keil
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, FL, USA
| | - Kyle Stratis
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Kali L. Woodruff Carr
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Music, University of Florida, Gainesville, FL, USA
| | - David W. Smith
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Maison SF, Usubuchi H, Vetter DE, Elgoyhen AB, Thomas SA, Liberman MC. Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway. J Neurophysiol 2012; 108:491-500. [PMID: 22514298 DOI: 10.1152/jn.01050.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Suppression of ipsilateral distortion product otoacoustic emissions (DPOAEs) by contralateral noise is used in humans and animals to assay the strength of sound-evoked negative feedback from the medial olivocochlear (MOC) efferent pathway. However, depending on species and anesthesia, contributions of other feedback systems to the middle or inner ear can cloud the interpretation. Here, contributions of MOC and middle-ear muscle reflexes, as well as autonomic feedback, to contra-noise suppression in anesthetized mice are dissected by selectively eliminating each pathway by surgical transection, pharmacological blockade, or targeted gene deletion. When ipsilateral DPOAEs were evoked by low-level primaries, contra-noise suppression was typically ~1 dB with contra-noise levels around 95 dB SPL, and it always disappeared upon contralateral cochlear destruction. Lack of middle-ear muscle contribution was suggested by persistence of contra-noise suppression after paralysis with curare, tensor tympani cauterization, or section of the facial nerve. Contribution of cochlear sympathetics was ruled out by studying mutant mice lacking adrenergic signaling (dopamine β-hydroxylase knockouts). Surprisingly, contra-noise effects on low-level DPOAEs were also not diminished by eliminating the MOC system pharmacologically (strychnine), surgically, or by deletion of relevant cholinergic receptors (α9/α10). In contrast, when ipsilateral DPOAEs were evoked by high-level primaries, the contra-noise suppression, although comparable in magnitude, was largely eliminated by MOC blockade or section. Possible alternate pathways are discussed for the source of contra-noise-evoked effects at low ipsilateral levels.
Collapse
Affiliation(s)
- Stéphane F Maison
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114-3096, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Smith DW, Aouad RK, Keil A. Cognitive task demands modulate the sensitivity of the human cochlea. Front Psychol 2012; 3:30. [PMID: 22347870 PMCID: PMC3277933 DOI: 10.3389/fpsyg.2012.00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/24/2012] [Indexed: 11/25/2022] Open
Abstract
Recent studies lead to the conclusion that focused attention, through the activity of corticofugal and medial olivocochlear (MOC) efferent pathways, modulates activity at the most peripheral aspects of the auditory system within the cochlea. In two experiments, we investigated the effects of different intermodal attention manipulations on the response of outer hair cells (OHCs), and the control exerted by the MOC efferent system. The effect of the MOCs on OHC activity was characterized by measuring the amplitude and rapid adaptation time course of distortion product otoacoustic emissions (DPOAEs). In the first, DPOAE recordings were compared while participants were reading a book and counting the occurrence of the letter "a" (auditory-ignoring) and while counting either short- or long-duration eliciting tones (auditory-attending). In the second, DPOAEs were recorded while subjects watched muted movies with subtitles (auditory-ignoring/visual distraction) and were compared with DPOAEs recorded while subjects counted the same tones (auditory-attending) as in Experiment 1. In both Experiments 1 and 2, the absolute level of the averaged DPOAEs recorded during the auditory-ignoring condition was statistically higher than that recorded in the auditory-attending condition. Efferent-induced rapid adaptation was evident in all DPOAE contours, under all attention conditions, suggesting that two medial efferent processes act independently to determine rapid adaptation, which is unaffected by attention, and the overall DPOAE level, which is significantly affected by changes in the focus of attention.
