1
|
Singh N, Kaushik R, Prakash A, Singh Saini S, Garg S, Adhikary A, Ladher RK. Mosaic Atoh1 deletion in the chick auditory epithelium reveals a homeostatic mechanism to restore hair cell number. Dev Biol 2024; 516:35-46. [PMID: 39074652 DOI: 10.1016/j.ydbio.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The mechanosensory hair cell of the vertebrate inner ear responds to the mechanical deflections that result from hearing or change in the acceleration due to gravity, to allow us to perceive and interpret sounds, maintain balance and spatial orientation. In mammals, ototoxic compounds, disease, and acoustic trauma can result in damage and extrusion of hair cells, without replacement, resulting in hearing loss. In contrast, non-mammalian vertebrates can regenerate sensory hair cells. Upon damage, hair cells are extruded and an associated cell type, the supporting cell is transformed into a hair cell. The mechanisms that can trigger regeneration are not known. Using mosaic deletion of the hair cell master gene, Atoh1, in the embryonic avian inner ear, we find that despite hair cells depletion at E9, by E12, hair cell number is restored in sensory epithelium. Our study suggests a homeostatic mechanism can restores hair cell number in the basilar papilla, that is activated when juxtracrine signalling is disrupted. Restoration of hair cell numbers during development may mirror regenerative processes, and our work provides insights into the mechanisms that trigger regeneration.
Collapse
Affiliation(s)
- Nishant Singh
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India; The University of Trans-Disciplinary Health Sciences and Technology, Yelahanka, Bangalore, 560064, India
| | - Raman Kaushik
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Anubhav Prakash
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India; Ashoka University, Sonipat, Haryana, 131029, India
| | - Surjit Singh Saini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Sonal Garg
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Adrija Adhikary
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Raj K Ladher
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
2
|
Reyes-Rivera J, Grillo-Alvarado V, Soriano-López AE, García-Arrarás JE. Evidence of interactions among apoptosis, cell proliferation, and dedifferentiation in the rudiment during whole-organ intestinal regeneration in the sea cucumber. Dev Biol 2024; 505:99-109. [PMID: 37925124 PMCID: PMC11163280 DOI: 10.1016/j.ydbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Sea cucumbers have an extraordinary regenerative capability. Under stressful conditions, Holothuria glaberrima can eviscerate their internal organs, including the digestive tract. From the mesentery, a rudiment grows and gives rise to a new intestine within a few weeks. In the last decades, the cellular events that occur during intestinal regeneration have been characterized, including apoptosis, cell proliferation, and muscle cell dedifferentiation. Nevertheless, their contribution to the formation and early growth of the rudiment is still unknown. Furthermore, these cellular events' relationship and potential interdependence remain a mystery. Using modulators to inhibit apoptosis and cell proliferation, we tested whether rudiment growth or other regenerative cellular events like muscle cell dedifferentiation were affected. We found that inhibition of apoptosis by zVAD and cell proliferation by aphidicolin and mitomycin did not affect the overall size of the rudiment seven days post-evisceration (7-dpe). Interestingly, animals treated with aphidicolin showed higher levels of muscle cell dedifferentiation in the distal mesentery, which could act as a compensatory mechanism. On the other hand, inhibition of apoptosis led to a decrease in cell proliferation in the rudiment and a delay in the spatiotemporal progression of muscle cell dedifferentiation throughout the rudiment-mesentery structure. Our findings suggest that neither apoptosis nor cell proliferation significantly contributes to early rudiment growth during intestinal regeneration in the sea cucumber. Nevertheless, apoptosis may play an essential role in modulating cell proliferation in the rudiment (a process known as apoptosis-induced proliferation) and the timing for the progression of muscle cell dedifferentiation. These findings provide new insights into the role and relationship of cellular events during intestinal regeneration in an emerging regeneration model.
Collapse
Affiliation(s)
- Josean Reyes-Rivera
- Department of Biology, University of Puerto Rico, Río Piedras, PR, USA; Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
3
|
Zadrożniak M, Szymański M, Łuszczki JJ. N-Acetyl-L-cysteine Affects Ototoxicity Evoked by Amikacin and Furosemide Either Alone or in Combination in a Mouse Model of Hearing Threshold Decrease. Int J Mol Sci 2023; 24:ijms24087596. [PMID: 37108758 PMCID: PMC10143461 DOI: 10.3390/ijms24087596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Drug-induced ototoxicity resulting from therapy with aminoglycoside antibiotics and loop diuretics is one of the main well-known causes of hearing loss in patients. Unfortunately, no specific protection and prevention from hearing loss are recommended for these patients. This study aimed at evaluating the ototoxic effects produced by mixtures of amikacin (AMI, an aminoglycoside antibiotic) and furosemide (FUR, a loop diuretic) in the mouse model as the hearing threshold decreased by 20% and 50% using auditory brainstem responses (ABRs). Ototoxicity was produced by the combinations of a constant dose of AMI (500 mg/kg; i.p.) on FUR-induced hearing threshold decreases, and a fixed dose of FUR (30 mg/kg; i.p.) on AMI-induced hearing threshold decreases, which were determined in two sets of experiments. Additionally, the effects of N-acetyl-L-cysteine (NAC; 500 mg/kg; i.p.) on the hearing threshold decrease of 20% and 50% were determined by means of an isobolographic transformation of interactions to detect the otoprotective action of NAC in mice. The results indicate that the influence of a constant dose of AMI on FUR-induced hearing threshold decreases was more ototoxic in experimental mice than a fixed dose of FUR on AMI-induced ototoxicity. Moreover, NAC reversed the AMI-induced, but not FUR-induced, hearing threshold decreases in this mouse model of hearing loss. NAC could be considered an otoprotectant in the prevention of hearing loss in patients receiving AMI alone and in combination with FUR.
Collapse
Affiliation(s)
- Marek Zadrożniak
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marcin Szymański
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
4
|
Weng M, Zhao R, Niu Q, Zeng Y, Wang X, Gao X, Han Z, Bing J, Xi C, Liu J, Xu J, Yang S, Zeng S. Adenovirus-mediated effects of Wnt and Notch signalling pathways on hair cell regeneration in mice. Biochem Biophys Res Commun 2023; 658:44-54. [PMID: 37023614 DOI: 10.1016/j.bbrc.2023.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Some genes are delivered to cochleae by adenoviruses to restore partial hearing function. This provides promising prospects for gene therapies for hearing loss from hair cell damage. To study the adenovirus (AD)-mediated effect of the Wnt and Notch signalling pathways on hair cell regeneration in the mouse cochlea, we constructed a β-catenin-adenovirus (β-catenin-AD) to increase the activity of the Wnt signalling pathway and a NICD (intracellular domain of Notch1)-RNAi-adenovirus to decrease the activity of the Notch signalling pathway (NICD-RNAi-AD). Our study indicated that approximately 40% of supporting cells in the cochleae damaged by gentamicin were infected with the adenoviruses. Following the β-catenin-AD-mediated increase in Wnt signalling pathway activity, mitotic regeneration was increased, while direct transdifferentiation was increased after the NICD-RNAi-AD-mediated decrease in Notch signalling pathway activity. The expected synergistic interaction on hair cell regeneration was not obtained after coinfection of β-catenin-AD and NICD-RNAi-AD into the damaged cochleae, which might be due to the low cotransfection efficiency to supporting cells. Our study indicated that it may be possible to develop AD mediated gene therapies for hearing loss that act by regulating the Wnt and Notch signalling pathways.
