1
|
Mohammadi H, Ebrahimian A, Maftoon N. Experimental Study of Needle Insertion into Gerbil Tympanic Membrane. J Assoc Res Otolaryngol 2024; 25:427-450. [PMID: 38992318 PMCID: PMC11639447 DOI: 10.1007/s10162-024-00953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The perforation characteristics and fracture-related mechanical properties of the tympanic membrane (TM) greatly affect surgical procedures like myringotomy and tympanostomy performed on the middle ear. We analyzed the most important features of the gerbil TM perforation using an experimental approach that was based on force measurement during a 2-cycle needle insertion/extraction process. Fracture energy, friction energy, strain energy, and hysteresis loss were taken into consideration for the analysis of the different stages of needle insertion and extraction. The results demonstrated that (1) although the TM shows viscoelastic behavior, the contribution of hysteresis loss was negligible compared to other irreversible dissipated energy components (i.e., fracture energy and friction energy). (2) The TM puncture force did not substantially change during the first hours after animal death, but interestingly, it increased after 1 week due to the drying effects of soft tissue. (3) The needle geometry affected the crack length and the most important features of the force-displacement plot for the needle insertion process (puncture force, puncture displacement, and jump-in force) increased with increasing needle diameter, whereas the insertion velocity only changed the puncture and jump-in forces (both increased with increasing insertion velocity) and did not have a noticeable effect on the puncture displacement. (4) The fracture toughness of the gerbil TM was almost independent of the needle geometry and was found to be around 0.33 ± 0.10 kJ/m2.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Arash Ebrahimian
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Nima Maftoon
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
2
|
Fritzsche F, Maier W, Ruf I. Ontogeny of the malleus in Mesocricetus auratus (Mammalia, Rodentia): Systematic and functional implications for the muroid middle ear. Anat Rec (Hoboken) 2024. [PMID: 39205371 DOI: 10.1002/ar.25565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The three mammalian auditory ossicles enhance sound transmission from the tympanic membrane to the inner ear. The anterior anchoring of the malleus is one of the key characters for functional classification of the auditory ossicles. Previous studies revealed a medial outgrowth of the mallear anterior process, the processus internus praearticularis, which serves as an anchor for the auditory ossicle chain but has been often missed due to its delicate nature. Here we describe the development and morphology of the malleus and its processus internus praearticularis in the cricetine rodent Mesocricetus auratus, compared to selected muroid species (Cricetus cricetus, Peromyscus maniculatus, and Mus musculus). Early postnatal stages of Mesocricetus show the formation of the malleus by fusion of the prearticular and mallear main body. The processus internus praearticularis forms an increasing broad lamina fused anteriorly to the ectotympanic in adult stages of all studied species. Peromyscus and Mus show a distinct orbicular apophysis that increases inertia of the malleus and therefore these species represent the microtype of auditory ossicles. In contrast, the center of mass of the malleus in the studied Cricetinae is close to the anatomical axis of rotation and their auditory ossicles represent the transitional type. The microtype belongs to the grundplan of Muroidea and is plesiomorphic for Cricetidae, whereas the transitional type evolved several times within Muroidea and represents an apomorphic feature of Cricetinae.
Collapse
Affiliation(s)
- Franziska Fritzsche
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Maier
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Evolutionsökologie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, China
| |
Collapse
|
3
|
O’Connell-Rodwell CE, Berezin JL, Dharmarajan A, Ravicz ME, Hu Y, Guan X, O’Connor KN, Puria S. The impact of size on middle-ear sound transmission in elephants, the largest terrestrial mammal. PLoS One 2024; 19:e0298535. [PMID: 38598472 PMCID: PMC11006165 DOI: 10.1371/journal.pone.0298535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/25/2024] [Indexed: 04/12/2024] Open
Abstract
Elephants have a unique auditory system that is larger than any other terrestrial mammal. To quantify the impact of larger middle ear (ME) structures, we measured 3D ossicular motion and ME sound transmission in cadaveric temporal bones from both African and Asian elephants in response to air-conducted (AC) tonal pressure stimuli presented in the ear canal (PEC). Results were compared to similar measurements in humans. Velocities of the umbo (VU) and stapes (VST) were measured using a 3D laser Doppler vibrometer in the 7-13,000 Hz frequency range, stapes velocity serving as a measure of energy entering the cochlea-a proxy for hearing sensitivity. Below the elephant ME resonance frequency of about 300 Hz, the magnitude of VU/PEC was an order of magnitude greater than in human, and the magnitude of VST/PEC was 5x greater. Phase of VST/PEC above ME resonance indicated that the group delay in elephant was approximately double that of human, which may be related to the unexpectedly high magnitudes at high frequencies. A boost in sound transmission across the incus long process and stapes near 9 kHz was also observed. We discuss factors that contribute to differences in sound transmission between these two large mammals.