Collapse
Affiliation(s)
- David W. Smith
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of FloridaGainesville, FL, USA
- Center for Smell and Taste, University of FloridaGainesville, FL, USA
- Department of Otolaryngology-Head and Neck Surgery, University of FloridaGainesville, FL, USA
| | - Rony K. Aouad
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Andreas Keil
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of FloridaGainesville, FL, USA
- NIMH Center for the Study of Emotion and Attention, University of FloridaGainesville, FL, USA
| |
Collapse
|
19
|
Deeter R, Abel R, Calandruccio L, Dhar S. Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:2413-24. [PMID: 19894823 PMCID: PMC2787069 DOI: 10.1121/1.3224716] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, and L(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
Collapse
Affiliation(s)
- Ryan Deeter
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
20
|
Zhao W, Dhar S. The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J Assoc Res Otolaryngol 2009; 11:53-67. [PMID: 19798532 DOI: 10.1007/s10162-009-0189-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/11/2009] [Indexed: 05/25/2023] Open
Abstract
Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi-Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence.
Collapse
Affiliation(s)
- Wei Zhao
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| | | |
Collapse
|
21
|
Extraction of sources of distortion product otoacoustic emissions by onset-decomposition. Hear Res 2009; 256:21-38. [DOI: 10.1016/j.heares.2009.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/22/2022]
|
22
|
Mukerji S, Brown MC, Lee DJ. A morphologic study of Fluorogold labeled tensor tympani motoneurons in mice. Brain Res 2009; 1278:59-65. [PMID: 19397898 DOI: 10.1016/j.brainres.2009.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/02/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
The tensor tympani is one of two middle ear muscles that regulates the transmission of sound through the middle ear. Contraction of the tensor tympani in response to both auditory and non-auditory stimulation is mediated by the tensor tympani motoneurons (TTMNs). There are interesting differences among species in the acoustic thresholds for contraction of the middle ear muscles, which may be a reflection of underlying anatomical differences such as the number of TTMNs. However anatomical data for mice are lacking, even though the mouse is becoming the most common animal model for auditory and neuroscience research. We investigated the number and morphology of TTMNs in mice using Fluorogold, a retrograde neuronal tracer. After injections of Fluorogold into the tensor tympani muscle, a column of labeled TTMNs was identified ventro-lateral to the ipsilateral trigeminal nucleus. The labeled TTMNs were classified according to their morphological characteristics into three subtypes: "octopus-like", "fusiform" and "stellate", suggesting underlying differences in function. All three subtypes formed sparsely branched and radiating dendrites, some longer than 600 microm. Dendrites were longest and most numerous in the dorso-medial direction. In 18 cases, the mean number of mouse TTMNs was 51; the largest numbers were 70, 74 and 90 (n=3 injections). The mean size of mouse TTMNs was 13.0 microm (minor axis) and 23.5 microm (major axis). Compared with studies of TTMNs in larger species (cats and rats), mouse TTMNs are both fewer in number and smaller in size.
Collapse
Affiliation(s)
- Sudeep Mukerji
- Department of Otolaryngology, Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
23
|
Wittekindt A, Gaese BH, Kössl M. Influence of contralateral acoustic stimulation on the quadratic distortion product f2-f1 in humans. Hear Res 2008; 247:27-33. [PMID: 18951964 DOI: 10.1016/j.heares.2008.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Contralateral acoustic stimulation is known to activate the medial olivocochlear system which is capable of modulating the amplification process in the outer hair cells of the inner ear. We investigated the influence of different levels of contralateral broadband noise on distortion product otoacoustic emissions in humans, with a particular focus on the quadratic distortion product at f2-f1. The primary stimulus frequency ratio was optimized to yield maximum f2-f1 level. While the cubic distortion product at 2f1-f2 was not significantly affected during contralateral noise stimulation, the level of f2-f1 was reduced by up to 4.8dB on average (maximum: 10.1dB), with significant suppression occurring for noise levels as low as 40dB SPL. In addition, a significant phase lead was observed. Quadratic distortions are minimal at a symmetrical position of the transfer function of the cochlear amplifier. The observed sensitivity of f2-f1 to contralateral noise stimulation could hence be resulting from a shift of the operating state and/or a change in the gain of the cochlear amplification due to contralateral induced efferent modulation of the outer hair cell properties.