Collapse
|
5
|
Stepwise fate conversion of supporting cells to sensory hair cells in the chick auditory epithelium. iScience 2023; 26:106046. [PMID: 36818302 PMCID: PMC9932131 DOI: 10.1016/j.isci.2023.106046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor β receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Collapse
|
6
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Gómez-Dorado M, Daudet N, Gale JE, Dawson SJ. Differential regulation of mammalian and avian ATOH1 by E2F1 and its implication for hair cell regeneration in the inner ear. Sci Rep 2021; 11:19368. [PMID: 34588543 PMCID: PMC8481459 DOI: 10.1038/s41598-021-98816-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
The mammalian inner ear has a limited capacity to regenerate its mechanosensory hair cells. This lack of regenerative capacity underlies the high incidence of age-related hearing loss in humans. In contrast, non-mammalian vertebrates can form new hair cells when damage occurs, a mechanism that depends on re-activation of expression of the pro-hair cell transcription factor Atoh1. Here, we show that members of the E2F transcription factor family, known to play a key role in cell cycle progression, regulate the expression of Atoh1. E2F1 activates chicken Atoh1 by directly interacting with a cis-regulatory region distal to the avian Atoh1 gene. E2F does not activate mouse Atoh1 gene expression, since this regulatory element is absent in mammals. We also show that E2F1 expression changes dynamically in the chicken auditory epithelium during ototoxic damage and hair cell regeneration. Therefore, we propose a model in which the mitotic regeneration of non-mammalian hair cells is due to E2F1-mediated activation of Atoh1 expression, a mechanism which has been lost in mammals.
Collapse
Affiliation(s)
| | - Nicolas Daudet
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
8
|
Bai H, Yang S, Xi C, Wang X, Xu J, Weng M, Zhao R, Jiang L, Gao X, Bing J, Zhang M, Zhang X, Han Z, Zeng S. Signaling pathways (Notch, Wnt, Bmp and Fgf) have additive effects on hair cell regeneration in the chick basilar papilla after streptomycin injury in vitro: Additive effects of signaling pathways on hair cell regeneration. Hear Res 2020; 401:108161. [PMID: 33422722 DOI: 10.1016/j.heares.2020.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/12/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Hair cells can be regenerated after damage by transdifferentiation in which a supporting cell directly differentiates into a hair cell without mitosis. However, such regeneration is at the cost of exhausting the support cells in the mammalian mature cochlea. Thus, more effective methods should be found to promote mitotic regeneration but partially preserve support cells after damage. To address the issue, we first injured hair cells in the chick basilar papillae (BP) by treatment with streptomycin in vitro. We then compared the mitotic regeneration on the neural side in the middle part of BP after treatment with a pharmacological inhibitor or agonist of the Notch (DAPT), Wnt (LiCl), Bmp (Noggin) or Fgf (SU5402) signaling pathway, with that after treatment with combinations of two or three inhibitors or agonist of these pathways. Our results indicate that treatments with a single inhibitor or agonist of the Notch, Wnt, Bmp or Fgf signaling pathway could significantly increase mitotic regeneration as well as direct transdifferentiation. The results also show that hair cells (Myosin 7a+), support cells (Sox2+) and mitotically regenerated hair cells (Myosin 7a+/Sox2+/BrdU+) increased significantly on the neural side in the middle part of BP after two or three combinations of the inhibition of Notch, Bmp or Fgf signaling pathway or the activation of Wnt signaling pathway, besides the reported coregulatory effects of Notch and Wnt signaling. The study of the effects of systematic combinations of pathway modulators provided more insight into hair cell regeneration from mitosis.
Collapse
Affiliation(s)
- Huanju Bai
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Siyuan Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158 China; Hainan Instistute of Science and Technology, Haikou, 571126 China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Xi Wang
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Jincao Xu
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Menglu Weng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Ruxia Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Lingling Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Xue Gao
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China
| | - Meiguang Zhang
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China
| | - Xinwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158 China
| | - Zhongming Han
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088 China; Department of Otorhinolaryngolgoy, He Bei YanDa Hospital, Hebei Medical University, Hebei, China 065201.
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, 100875 China.
| |
Collapse
|
9
|
Matsunaga M, Kita T, Yamamoto R, Yamamoto N, Okano T, Omori K, Sakamoto S, Nakagawa T. Initiation of Supporting Cell Activation for Hair Cell Regeneration in the Avian Auditory Epithelium: An Explant Culture Model. Front Cell Neurosci 2020; 14:583994. [PMID: 33281558 PMCID: PMC7688741 DOI: 10.3389/fncel.2020.583994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
Sensorineural hearing loss is a common disability often caused by the loss of sensory hair cells in the cochlea. Hair cell (HCs) regeneration has long been the main target for the development of novel therapeutics for sensorineural hearing loss. In the mammalian cochlea, hair cell regeneration is limited, but the auditory epithelia of non-mammalian organisms retain the capacity for hair cell regeneration. In the avian basilar papilla (BP), supporting cells (SCs), which give rise to regenerated hair cells, are usually quiescent. Hair cell loss induces both direct transdifferentiation and mitotic division of supporting cells. Here, we established an explant culture model for hair cell regeneration in chick basilar papillae and validated it for investigating the initial phase of hair cell regeneration. The histological assessment demonstrated hair cell regeneration via direct transdifferentiation of supporting cells. Labeling with 5-ethynyl-2′-deoxyuridine (EdU) revealed the occurrence of mitotic division in the supporting cells at specific locations in the basilar papillae, while no EdU labeling was observed in newly generated hair cells. RNA sequencing indicated alterations in known signaling pathways associated with hair cell regeneration, consistent with previous findings. Also, unbiased analyses of RNA sequencing data revealed novel genes and signaling pathways that may be related to the induction of supporting cell activation in the chick basilar papillae. These results indicate the advantages of our explant culture model of the chick basilar papillae for exploring the molecular mechanisms of hair cell regeneration.