Collapse
Affiliation(s)
- Caitlin E. O’Connell-Rodwell
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jodie L. Berezin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anbuselvan Dharmarajan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael E. Ravicz
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yihan Hu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiying Guan
- School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Kevin N. O’Connor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sunil Puria
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Graduate Program in Speech and Hearing and Biosciences and Technologies, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Cetin-Ferra S, Teixeira MS, Swarts JD, Rath TJ, Alper CM. CT Imaging of Eustachian Tube Balloon Dilation: Method Development on Cadaver Heads. Bioengineering (Basel) 2023; 10:bioengineering10050592. [PMID: 37237662 DOI: 10.3390/bioengineering10050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Objective: To develop a methodology for the measurement of balloon dilation (BD) effects on Eustachian Tube (ET) structure using Computerized Tomography (CT) images. Methods: The BD of the ET was performed on three cadaver heads (five ears) through the nasopharyngeal orifice. The axial CT images of the temporal bones were obtained before dilation, while an inflated balloon was in the lumen of ET, and after balloon removal in each ear. Utilizing Dicom images captured by the ImageJ software 3D volume viewer function, the anatomical landmark coordinates of the ET were matched with their pre- and post-dilation counterparts, and the longitudinal axis of the ET was captured with serial images. The histograms of the regions of interest (ROI) and three different lumen width and length measurements were obtained from captured images. The densities of air, tissue, and bone were determined with histograms as a baseline to determine the BD rate as a function of increased air in the lumen. Results: The small ROI box included the area of prominently dilated ET lumen after BD and best represented the visually obvious changes in the lumen, compared to the ROIs that extended the wider areas (longest and longer). Air density was the outcome measure for comparison with each corresponding baseline value. The average increase in air density in the small ROI was 64%, while the longest and long ROI boxes showed 44 and 56% increases, respectively. Conclusion: This study describes a method to image the ET and quantify the outcomes of BD of the ET using anatomical landmarks.
Collapse
Affiliation(s)
- Selma Cetin-Ferra
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Miriam S Teixeira
- Graduate Medical Education Research Division, Arnot Ogden Medical Center, Elmira, NY 14905, USA
| | - J Douglas Swarts
- Department of Otolaryngology, University of Pittsburgh School of Medicine Pittsburgh, PA 15213, USA
| | - Tanya J Rath
- Department of Radiology, Division of Neuroradiology, Mayo Clinic College of Medicine, Phoenix, AZ 85054, USA
| | - Cuneyt M Alper
- Department of Otolaryngology, University of Pittsburgh School of Medicine Pittsburgh, PA 15213, USA
- Division of Pediatric Otolaryngology, UPMC Children's Hospital of Pittsburgh, 1 Children's Place, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
5
|
How does prestrain in the tympanic membrane affect middle-ear function? A finite-element model study in rabbit. J Mech Behav Biomed Mater 2022; 131:105261. [DOI: 10.1016/j.jmbbm.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022]
|
6
|
Halm S, Haberthür D, Eppler E, Djonov V, Arnold A. Micro-CT imaging of Thiel-embalmed and iodine-stained human temporal bone for 3D modeling. J Otolaryngol Head Neck Surg 2021; 50:33. [PMID: 34078459 PMCID: PMC8173723 DOI: 10.1186/s40463-021-00522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction This pilot study explores whether a human Thiel-embalmed temporal bone is suitable for generating an accurate and complete data set with micro-computed tomography (micro-CT) and whether solid iodine-staining improves visualization and facilitates segmentation of middle ear structures. Methods A temporal bone was used to verify the accuracy of the imaging by first digitally measuring the stapes on the tomography images and then physically under the microscope after removal from the temporal bone. All measurements were compared with literature values. The contralateral temporal bone was used to evaluate segmentation and three-dimensional (3D) modeling after iodine staining and micro-CT scanning. Results The digital and physical stapes measurements differed by 0.01–0.17 mm or 1–19%, respectively, but correlated well with the literature values. Soft tissue structures were visible in the unstained scan. However, iodine staining increased the contrast-to-noise ratio by a factor of 3.7 on average. The 3D model depicts all ossicles and soft tissue structures in detail, including the chorda tympani, which was not visible in the unstained scan. Conclusions Micro-CT imaging of a Thiel-embalmed temporal bone accurately represented the entire anatomy. Iodine staining considerably increased the contrast of soft tissues, simplified segmentation and enabled detailed 3D modeling of the middle ear. Supplementary Information The online version contains supplementary material available at 10.1186/s40463-021-00522-0.