Collapse
Affiliation(s)
- Anna Wittekindt
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Siesmayerstrasse 70A, D-60323 Frankfurt/Main, Germany
| | | | | |
Collapse
|
24
|
Effects of anesthesia on DPOAE level and phase in rats. Hear Res 2008; 235:47-59. [DOI: 10.1016/j.heares.2007.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/14/2007] [Accepted: 09/28/2007] [Indexed: 11/20/2022]
|
25
|
Guinan JJ. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 2007; 27:589-607. [PMID: 17086072 DOI: 10.1097/01.aud.0000240507.83072.e7] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review covers the basic anatomy and physiology of the olivocochlear reflexes and the use of otoacoustic emissions (OAEs) in humans to monitor the effects of one group, the medial olivocochlear (MOC) efferents. MOC fibers synapse on outer hair cells (OHCs), and activation of these fibers inhibits basilar membrane responses to low-level sounds. This MOC-induced decrease in the gain of the cochlear amplifier is reflected in changes in OAEs. Any OAE can be used to monitor MOC effects on the cochlear amplifier. Each OAE type has its own advantages and disadvantages. The most straightforward technique for monitoring MOC effects is to elicit MOC activity with an elicitor sound contralateral to the OAE test ear. MOC effects can also be monitored using an ipsilateral elicitor of MOC activity, but the ipsilateral elicitor brings additional problems caused by suppression and cochlear slow intrinsic effects. To measure MOC effects accurately, one must ensure that there are no middle-ear-muscle contractions. Although standard clinical middle-ear-muscle tests are not adequate for this, adequate tests can usually be done with OAE-measuring instruments. An additional complication is that most probe sounds also elicit MOC activity, although this does not prevent the probe from showing MOC effects elicited by contralateral sound. A variety of data indicate that MOC efferents help to reduce acoustic trauma and lessen the masking of transients by background noise; for instance, they aid in speech comprehension in noise. However, much remains to be learned about the role of efferents in auditory function. Monitoring MOC effects in humans using OAEs should continue to provide valuable insights into the role of MOC efferents and may also provide clinical benefits.
Collapse
|
26
|
Wagner W, Heppelmann G, Müller J, Janssen T, Zenner HP. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Hear Res 2007; 223:83-92. [PMID: 17137736 DOI: 10.1016/j.heares.2006.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Activity of the medial olivocochlear efferents can be inferred by measuring the change of the level of distortion product otoacoustic emissions (DPOAE) during ipsilateral or contralateral acoustic stimulation, the so-called medial olivocochlear reflex (MOCR). A limitation of this measurement strategy, however, is the distinct variability of MOCR values depending on DPOAE primary tone levels and frequency, which makes selection of the stimulus parameters difficult. The objective of this study was to evaluate the dependence of MOCR values on DPOAE fine structure in humans. MOCR during contralateral acoustic stimulation was measured at frequencies with distinct non-monotonicity ("dip") in the DPOAE fine structure, and in frequencies with flat fine structure. One hundred and twenty one different primary tone level combinations were used (L(1)=50-60dB SPL, L(2)=35-45dB SPL, 1dB steps). The measurement was repeated on another day. The major findings were: (1) Largest MOCR effects can be found in frequencies which exhibit a distinct dip in DPOAE fine structure. (2) Primary tone levels have a critical influence on the magnitude of the MOCR effect. MOCR changes of up to 23dB following a L(1) change of only 1dB were observed. Averages of the maximum MOCR change per 1dB step were in the 3-5dB-range. Both findings can be interpreted in the light of the DPOAE two-generator model [Heitmann, J., Waldmann, B., Schnitzler, H.U., Plinkert, P.K., Zenner, H.P. 1998. Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1-f2 removes DP-gram fine structure - evidence for a secondary generator. Journal of the Acoustical Society of America 103, 1527-1531]. According to the present results we propose, that assessing MOCR specifically at frequencies with a distinct dip in the DPOAE fine structure, in combination with fine variation of the stimulus tone levels, allows for a more targeted search for maximum MOCR effects. Future studies must show if this approach can contribute to the further clarification of the physiological roles of the olivocochlear efferents.