Collapse
Affiliation(s)
- Mami Matsunaga
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Kita
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Okano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
LIN28B/ let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling. Proc Natl Acad Sci U S A 2020; 117:22225-22236. [PMID: 32826333 DOI: 10.1073/pnas.2000417117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mammalian target of rapamycin (mTOR) activity. Employing murine cochlear organoid and explant cultures to model mitotic and nonmitotic mechanisms of hair cell generation, we show that loss of LIN28B function, due to its conditional deletion, or due to overexpression of the antagonistic miRNA let-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and nonmitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner.
Collapse
|
11
|
Wan L, Lovett M, Warchol ME, Stone JS. Vascular endothelial growth factor is required for regeneration of auditory hair cells in the avian inner ear. Hear Res 2020; 385:107839. [PMID: 31760261 DOI: 10.1016/j.heares.2019.107839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Hair cells in the auditory organ of the vertebrate inner ear are the sensory receptors that convert acoustic stimuli into electrical signals that are conveyed along the auditory nerve to the brainstem. Hair cells are highly susceptible to ototoxic drugs, infection, and acoustic trauma, which can cause cellular degeneration. In mammals, hair cells that are lost after damage are not replaced, leading to permanent hearing impairments. By contrast, supporting cells in birds and other non-mammalian vertebrates regenerate hair cells after damage, which restores hearing function. The cellular mechanisms that regulate hair cell regeneration are not well understood. We investigated the role of vascular endothelial growth factor (VEGF) during regeneration of auditory hair cells in chickens after ototoxic injury. Using RNA-Seq, immunolabeling, and in situ hybridization, we found that VEGFA, VEGFC, VEGFR1, VEGFR2, and VEGFR3 were expressed in the auditory epithelium, with VEGFA expressed in hair cells and VEGFR1 and VEGFR2 expressed in supporting cells. Using organotypic cultures of the chicken cochlear duct, we found that blocking VEGF receptor activity during hair cell injury reduced supporting cell proliferation as well as the numbers of regenerated hair cells. By contrast, addition of recombinant human VEGFA to organ cultures caused an increase in both supporting cell division and hair cell regeneration. VEGF's effects on supporting cells were preserved in isolated supporting cell cultures, indicating that VEGF can act directly upon supporting cells. These observations demonstrate a heretofore uncharacterized function for VEGF signaling as a critical positive regulator of hair cell regeneration in the avian inner ear.
Collapse
Affiliation(s)
- Liangcai Wan
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, 98195, United States.
| | - Michael Lovett
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, United States.
| | - Mark E Warchol
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States.
| | - Jennifer S Stone
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
12
|
Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res 2019; 385:107838. [PMID: 31751832 DOI: 10.1016/j.heares.2019.107838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022]
Abstract
In amniotes, head movements are encoded by two types of vestibular hair cells (type I and type II) with unique morphology, physiology, and innervation. After hair cell destruction in mature rodents, supporting cells regenerate some type II hair cells, but no type I hair cells are replaced. The transcription factor Atoh1 is required for hair cell development, and Atoh1 is upregulated in supporting cells, the hair cell progenitors, in mature chickens and mice following hair cell damage. We investigated whether Atoh1 is required for type II hair cell regeneration in adult mice after genetic ablation of hair cells. First, we used a knock-in Atoh1 reporter to demonstrate that supporting cells in the utricle, a vestibular organ that detects linear acceleration of the head, upregulate Atoh1 expression by 7 days after hair cell destruction was initiated. Next, we labeled supporting cells prior to damage and fate-mapped them over time to test whether conditional deletion of Atoh1 from supporting cells prevented them from converting into hair cells after damage. In mice with normal Atoh1 expression, fate-mapped supporting cells in the adult utricle gave rise to hundreds of type II hair cells after hair cell destruction, but they did not form new type I hair cells. By contrast, mice with Atoh1 deletion prior to hair cell damage had only 10-20 fate-mapped type II hair cells per utricle at 3 weeks post-damage, and numbers did not change at 12 weeks after hair cell destruction. Supporting cells had normal cell shape and nuclear density up to 12 weeks after Atoh1 deletion. Similar observations were made in two other vestibular organs, the saccule and the lateral ampulla. Our findings demonstrate that Atoh1 is necessary in adult mouse supporting cells for regeneration of type II vestibular hair cells and that deletion of Atoh1 from supporting cells prior to damage does not appear to induce supporting cells to die or to proliferate.
Collapse
|
13
|
Transcriptomic analysis of mouse cochleae suffering from gentamicin damage reveals the signalling pathways involved in hair cell regeneration. Sci Rep 2019; 9:10494. [PMID: 31324869 PMCID: PMC6642124 DOI: 10.1038/s41598-019-47051-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/05/2019] [Indexed: 01/13/2023] Open
Abstract
There is a strong capacity for hair cell regeneration after damage in the inner ear of non-mammals. However, mammalian hair cells are substantially unable to regenerate. To obtain insights into the mechanism of this difference, we analyzed the transcriptomic changes in the mouse cochleae suffered from gentamicin damage and compared them with those in the chick cochleae suffered from the same damage. The results indicated that 2,230 genes had significantly differential expression between the gentamicin- and saline-treated mouse cochleae. Some of the differentially expressed genes were grouped into 265 signaling pathways, including the Notch, Wnt (Wingless and INT-1), Bmp (bone morphogenetic protein), FGF (fibroblast growth factor) and Shh (sonic hedgehog) pathways. Using pharmacological inhibitors or agonists of these pathways, the effects of these pathways on hair cell regeneration were further studied. The results indicated that Bmp alone and its coregulation with the Notch or Wnt signaling pathways increased the numbers of generated cells from transdifferentiation or proliferation in the mouse cochlea after damage, in addition to the reported coregulation of Notch and Wnt. Thus, this work indicates a new signaling pathway (Bmp) and its synergetic coregulation in mammalian hair cell regeneration, providing potential therapeutic targets to increase mammalian hair cell regeneration.