Collapse
Affiliation(s)
- Sebastian Halm
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012, Bern, Switzerland.
| | - David Haberthür
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012, Bern, Switzerland
| | - Elisabeth Eppler
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012, Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012, Bern, Switzerland
| | - Andreas Arnold
- University of Bern, Hochschulstrasse 6, CH-3012, Bern, Switzerland.,Department of Ear Nose Throat, Spital Münsingen, Krankenhausweg 18/20, CH-3110, Münsingen, Switzerland
| |
Collapse
|
7
|
diceCT: A Valuable Technique to Study the Nervous System of Fish. eNeuro 2020; 7:ENEURO.0076-20.2020. [PMID: 32471849 PMCID: PMC7642124 DOI: 10.1523/eneuro.0076-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Contrast-enhanced X-ray imaging provides a non-destructive and flexible approach to optimizing contrast in soft tissues, especially when incorporated with Lugol's solution (aqueous I2KI), a technique currently referred to as diffusible iodine-based contrast-enhanced computed tomography (diceCT). This stain exhibits high rates of penetration and results in excellent contrast between and within soft tissues, including the central nervous system. Here, we present a staining method for optimizing contrast in the brain of a cartilaginous fish, the brownbanded bamboo shark, Chiloscyllium punctatum, and a bony fish, the common goldfish, Carassius auratus, using diceCT. The aim of this optimization procedure is to provide suitable contrast between neural tissue and background tissue(s) of the head, thereby facilitating digital segmentation and volumetric analysis of the central nervous system. Both species were scanned before staining and were rescanned at time (T) intervals, either every 48 h (C. punctatum) or every 24 h (C. auratus), to assess stain penetration and contrast enhancement. To compare stain intensities, raw X-ray CT data were reconstructed using air and water calibration phantoms that were scanned under identical conditions to the samples. Optimal contrast across the brain was achieved at T = 240 h for C. punctatum and T = 96 h for C. auratus Higher resolution scans of the whole brain were obtained at the two optimized staining times for all the corresponding specimens. The use of diceCT provides a new and valuable tool for visualizing differences in the anatomic organization of both the central and peripheral nervous systems of fish.
Collapse
|
8
|
Hutson KA, Pulver SH, Ariel P, Naso C, Fitzpatrick DC. Light sheet microscopy of the gerbil cochlea. J Comp Neurol 2020; 529:757-785. [PMID: 32632959 DOI: 10.1002/cne.24977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 01/19/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) provides a rapid and complete three-dimensional image of the cochlea. The method retains anatomical relationships-on a micrometer scale-between internal structures such as hair cells, basilar membrane (BM), and modiolus with external surface structures such as the round and oval windows. Immunolabeled hair cells were used to visualize the spiraling BM in the intact cochlea without time intensive dissections or additional histological processing; yet material prepared for LSFM could be rehydrated, the BM dissected out and reimaged at higher resolution with the confocal microscope. In immersion-fixed material, details of the cochlear vasculature were seen throughout the cochlea. Hair cell counts (both inner and outer) as well as frequency maps of the BM were comparable to those obtained by other methods, but with the added dimension of depth. The material provided measures of angular, linear, and vector distance between characteristic frequency regions along the BM. Thus, LSFM provides a unique ability to rapidly image the entire cochlea in a manner applicable to model and interpret physiological results. Furthermore, the three-dimensional organization of the cochlea can be studied at the organ and cellular level with LSFM, and this same material can be taken to the confocal microscope for detailed analysis at the subcellular level.