Collapse
Affiliation(s)
- W Wagner
- Tübingen Hearing Research Center, Department of Otorhinolaryngology, University of Tübingen, Elfriede-Aulhorn-Str.5, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Goodman SS, Keefe DH. Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions. J Assoc Res Otolaryngol 2006; 7:125-39. [PMID: 16568366 PMCID: PMC2504580 DOI: 10.1007/s10162-006-0028-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022] Open
Abstract
Otoacoustic emissions serve as a noninvasive probe of the medial olivocochlear (MOC) reflex. Stimulus frequency otoacoustic emissions (SFOAEs) elicited by a low-level probe tone may be the optimal type of emission for studying MOC effects because at low levels, the probe itself does not elicit the MOC reflex [Guinan et al. (2003) J. Assoc. Res. Otolaryngol. 4:521]. Based on anatomical considerations, the MOC reflex activated by ipsilateral acoustic stimulation (mediated by the crossed olivocochlear bundle) is predicted to be stronger than the reflex to contralateral stimulation. Broadband noise is an effective activator of the MOC reflex; however, it is also an effective activator of the middle-ear muscle (MEM) reflex, which can make results difficult to interpret. The MEM reflex may be activated at lower levels than measured clinically, and most previous human studies have not explicitly included measurements to rule out MEM reflex contamination. The current study addressed these issues using a higher-frequency SFOAE probe tone to test for cochlear changes mediated by the MOC reflex, while simultaneously monitoring the MEM reflex using a low-frequency probe tone. Broadband notched noise was presented ipsilaterally at various levels to elicit probe-tone shifts. Measurements are reported for 15 normal-hearing subjects. With the higher-frequency probe near 1.5 kHz, only 20% of subjects showed shifts consistent with an MOC reflex in the absence of an MEM-induced shift. With the higher-frequency probe near 3.5 kHz, up to 40% of subjects showed shifts in the absence of an MEM-induced shift. However, these responses had longer time courses than expected for MOC-induced shifts, and may have been dominated by other cochlear processes, rather than MOC reflex. These results suggest caution in the interpretation of effects observed using ipsilaterally presented acoustic activators intended to excite the MOC reflex.
Collapse
Affiliation(s)
- Shawn S Goodman
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA.
| | | |
Collapse
|
28
|
Lee DJ, de Venecia RK, Guinan JJ, Brown MC. Central auditory pathways mediating the rat middle ear muscle reflexes. ACTA ACUST UNITED AC 2006; 288:358-69. [PMID: 16550576 DOI: 10.1002/ar.a.20296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The middle ear muscle (MEM) reflexes function to protect the inner ear from intense acoustic stimuli and to reduce acoustic masking. Sound presented to the same side or to the opposite side activates the MEM reflex on both sides. The ascending limbs of these pathways must be the auditory nerve fibers originating in the cochlea and terminating in the cochlear nucleus, the first relay station for all ascending auditory information. The descending limbs project from the motoneurons in the brainstem to the MEMs on both sides, causing their contraction. Although the ascending and descending pathways are well described, the cochlear nucleus interneurons that mediate these reflex pathways have not been identified. In order to localize the MEM reflex interneurons, we developed a physiologically based reflex assay in the rat that can be used to determine the integrity of the reflex pathways after experimental manipulations. This assay monitored the change in tone levels and distortion product otoacoustic emissions within the ear canal in one ear during the presentation of a reflex-eliciting sound stimulus in the contralateral ear. Preliminary findings using surgical transection and focal lesioning of the auditory brainstem to interrupt the MEM reflexes suggest that MEM reflex interneurons are located in the ventral cochlear nucleus.
Collapse
Affiliation(s)
- Daniel J Lee
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|