Collapse
|
14
|
McGovern MM, Randle MR, Cuppini CL, Graves KA, Cox BC. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019; 146:146/4/dev171009. [PMID: 30770379 DOI: 10.1242/dev.171009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Supporting cells (SCs) are known to spontaneously regenerate hair cells (HCs) in the neonatal mouse cochlea, yet little is known about the relative contribution of distinct SC subtypes which differ in morphology and function. We have previously shown that HC regeneration is linked to Notch signaling, and some SC subtypes, but not others, lose expression of the Notch effector Hes5 Other work has demonstrated that Lgr5-positive SCs have an increased capacity to regenerate HCs; however, several SC subtypes express Lgr5. To further investigate the source for spontaneous HC regeneration, we used three CreER lines to fate-map distinct groups of SCs during regeneration. Fate-mapping either alone or combined with a mitotic tracer showed that pillar and Deiters' cells contributed more regenerated HCs overall. However, when normalized to the total fate-mapped population, pillar, Deiters', inner phalangeal and border cells had equal capacity to regenerate HCs, and all SC subtypes could divide after HC damage. Investigating the mechanisms that allow individual SC subtypes to regenerate HCs and the postnatal changes that occur in each group during maturation could lead to therapies for hearing loss.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Michelle R Randle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Candice L Cuppini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA .,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| |
Collapse
|
15
|
Bai H, Wang X, Gao X, Bing J, Wang W, Zhang X, Xi C, Jiang L, Zhang X, Han Z, Zeng S, Xu J. Study of the Mechanisms by Which Aminoglycoside Damage Is Prevented in Chick Embryonic Hair Cells. J Assoc Res Otolaryngol 2018; 20:21-35. [PMID: 30341698 DOI: 10.1007/s10162-018-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/21/2018] [Indexed: 11/27/2022] Open
Abstract
A major side effect of aminoglycoside antibiotics is mammalian hair cell death. It is thus intriguing that embryonic chick hair cells treated with aminoglycosides at embryonic day (E) 12 are insensitive to ototoxicity. To exclude some unknown factors in vivo that might be involved in preventing aminoglycoside damage to embryonic hair cells, we first cultured chick embryonic basilar papilla (BP) with an aminoglycoside antibiotic in vitro. The results indicated that the hair cells were almost intact at E12 and E14 and were only moderately damaged in most parts of the BP at E16 and E18. Generally, hair cells residing in the approximate and abneural regions were more susceptible to streptomycin damage. After incubation with gentamicin-conjugated Texas Red (GTTR), which is typically used to trace the entry route of aminoglycosides, GTTR fluorescence was not remarkable in hair cells at E12, was weak at E14, but was relatively strong in the proximal part of BP at E18. This result indicates that the amounts of GTTR that entered the hair cells are related to the degrees of aminoglycoside damage. The study further showed that the fluorescence intensity of GTTR decreased to a low level at E14 to E18 after disruption of mechanotransduction machinery, suggesting that the aminoglycoside entry into hair cells was mainly through mechanotransduction channels. In addition, most of the entered GTTR was not found to be colocalized with mitochondria even at E18. This finding provides another reason to explain why embryonic chick hair cells are insensitive to aminoglycoside damage.
Collapse
Affiliation(s)
- Huanju Bai
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xi Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xue Gao
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Weiqian Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xuebo Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Lingling Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xinwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zhongming Han
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China.
| | - Jincao Xu
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|
16
|
Zhang LW, Cang XH, Chen Y, Guan MX. In vitro culture of mammalian inner ear hair cells. J Zhejiang Univ Sci B 2018; 20:170-179. [PMID: 30187712 DOI: 10.1631/jzus.b1700613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Auditory function in vertebrates depends on the transduction of sound vibrations into electrical signals by inner ear hair cells. In general, hearing loss resulting from hair cell damage is irreversible because the human ear has been considered to be incapable of regenerating or repairing these sensory elements following severe injury. Therefore, regeneration and protection of inner ear hair cells have become an exciting, rapidly evolving field of research during the last decade. However, mammalian auditory hair cells are few in number, experimentally inaccessible, and barely proliferate postnatally in vitro. Various in vitro primary culture systems of inner ear hair cells have been established by different groups, although many challenges remain unresolved. Here, we briefly explain the structure of the inner ear, summarize the published methods of in vitro hair cell cultures, and propose a feasible protocol for culturing these cells, which gave satisfactory results in our study. A better understanding of in vitro hair cell cultures will substantially facilitate research involving auditory functions, drug development, and the isolation of critical molecules involved in hair cell biology.
Collapse
Affiliation(s)
- Lu-Wen Zhang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Hui Cang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
17
|
Lewis RM, Keller JJ, Wan L, Stone JS. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium. Hear Res 2018; 364:1-11. [PMID: 29754876 DOI: 10.1016/j.heares.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/11/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
Abstract
Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors.
Collapse
Affiliation(s)
- Rebecca M Lewis
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States; Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jesse J Keller
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States; Oregon Health Sciences University, Portland, OR, United States
| | - Liangcai Wan
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States; Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jennifer S Stone
- University of Washington School of Medicine and the Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, United States.
| |
Collapse
|
18
|
Jiang L, Xu J, Jin R, Bai H, Zhang M, Yang S, Zhang X, Zhang X, Han Z, Zeng S. Transcriptomic analysis of chicken cochleae after gentamicin damage and the involvement of four signaling pathways (Notch, FGF, Wnt and BMP) in hair cell regeneration. Hear Res 2018; 361:66-79. [DOI: 10.1016/j.heares.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
19
|
Scheibinger M, Ellwanger DC, Corrales CE, Stone JS, Heller S. Aminoglycoside Damage and Hair Cell Regeneration in the Chicken Utricle. J Assoc Res Otolaryngol 2017; 19:17-29. [PMID: 29134476 DOI: 10.1007/s10162-017-0646-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022] Open
Abstract
In this study, we present a systematic characterization of hair cell loss and regeneration in the chicken utricle in vivo. A single unilateral surgical delivery of streptomycin caused robust decline of hair cell numbers in striolar as well as extrastriolar regions, which in the striola was detected very early, 6 h post-insult. During the initial 12 h of damage response, we observed global repression of DNA replication, in contrast to the natural, mitotic hair cell production in undamaged control utricles. Regeneration of hair cells in striolar and extrastriolar regions occurred via high rates of asymmetric supporting cell divisions, accompanied by delayed replenishment by symmetric division. While asymmetric division of supporting cells is the main regenerative response to aminoglycoside damage, the detection of symmetric divisions supports the concept of direct transdifferentiation where supporting cells need to be replenished after their phenotypic conversion into new hair cells. Supporting cell divisions appear to be well coordinated because total supporting cell numbers throughout the regenerative process were invariant, despite the initial large-scale loss of hair cells. We conclude that a single ototoxic drug application provides an experimental framework to study the precise onset and timing of utricle hair cell regeneration in vivo. Our findings indicate that initial triggers and signaling events occur already within a few hours after aminoglycoside exposure. Direct transdifferentiation and asymmetric division of supporting cells to generate new hair cells subsequently happen largely in parallel and persist for several days.
Collapse
Affiliation(s)
- Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Daniel C Ellwanger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - C Eduardo Corrales
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otology and Laryngology, Harvard Medical School and Brigham and Woman's Hospital, Boston, MA, 02115, USA
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, 98195, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Iki T, Tanaka M, Kitajiri SI, Kita T, Kawasaki Y, Mizukoshi A, Fujibuchi W, Nakagawa T, Nakahata T, Ito J, Omori K, Saito MK. Microarray analyses of otospheres derived from the cochlea in the inner ear identify putative transcription factors that regulate the characteristics of otospheres. PLoS One 2017; 12:e0179901. [PMID: 28662075 PMCID: PMC5491065 DOI: 10.1371/journal.pone.0179901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Various tissues possess tissue-specific stem/progenitor cells, including the inner ears. Stem/progenitor cells of the inner ear can be isolated as so-called otospheres from differentiated cells using a sphere forming assay. Although recent studies have demonstrated the characteristics of otospheres to some extent, most of the features of these cells are unknown. In this report, we describe the findings of transcriptome analyses with a cDNA microarray of otospheres derived from the cochleae of the inner ears of neonatal mice in order to clarify the gene expression profile of otic stem/progenitor cells. There were common transcription factors between otospheres and embryonic stem cells, which were supposed to be due to the stemness of otospheres. In comparison with the cochlear sensory epithelium, the otospheres shared characteristics with the cochlea, although several transcription factors specific for otospheres were identified. These transcription factors are expected to be essential for maintaining the characteristics of otospheres, and appear to be candidate genes that promote the direct conversion of cells into otic stem/progenitor cells.