Collapse
Affiliation(s)
- Kendall A Hutson
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen H Pulver
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Ariel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caroline Naso
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Douglas C Fitzpatrick
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Rohani SA, Allen D, Gare B, Zhu N, Agrawal S, Ladak H. High-resolution imaging of the human incudostapedial joint using synchrotron-radiation phase-contrast imaging. J Microsc 2020; 277:61-70. [PMID: 31989597 DOI: 10.1111/jmi.12864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
The incudostapedial joint (ISJ) of the middle ear is important for proper transmission of sound energy to the cochlea. Recently, the biomechanics of the ISJ have been investigated using finite-element (FE) modelling, using simplified geometry. The objective of the present study was to investigate the feasibility of synchrotron-radiation phase-contrast imaging (SR-PCI) in visualising the ISJ ultrastructure. Three human cadaveric ISJs were dissected and scanned using SR-PCI at 0.9 µm isotropic voxel size. One of the samples was previously scanned at 9 µm voxel size. The images were visually compared and contrast-to-noise ratios (CNRs) were calculated (of both bone and soft tissues) for quantitative comparisons. The ISJ ultrastructure as well as adjacent bone and soft tissues were clearly visible in images with a 0.9 µm voxel size. The CNRs of the 0.9 µm images were relatively lower than those of the 9 µm scans, while the ratio of bone to soft tissue CNRs were higher, indicating better discernibility of bone from soft tissue in the 0.9 µm scans. This study was the first known attempt to image the ISJ ultrastructure using an SR-PCI scanner at submicron voxel size and results suggest that this method was successful. Future studies are needed to optimise the contrast and test the feasibility of imaging the ISJ in situ. LAY DESCRIPTION: The human middle ear consists of the eardrum, three small bones (the malleus, incus and stapes) and two joints connecting the bones (the incudostapedial joint and the incudomallear joint). The role of the middle ear is to amplify and transfer sound energy to the cochlea, the end organ of hearing. The incudostapedial joint (ISJ) of the middle ear is a synovial joint which is important for proper transmission of sound energy to the cochlea. Similar to other synovial joints it consists of meniscus, fluid and articulating surfaces. Recently, the biomechanics of the ISJ have been investigated using computational models, using grossly simplified geometry. Synchrotron radiation phase contrast imaging (SR-PCI) is a high-resolution imaging technique used to visualise small structures in three dimensions. The objective of the present study was to investigate the feasibility of using SR-PCI in visualising the ISJ ultrastructure. Three human cadaveric ISJs were dissected and scanned using SR-PCI at 0.9 µm isotropic voxel size. One of the samples was previously scanned at 9 µm voxel size. The images were both qualitatively and quantitatively compared. This study was the first known attempt to image the ISJ ultrastructure using an SR-PCI scanner at submicron voxel size and results suggest that this method was successful. Future studies are needed to optimise the contrast and feasibility of imaging the ISJ in situ.
Collapse
Affiliation(s)
- S A Rohani
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - D Allen
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - B Gare
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - N Zhu
- Bio-Medical Imaging and Therapy Facility, Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - H Ladak
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Kurihara S, Fujioka M, Hata J, Yoshida T, Hirabayashi M, Yamamoto Y, Ogawa K, Kojima H, Okano HJ. Anatomical and Surgical Evaluation of the Common Marmoset as an Animal Model in Hearing Research. Front Neuroanat 2019; 13:60. [PMID: 31244619 PMCID: PMC6563828 DOI: 10.3389/fnana.2019.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/30/2023] Open
Abstract
Recent studies have indicated that direct administration of viral vectors or small compounds to the inner ear may aid in the treatment of Sensorineural hearing loss (SNHL). However, due to species differences between humans and rodents, translating experimental results into clinical applications remains challenging. The common marmoset (Callithrix jacchus), a New World monkey, is considered a pre-clinical animal model. In the present study, we describe morphometric data acquired from the temporal bone of the common marmoset in order to define the routes of topical drug administration to the inner ear. Dissection and diffusion tensor tractography (DTT) were performed on the fixed cadaverous heads of 13 common marmosets. To investigate potential routes for drug administration to the inner ear, we explored the anatomy of the round window, oval window (OW), semicircular canal, and endolymphatic sac (ES). Among these, the approach via the round window with posterior tympanotomy appeared feasible for delivering drugs to the inner ear without manipulating the tympanic membrane, minimizing the chances of conductive hearing loss. The courses of four critical nerves [including the facial nerve (FN)] were visualized using three-dimensional (3D) DTT, which may help to avoid nerve damage during surgery. Finally, to investigate the feasibility of actual drug administration, we measured the volume of the round window niche (RWN), which was approximately 0.9 μL. The present findings may help to establish experimental standards for evaluating new therapies in this primate model.