Collapse
Affiliation(s)
- Takehiro Iki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michihiro Tanaka
- Information and Security Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shin-ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Kyoto, Japan
| | - Tomoko Kita
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akifumi Mizukoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wataru Fujibuchi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Hearing Communication Medical Center, Shiga Medical Center Research Institute, Shiga, Japan
| | - Koichi Omori
- Department of Otolaryngology Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
22
|
Mashanov VS, Zueva OR, García-Arrarás JE. Inhibition of cell proliferation does not slow down echinoderm neural regeneration. Front Zool 2017; 14:12. [PMID: 28250799 PMCID: PMC5324207 DOI: 10.1186/s12983-017-0196-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/07/2017] [Indexed: 01/14/2023] Open
Abstract
Background Regeneration of the damaged central nervous system is one of the most interesting post-embryonic developmental phenomena. Two distinct cellular events have been implicated in supplying regenerative neurogenesis with cellular material – generation of new cells through cell proliferation and recruitment of already existing cells through cell migration. The relative contribution and importance of these two mechanisms is often unknown. Methods Here, we use the regenerating radial nerve cord (RNC) of the echinoderm Holothuria glaberrima as a model of extensive post-traumatic neurogenesis in the deuterostome central nervous system. To uncouple the effects of cell proliferation from those of cell migration, we treated regenerating animals with aphidicolin, a specific inhibitor of S-phase DNA replication. To monitor the effect of aphidicolin on DNA synthesis, we used BrdU immunocytochemistry. The specific radial glial marker ERG1 was used to label the regenerating RNC. Cell migration was tracked with vital staining with the lipophilic dye DiI. Results Aphidicolin treatment resulted in a significant 2.1-fold decrease in cell proliferation. In spite of this, the regenerating RNC in the treated animals did not differ in histological architecture, size and cell number from its counterpart in the control vehicle-treated animals. DiI labeling showed extensive cell migration in the RNC. Some cells migrated from as far as 2 mm away from the injury plane to contribute to the neural outgrowth. Conclusions We suggest that inhibition of cell division in the regenerating RNC of H. glaberrima is compensated for by recruitment of cells, which migrate into the RNC outgrowth from deeper regions of the neuroepithelium. Neural regeneration in echinoderms is thus a highly regulative developmental phenomenon, in which the size of the cell pool can be controlled either by cell proliferation or cell migration, and the latter can neutralize perturbations in the former. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vladimir S Mashanov
- University of North Florida, 1 UNF Drive, Jacksonville, 32224 FL USA.,University of Puerto Rico, Rio Piedras, PO Box 70377, San Juan, 00936-8377 PR USA
| | - Olga R Zueva
- University of North Florida, 1 UNF Drive, Jacksonville, 32224 FL USA.,University of Puerto Rico, Rio Piedras, PO Box 70377, San Juan, 00936-8377 PR USA
| | | |
Collapse
|
23
|
Franco B, Malgrange B. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation. Stem Cells 2017; 35:551-556. [PMID: 28102558 DOI: 10.1002/stem.2554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 12/28/2022]
Abstract
It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556.
Collapse
Affiliation(s)
- Bénédicte Franco
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| |
Collapse
|
24
|
Jansson L, Kim GS, Cheng AG. Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 2015; 9:66. [PMID: 25814927 PMCID: PMC4356074 DOI: 10.3389/fncel.2015.00066] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/12/2015] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.
Collapse
Affiliation(s)
- Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Grace S Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| |
Collapse
|
25
|
Abstract
The loss of auditory hair cells triggers repair responses within the population of nonsensory supporting cells. When hair cells are irreversibly lost from the mammalian cochlea, supporting cells expand to fill the resulting lesions in the sensory epithelium, an initial repair process that is dependent on gap junctional intercellular communication (GJIC). In the chicken cochlea (the basilar papilla or BP), dying hair cells are extruded from the epithelium and supporting cells expand to fill the lesions and then replace hair cells via mitotic and/or conversion mechanisms. Here, we investigated the involvement of GJIC in the initial epithelial repair process in the aminoglycoside-damaged BP. Gentamicin-induced hair cell loss was associated with a decrease of chicken connexin43 (cCx43) immunofluorescence, yet cCx30-labeled gap junction plaques remained. Fluorescence recovery after photobleaching experiments confirmed that the GJIC remained robust in gentamicin-damaged explants, but regionally asymmetric coupling was no longer evident. Dye injections in slice preparations from undamaged BP explants identified cell types with characteristic morphologies along the neural-abneural axis, but these were electrophysiologically indistinct. In gentamicin-damaged BP, supporting cells expanded to fill space formerly occupied by hair cells and displayed more variable electrophysiological phenotypes. When GJIC was inhibited during the aminoglycoside damage paradigm, the epithelial repair response halted. Dying hair cells were retained within the sensory epithelium and supporting cells remained unexpanded. These observations suggest that repair of the auditory epithelium shares common mechanisms across vertebrate species and emphasize the importance of functional gap junctions in maintaining a homeostatic environment permissive for subsequent hair cell regeneration.
Collapse
|
26
|
Honda A, Freeman SD, Sai X, Ladher RK, O'Neill P. From placode to labyrinth: culture of the chicken inner ear. Methods 2014; 66:447-53. [PMID: 23792918 DOI: 10.1016/j.ymeth.2013.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/17/2013] [Accepted: 06/13/2013] [Indexed: 11/20/2022] Open
Abstract
The inner ear transduces the mechanical stimuli that are associated with sound and balance perception. Missteps during its formation often result in deafness, and thus understanding otic development has a profound clinical relevance. The intricate complexity of the inner ear is derived from a simple epithelial sheet during embryogenesis. Study of this process in vitro has provided insight into the mechanisms of otic induction, patterning and differentiation. This article details methods for the culture of otic placode, otocyst, and basilar papilla, providing a toolkit for the investigation of multiple facets of otic organogenesis, for regeneration studies and for setting up small molecule screens to identify possible therapeutic targets.