Collapse
Affiliation(s)
- Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan.,Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Yoshida
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Motoki Hirabayashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan.,Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yutaka Yamamoto
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Dong W, Stomackin G, Lin X, Martin GK, Jung TT. Distortion product otoacoustic emissions: Sensitive measures of tympanic -membrane perforation and healing processes in a gerbil model. Hear Res 2019; 378:3-12. [PMID: 30709692 DOI: 10.1016/j.heares.2019.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 11/27/2022]
Abstract
Distortion product otoacoustic emissions (DPOAEs) evoked by two pure tones carry information about the mechanisms that generate and shape them. Thus, DPOAEs hold promise for providing powerful noninvasive diagnostic details of cochlear operations, middle ear (ME) transmission, and impairments. DPOAEs are sensitive to ME function because they are influenced by ME transmission twice, i.e., by the inward-going primary tones in the forward direction and the outward traveling DPOAEs in the reverse direction. However, the effects of ME injuries on DPOAEs have not been systematically characterized. The current study focused on exploring the utility of DPOAEs for examining ME function by methodically characterizing DPOAEs and ME transmission under pathological ME conditions, specifically under conditions of tympanic-membrane (TM) perforation and spontaneous healing. Results indicated that DPOAEs were measurable with TM perforations up to ∼50%, and DPOAE reductions increased with increasing size of the TM perforation. DPOAE reductions were approximately flat across test frequencies when the TM was perforated about 10% (<1/8 of pars tensa) or less. However, with perforations greater than 10%, DPOAEs decreased further with a low-pass filter shape, with ∼30 dB loss at frequencies below 10 kHz and a quick downward sloping pattern at higher frequencies. The reduction pattern of DPOAEs across frequencies was similar to but much greater than, the directly measured ME pressure gain in the forward direction, which suggested that reduction in the DPOAE was a summation of losses of ME ear transmission in both the forward and reverse directions. Following 50% TM perforations, DPOAEs recovered over a 4-week spontaneously healing interval, and these recoveries were confirmed by improvements in auditory brainstem response (ABR) thresholds. However, up to 4-week post-perforation, DPOAEs never fully recovered to the levels obtained with normal intact TM, consistent with the incomplete recovery of ABR thresholds and ME transmission, especially at high-frequency regions, which could be explained by an irregularly dense and thickened healed TM. Since TM perforations in patients are commonly caused by either trauma or infection, the present results contribute towards providing insight into understanding ME transmission under pathological conditions as well as promoting the application of DPOAEs in the evaluation and diagnosis of deficits in the ME-transmission system.
Collapse
Affiliation(s)
- Wei Dong
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; Department of Otolaryngology--Head & Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA.
| | - Glenna Stomackin
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Xiaohui Lin
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Glen K Martin
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; Department of Otolaryngology--Head & Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Timothy T Jung
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; Department of Otolaryngology--Head & Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| |
Collapse
|
12
|
Stomackin G, Kidd S, Jung TT, Martin GK, Dong W. Effects of tympanic membrane perforation on middle ear transmission in gerbil. Hear Res 2018; 373:48-58. [PMID: 30583199 DOI: 10.1016/j.heares.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 11/26/2022]
Abstract
Perforations of the tympanic membrane (TM) alter its structural and mechanical properties, thus resulting in a deterioration of sound transmission through the middle ear (ME), which presents itself clinically as a conductive hearing loss (CHL). The resulting CHL is proposed to be due to the loss of the pressure difference across the TM between the outer ear canal space and the ME cavity, a hypothesis which has been tested with both theoretical and experimental approaches. In the past, direct experimental observations had been either from the ME input (umbo) or the output of the stapes, and were focused mainly on the low frequency region. However, there was little documentation providing a thorough picture of the influence of systematically increasing sizes of TM perforations on ME sound transmission from the input (i.e., pressure at the TM or motion of the umbo) to the output (pressure produced by the motion of the stapes). Our study explored ME transmission in gerbil under conditions of a normal, intact TM followed by the placement of mechanically-induced TM perforations ranging from miniscule to complete removal of the pars tensa, leaving the other parts of ME intact. Testing up to 50 kHz, variations of ME transmission were characterized in simultaneously measured tone induced pressure responses at the TM (PTM), pressure responses in the scala vestibuli next to the stapes (PSV), and velocity measurements of the umbo (Vumbo), as well as by detailed descriptions of sound transmission from the TM to the stapes, i.e., the umbo transfer function (TF), the transfer of the sound stimulus along the ossicular chain as found from the ratio of cochlear pressure to umbo motion, and ME pressure gain (MEPG). Our results suggested that increasing the size of TM perforations led to a reduction in MEPG, which appeared to be primarily due to the reduction in the effective/initial mechanical drive to the umbo, with a relatively smaller decrease of sound transfer along the ossicular chain. Expansion of the perforation more than 25% appeared to drastically reduce sound transmission through the ME, especially for the higher frequencies.
Collapse
Affiliation(s)
| | - Stephanie Kidd
- Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Timothy T Jung
- VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Glen K Martin
- VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, 92350, USA.
| |
Collapse
|
13
|
Tan HEI, Santa Maria PL, Wijesinghe P, Francis Kennedy B, Allardyce BJ, Eikelboom RH, Atlas MD, Dilley RJ. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review. Otolaryngol Head Neck Surg 2018; 159:424-438. [PMID: 29787354 DOI: 10.1177/0194599818775711] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective To evaluate the recent developments in optical coherence tomography (OCT) for tympanic membrane (TM) and middle ear (ME) imaging and to identify what further development is required for the technology to be integrated into common clinical use. Data Sources PubMed, Embase, Google Scholar, Scopus, and Web of Science. Review Methods A comprehensive literature search was performed for English language articles published from January 1966 to January 2018 with the keywords "tympanic membrane or middle ear,""optical coherence tomography," and "imaging." Conclusion Conventional imaging techniques cannot adequately resolve the microscale features of TM and ME, sometimes necessitating diagnostic exploratory surgery in challenging otologic pathology. As a high-resolution noninvasive imaging technique, OCT offers promise as a diagnostic aid for otologic conditions, such as otitis media, cholesteatoma, and conductive hearing loss. Using OCT vibrometry to image the nanoscale vibrations of the TM and ME as they conduct acoustic waves may detect the location of ossicular chain dysfunction and differentiate between stapes fixation and incus-stapes discontinuity. The capacity of OCT to image depth and thickness at high resolution allows 3-dimensional volumetric reconstruction of the ME and has potential use for reconstructive tympanoplasty planning and the follow-up of ossicular prostheses. Implications for Practice To achieve common clinical use beyond these initial discoveries, future in vivo imaging devices must feature low-cost probe or endoscopic designs and faster imaging speeds and demonstrate superior diagnostic utility to computed tomography and magnetic resonance imaging. While such technology has been available for OCT, its translation requires focused development through a close collaboration between engineers and clinicians.