Collapse
Affiliation(s)
- Akira Honda
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Stephen D Freeman
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - XiaoRei Sai
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Raj K Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Paul O'Neill
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
27
|
Hayashi Y, Yamamoto N, Nakagawa T, Ito J. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci 2013; 56:29-38. [DOI: 10.1016/j.mcn.2013.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022] Open
|
28
|
Ryals BM, Dent ML, Dooling RJ. Return of function after hair cell regeneration. Hear Res 2013; 297:113-20. [PMID: 23202051 PMCID: PMC3593961 DOI: 10.1016/j.heares.2012.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 11/20/2022]
Abstract
The ultimate goal of hair cell regeneration is to restore functional hearing. Because birds begin perceiving and producing song early in life, they provide a propitious model for studying not only whether regeneration of lost hair cells can return auditory sensitivity but also whether this regenerated periphery can restore complex auditory perception and production. They are the only animal where hair cell regeneration occurs naturally after hair cell loss and where the ability to correctly perceive and produce complex acoustic signals is critical to procreation and survival. The purpose of this review article is to survey the most recent literature on behavioral measures of auditory functional return in adult birds after hair cell regeneration. The first portion of the review summarizes the effect of ototoxic drug induced hair cell loss and regeneration on hearing loss and recovery for pure tones. The second portion reviews studies of complex, species-specific vocalization discrimination and recognition after hair cell regeneration. Finally, we discuss the relevance of temporary hearing loss and recovery through hair cell regeneration on complex call and song production. Hearing sensitivity is restored, except for the highest frequencies, after hair cell regeneration in birds, but there are enduring changes to complex auditory perception. These changes do not appear to provide any obstacle to future auditory or vocal learning. This article is part of a Special Issue entitled "Inner Ear Development and Regeneration".
Collapse
Affiliation(s)
- Brenda M. Ryals
- Department of Communication Sciences and Disorders, James Madison University, Harrisonburg, VA 22807; phone: 540-568-7930; fax: 540-568-8077
| | - Micheal L. Dent
- Department of Psychology, University at Buffalo-SUNY, Buffalo, NY 14260; phone: 716-645-0266; fax: 716-645-3801
| | - Robert J. Dooling
- Department of Psychology and Center for the Comparative Evolutionary Biology of Hearing, University of Maryland, College Park, MD 20742; phone: 301-405-5925
| |
Collapse
|
29
|
Monzack EL, Cunningham LL. Lead roles for supporting actors: critical functions of inner ear supporting cells. Hear Res 2013; 303:20-9. [PMID: 23347917 DOI: 10.1016/j.heares.2013.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/27/2022]
Abstract
Many studies that aim to investigate the underlying mechanisms of hearing loss or balance disorders focus on the hair cells and spiral ganglion neurons of the inner ear. Fewer studies have examined the supporting cells that contact both of these cell types in the cochlea and vestibular end organs. While the roles of supporting cells are still being elucidated, emerging evidence indicates that they serve many functions vital to maintaining healthy populations of hair cells and spiral ganglion neurons. Here we review recent studies that highlight the critical roles supporting cells play in the development, function, survival, death, phagocytosis, and regeneration of other cell types within the inner ear. Many of these roles have also been described for glial cells in other parts of the nervous system, and lessons from these other systems continue to inform our understanding of supporting cell functions. This article is part of a Special Issue entitled "Annual Reviews 2013".
Collapse
Affiliation(s)
- Elyssa L Monzack
- National Institute on Deafness and Other Communication Disorders, 5 Research Court, Rockville, MD 20850, USA.
| | | |
Collapse
|
30
|
Rubel EW, Furrer SA, Stone JS. A brief history of hair cell regeneration research and speculations on the future. Hear Res 2013; 297:42-51. [PMID: 23321648 DOI: 10.1016/j.heares.2012.12.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/24/2022]
Abstract
Millions of people worldwide suffer from hearing and balance disorders caused by loss of the sensory hair cells that convert sound vibrations and head movements into electrical signals that are conveyed to the brain. In mammals, the great majority of hair cells are produced during embryogenesis. Hair cells that are lost after birth are virtually irreplaceable, leading to permanent disability. Other vertebrates, such as fish and amphibians, produce hair cells throughout life. However, hair cell replacement after damage to the mature inner ear was either not investigated or assumed to be impossible until studies in the late 1980s proved this to be false. Adult birds were shown to regenerate lost hair cells in the auditory sensory epithelium after noise- and ototoxic drug-induced damage. Since then, the field of hair cell regeneration has continued to investigate the capacity of the auditory and vestibular epithelia in vertebrates (fishes, birds, reptiles, and mammals) to regenerate hair cells and to recover function, the molecular mechanisms governing these regenerative capabilities, and the prospect of designing biologically-based treatments for hearing loss and balance disorders. Here, we review the major findings of the field during the past 25 years and speculate how future inner ear repair may one day be achieved.
Collapse
Affiliation(s)
- Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology and Head & Neck Surgery, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
31
|
Warchol ME, Schwendener RA, Hirose K. Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea. PLoS One 2012; 7:e51574. [PMID: 23240046 PMCID: PMC3519890 DOI: 10.1371/journal.pone.0051574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/01/2012] [Indexed: 02/02/2023] Open
Abstract
Macrophages are the primary effector cells of the innate immune system and are also activated in response to tissue injury. The avian cochlea contains a population of resident macrophages, but the precise function of those cells is not known. The present study characterized the behavior of cochlear macrophages after aminoglycoside ototoxicity and also examined the possible role of macrophages in sensory regeneration. We found that the undamaged chick cochlea contains a large resting population of macrophages that reside in the hyaline cell region, immediately outside the abneural (inferior) border of the sensory epithelium. Following ototoxic injury, macrophages appear to migrate out of the hyaline cell region and towards the basilar membrane, congregating immediately below the lesioned sensory epithelium. In order to determine whether recruited macrophages contribute to the regeneration of sensory receptors, we quantified supporting cell proliferation and hair cell recovery after the elimination of most resident macrophages via application of liposomally-encapsulated clodronate. Examination of macrophage-depleted specimens at two days following ototoxic injury revealed no deficits in hair cell clearance, when compared to normal controls. In addition, we found that elimination of macrophages did not affect either regenerative proliferation of supporting cells or the production of replacement hair cells. However, we did find that macrophage-depleted cochleae contained reduced numbers of proliferative mesothelial cells below the basilar membrane. Our data suggest that macrophages are not required for normal debris clearance and regeneration, but that they may play a role in the maintenance of the basilar membrane.
Collapse
Affiliation(s)
- Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | |
Collapse
|
32
|
Lewis RM, Hume CR, Stone JS. Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens. Hear Res 2012; 289:74-85. [PMID: 22543087 PMCID: PMC3371146 DOI: 10.1016/j.heares.2012.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022]
Abstract
Loss of hair cells in humans leads to irreversible hearing deficits, since auditory hair cells are not replaced. In contrast, hair cells are regenerated in the auditory epithelium of mature birds after damage by non-sensory supporting cells that transdifferentiate into hair cells by mitotic and/or non-mitotic mechanisms. Factors controlling these processes are poorly understood. The basic helix-loop-helix transcription factor ATOH1 is both necessary and sufficient for developmental hair cell differentiation, but it is unclear if it plays the same role in the mitotic and non-mitotic pathways in hair cell regeneration. We examined Atoh1 expression and function during hair cell regeneration in chickens. Atoh1 transcripts were increased in many supporting cells in the damaged auditory epithelium shortly after ototoxin administration and later became restricted to differentiating hair cells. Fate-mapping in vitro using an Atoh1 enhancer reporter demonstrated that only 56% of the supporting cells that spontaneously upregulate Atoh1 enhancer activity after damage acquired the hair cell fate. Inhibition of notch signaling using a gamma secretase antagonist stimulated an increase in Atoh1 reporter activity and induced a higher proportion of supporting cells with Atoh1 activity (73%) to differentiate as hair cells. Forced overexpression of Atoh1 in supporting cells triggered 66% of them to acquire the hair cell fate and nearly tripled their likelihood of cell cycle entry. These findings demonstrate that Atoh1 is broadly upregulated in supporting cells after damage, but a substantial proportion of supporting cells with Atoh1 activation fails to acquire hair cell features, in part due to gamma secretase-dependent activities.
Collapse
Affiliation(s)
- Rebecca M. Lewis
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Clifford R. Hume
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Otolaryngology e Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Jennifer S. Stone
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Otolaryngology e Head and Neck Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Jacques BE, Dabdoub A, Kelley MW. Fgf signaling regulates development and transdifferentiation of hair cells and supporting cells in the basilar papilla. Hear Res 2012; 289:27-39. [PMID: 22575790 DOI: 10.1016/j.heares.2012.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022]
Abstract
The avian basilar papilla (BP) is a likely homolog of the auditory sensory epithelium of the mammalian cochlea, the organ of Corti. During mammalian development Fibroblast growth factor receptor-3 (Fgfr3) is known to regulate the differentiation of auditory mechanosensory hair cells (HCs) and supporting cells (SCs), both of which are required for sound detection. Fgfr3 is expressed in developing progenitor cells (PCs) and SCs of both the BP and the organ of Corti; however its role in BP development is unknown. Here we utilized an in vitro whole organ embryonic culture system to examine the role of Fgf signaling in the developing avian cochlea. SU5402 (an antagonist of Fgf signaling) was applied to developing BP cultures at different stages to assay the role of Fgf signaling during HC formation. Similar to the observed effects of inhibition of Fgfr3 in the mammalian cochlea, Fgfr inhibition in the developing BP increased the number of HCs that formed. This increase was not associated with increased proliferation, suggesting that inhibition of the Fgf pathway leads to the direct conversion of PCs or supporting cells into HCs, a process known as transdifferentiation. This also implies that Fgf signaling is required to prevent the conversion of PCs and SCs into HCs. The ability of Fgf signaling to inhibit transdifferentiation suggests that its down-regulation may be essential for the initial steps of HC formation, as well as for the maintenance of SC phenotypes.
Collapse
Affiliation(s)
- Bonnie E Jacques
- Laboratory of Cochlear Development, NIDCD, NIH, Porter Neuroscience Research Center, 35 Convent Dr, Room 2A-100, Bethesda, MD 20892-3729, USA.
| | | | | |
Collapse
|
34
|
Ronaghi M, Nasr M, Heller S. Concise review: Inner ear stem cells--an oxymoron, but why? Stem Cells 2012; 30:69-74. [PMID: 22102534 DOI: 10.1002/stem.785] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hearing loss, caused by irreversible loss of cochlear sensory hair cells, affects millions of patients worldwide. In this concise review, we examine the conundrum of inner ear stem cells, which obviously are present in the inner ear sensory epithelia of nonmammalian vertebrates, giving these ears the ability to functionally recover even from repetitive ototoxic insults. Despite the inability of the mammalian inner ear to regenerate lost hair cells, there is evidence for cells with regenerative capacity because stem cells can be isolated from vestibular sensory epithelia and from the neonatal cochlea. Challenges and recent progress toward identification of the intrinsic and extrinsic signaling pathways that could be used to re-establish stemness in the mammalian organ of Corti are discussed.
Collapse
Affiliation(s)
- Mohammad Ronaghi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California 94305-5739, USA
| | | | | |
Collapse
|
35
|
Brandon CS, Voelkel-Johnson C, May LA, Cunningham LL. Dissection of adult mouse utricle and adenovirus-mediated supporting-cell infection. J Vis Exp 2012:3734. [PMID: 22491073 DOI: 10.3791/3734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hearing loss and balance disturbances are often caused by death of mechanosensory hair cells, which are the receptor cells of the inner ear. Since there is no cell line that satisfactorily represents mammalian hair cells, research on hair cells relies on primary organ cultures. The best-characterized in vitro model system of mature mammalian hair cells utilizes organ cultures of utricles from adult mice (Figure 1). The utricle is a vestibular organ, and the hair cells of the utricle are similar in both structure and function to the hair cells in the auditory organ, the organ of Corti. The adult mouse utricle preparation represents a mature sensory epithelium for studies of the molecular signals that regulate the survival, homeostasis, and death of these cells. Mammalian cochlear hair cells are terminally differentiated and are not regenerated when they are lost. In non-mammalian vertebrates, auditory or vestibular hair cell death is followed by robust regeneration which restores hearing and balance functions. Hair cell regeneration is mediated by glia-like supporting cells, which contact the basolateral surfaces of hair cells in the sensory epithelium. Supporting cells are also important mediators of hair cell survival and death. We have recently developed a technique for infection of supporting cells in cultured utricles using adenovirus. Using adenovirus type 5 (dE1/E3) to deliver a transgene containing GFP under the control of the CMV promoter, we find that adenovirus specifically and efficiently infects supporting cells. Supporting cell infection efficiency is approximately 25-50%, and hair cells are not infected (Figure 2). Importantly, we find that adenoviral infection of supporting cells does not result in toxicity to hair cells or supporting cells, as cell counts in Ad-GFP infected utricles are equivalent to those in non-infected utricles (Figure 3). Thus adenovirus-mediated gene expression in supporting cells of cultured utricles provides a powerful tool to study the roles of supporting cells as mediators of hair cell survival, death, and regeneration.
Collapse
Affiliation(s)
- Carlene S Brandon
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, USA
| | | | | | | |
Collapse
|
36
|
Taylor RR, Jagger DJ, Forge A. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea. PLoS One 2012; 7:e30577. [PMID: 22299045 PMCID: PMC3267727 DOI: 10.1371/journal.pone.0030577] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 12/21/2011] [Indexed: 01/01/2023] Open
Abstract
Background Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. Methodology/Principal Findings Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca's, suggesting genetic background influences the rate of re-organisation. Conclusions/Significance The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals resulting from genetic influences on the rate at which remodelling occurs may pose challenges to devising the appropriate regenerative therapy for a deaf patient.
Collapse
Affiliation(s)
- Ruth R Taylor
- Centre for Auditory Research, The Ear Institute, University College London, London, United Kingdom.
| | | | | |
Collapse
|
37
|
White PM, Stone JS, Groves AK, Segil N. EGFR signaling is required for regenerative proliferation in the cochlea: conservation in birds and mammals. Dev Biol 2012; 363:191-200. [PMID: 22230616 DOI: 10.1016/j.ydbio.2011.12.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/27/2022]
Abstract
Proliferation and transdifferentiaton of supporting cells in the damaged auditory organ of birds lead to robust regeneration of sensory hair cells. In contrast, regeneration of lost auditory hair cells does not occur in deafened mammals, resulting in permanent hearing loss. In spite of this failure of regeneration in mammals, we have previously shown that the perinatal mouse supporting cells harbor a latent potential for cell division. Here we show that in a subset of supporting cells marked by p75, EGFR signaling is required for proliferation, and this requirement is conserved between birds and mammals. Purified p75+ mouse supporting cells express receptors and ligands for the EGF signaling pathway, and their proliferation in culture can be blocked with the EGFR inhibitor AG1478. Similarly, in cultured chicken basilar papillae, supporting cell proliferation in response to hair cell ablation requires EGFR signaling. In addition, we show that EGFR signaling in p75+ mouse supporting cells is required for the down-regulation of the cell cycle inhibitor p27(Kip1) (CDKN1b) to enable cell cycle re-entry. Taken together, our data suggest that a conserved mechanism involving EGFR signaling governs proliferation of auditory supporting cells in birds and mammals and may represent a target for future hair cell regeneration strategies.
Collapse
Affiliation(s)
- Patricia M White
- Division of Cell Biology and Genetics, House Research Institute, 2100 W 3rd St., Los Angeles, CA 90057, USA
| | | | | | | |
Collapse
|
38
|
Inhibition of Notch activity promotes nonmitotic regeneration of hair cells in the adult mouse utricles. J Neurosci 2011; 31:15329-39. [PMID: 22031879 DOI: 10.1523/jneurosci.2057-11.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The capacity of adult mammals to regenerate sensory hair cells is not well defined. To explore early steps in this process, we examined reactivation of a transiently expressed developmental gene, Atoh1, in adult mouse utricles after neomycin-induced hair cell death in culture. Using an adenoviral reporter for Atoh1 enhancer, we found that Atoh1 transcription is activated in some hair cell progenitors (supporting cells) 3 d after neomycin treatment. By 18 d after neomycin, the number of cells with Atoh1 transcriptional activity increased significantly, but few cells acquired hair cell features (i.e., accumulated ATOH1 or myosin VIIa protein or developed stereocilia). Treatment with DAPT, an inhibitor of γ-secretase, reduced notch pathway activity, enhanced Atoh1 transcriptional activity, and dramatically increased the number of Atoh1-expressing cells with hair cell features, but only in the striolar/juxtastriolar region. Similar effects were seen with TAPI-1, an inhibitor of another enzyme required for notch activity (TACE). Division of supporting cells was rare in any control or DAPT-treated utricles. This study shows that mature mammals have a natural capacity to initiate vestibular hair cell regeneration and suggests that regional notch activity is a significant inhibitor of direct transdifferentiation of supporting cells into hair cells following damage.
Collapse
|
39
|
Frucht CS, Santos-Sacchi J, Navaratnam DS. MicroRNA181a plays a key role in hair cell regeneration in the avian auditory epithelium. Neurosci Lett 2011; 493:44-8. [PMID: 21316421 DOI: 10.1016/j.neulet.2011.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 12/31/2022]
Abstract
Specialized sensory-transducing hair cells regenerate in response to injury in non-mammalian vertebrates such as birds and fish but not in mammals. Previous work has shown that overexpression of microRNA181a (miR181a) in cultured chicken basilar papillae, the avian counterpart of the cochlea, is sufficient to stimulate proliferation with production of new hair cells. The present study investigates the role of miR181a in hair cell regeneration after injury in explants of chicken auditory epithelia. Basilar papillae were explanted from 0-day-old chickens and transfected with either anti-miR181a, which knocks down endogenous miR181a, or a non-targeting miRNA and cultured with streptomycin to eliminate all hair cells from the epithelium. Labeling with BrdU was used to quantify proliferation. Explants exposed to streptomycin and transfected with anti-miR181a had significantly fewer BrdU positive cells than basilar papillae treated with streptomycin and transfected with a non-targeting miRNA. Activated caspase-3 and myosin VI labeling were used to show that the pattern of hair cell death and loss, respectively, were not affected by anti-miR181a transfection. MiR181a downregulation therefore seems to dimish the proliferative component of hair cell regeneration rather than prevent hair cell death following ototoxic injury.
Collapse
Affiliation(s)
- Corey S Frucht
- Medical Scientist Training Program, Yale School of Medicine, 367 Cedar Street, Room 316 ESH, New Haven, CT 06522, USA.
| | | | | |
Collapse
|
40
|
Wright MA, Mo W, Nicolson T, Ribera AB. In vivo evidence for transdifferentiation of peripheral neurons. Development 2010; 137:3047-56. [PMID: 20685733 DOI: 10.1242/dev.052696] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is commonly thought that differentiated neurons do not give rise to new cells, severely limiting the potential for regeneration and repair of the mature nervous system. However, we have identified cells in zebrafish larvae that first differentiate into dorsal root ganglia sensory neurons but later acquire a sympathetic neuron phenotype. These transdifferentiating neurons are present in wild-type zebrafish. However, they are increased in number in larvae that have a mutant voltage-gated sodium channel gene, scn8aa. Sodium channel knock-down promotes migration of differentiated sensory neurons away from the ganglia. Once in a new environment, sensory neurons transdifferentiate regardless of sodium channel expression. These findings reveal an unsuspected plasticity in differentiated neurons that points to new strategies for treatment of nervous system disease.
Collapse
Affiliation(s)
- Melissa A Wright
- Department of Physiology and Biophysics, Neuroscience Graduate Program and Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado, 12800 East 19th Avenue, Mail Stop 8307, PO Box 6511, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
41
|
Gene expression analysis of forskolin treated basilar papillae identifies microRNA181a as a mediator of proliferation. PLoS One 2010; 5:e11502. [PMID: 20634979 PMCID: PMC2901389 DOI: 10.1371/journal.pone.0011502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/15/2010] [Indexed: 01/12/2023] Open
Abstract
Background Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients. Methodology/Principal Findings Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells. Conclusions/Significance These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells.
Collapse
|