Collapse
Affiliation(s)
- Hsern Ern Ivan Tan
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia.,3 Department of Otolaryngology-Head and Neck Surgery, Sir Charles Gairdner Hospital, Perth, Australia
| | - Peter Luke Santa Maria
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia.,4 Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Philip Wijesinghe
- 5 BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre; Centre for Medical Research, The University of Western Australia, Nedlands, Australia.,6 Department of Electrical, Electronic, and Computer Engineering, School of Engineering, The University of Western Australia, Nedlands, Australia
| | - Brendan Francis Kennedy
- 5 BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre; Centre for Medical Research, The University of Western Australia, Nedlands, Australia.,6 Department of Electrical, Electronic, and Computer Engineering, School of Engineering, The University of Western Australia, Nedlands, Australia
| | | | - Robert Henry Eikelboom
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia.,8 Department of Speech Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa
| | - Marcus David Atlas
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia
| | - Rodney James Dilley
- 1 Ear Science Institute Australia, Subiaco, Australia.,2 Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
14
|
Improved middle-ear soft-tissue visualization using synchrotron radiation phase-contrast imaging. Hear Res 2017; 354:1-8. [DOI: 10.1016/j.heares.2017.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
|
15
|
Salih WHM, Muyshondt PGG, Dirckx JJJ. Tympanic membrane pressure buffering function at quasi-static and low-frequency pressure variations. Hear Res 2017; 353:49-56. [PMID: 28800467 DOI: 10.1016/j.heares.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/07/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
Deformation of the tympanic membrane is known to contribute to the pressure regulation processes in the middle ear cleft. In this paper we investigated pressure variations in the rabbit middle ear in response to sinusoidal varying pressures applied to the ear canal, with frequencies ranging from 0.5 Hz to 50 Hz and pressure amplitudes ranging between 0.25 kPa and 1 kPa. The transtympanic pressure difference was found to be smallest in the quasi-static range, and quickly increased as a function of frequency. The response curves showed asymmetry, with larger transtympanic pressures when positive pressures were applied in the ear canal. Normalized transtympanic pressure amplitudes remained fairly constant as a function of input pressure, with values in the range of 60%-70% relative to the applied pressure. The total harmonic distortion of the middle ear pressure signal was calculated and was found to be very small (≤2%) for low-pressure amplitudes and low frequencies. For pressure amplitudes in the order of 0.25 kPa-0.5 kPa, it increased to about 10% at 50 Hz. When a 1 kPa pressure amplitude was applied, variation between animals became large and distortion values up to 30% at 50 Hz were observed. The results showed that pressure buffering due to tympanic membrane displacement was most effective for compensating small transtympanic pressure loads at low frequencies.
Collapse
Affiliation(s)
- Wasil H M Salih
- Department of Biomedical Physics, Alneelain University, Algamhouria Avenue, Khartoum, Sudan; Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Pieter G G Muyshondt
- Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Joris J J Dirckx
- Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
16
|
Alper CM, Luntz M, Takahashi H, Ghadiali SN, Swarts JD, Teixeira MS, Csákányi Z, Yehudai N, Kania R, Poe DS. Panel 2: Anatomy (Eustachian Tube, Middle Ear, and Mastoid-Anatomy, Physiology, Pathophysiology, and Pathogenesis). Otolaryngol Head Neck Surg 2017; 156:S22-S40. [PMID: 28372527 DOI: 10.1177/0194599816647959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective In this report, we review the recent literature (ie, past 4 years) to identify advances in our understanding of the middle ear-mastoid-eustachian tube system. We use this review to determine whether the short-term goals elaborated in the last report were achieved, and we propose updated goals to guide future otitis media research. Data Sources PubMed, Web of Science, Medline. Review Methods The panel topic was subdivided, and each contributor performed a literature search within the given time frame. The keywords searched included middle ear, eustachian tube, and mastoid for their intersection with anatomy, physiology, pathophysiology, and pathology. Preliminary reports from each panel member were consolidated and discussed when the panel met on June 11, 2015. At that meeting, the progress was evaluated and new short-term goals proposed. Conclusions Progress was made on 13 of the 20 short-term goals proposed in 2011. Significant advances were made in the characterization of middle ear gas exchange pathways, modeling eustachian tube function, and preliminary testing of treatments for eustachian tube dysfunction. Implications for Practice In the future, imaging technologies should be developed to noninvasively assess middle ear/eustachian tube structure and physiology with respect to their role in otitis media pathogenesis. The new data derived from these structure/function experiments should be integrated into computational models that can then be used to develop specific hypotheses concerning otitis media pathogenesis and persistence. Finally, rigorous studies on medical or surgical treatments for eustachian tube dysfunction should be undertaken.
Collapse
Affiliation(s)
- Cuneyt M Alper
- 1 Department of Pediatric Otolaryngology, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,2 Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,3 Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michal Luntz
- 4 Department of Otolaryngology Head and Neck Surgery, Bnai Zion Medical Center; Technion-The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Haruo Takahashi
- 5 Department of Otolaryngology-Head and Neck Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Samir N Ghadiali
- 6 Department of Biomedical Engineering, Ohio University, Columbus, Ohio, USA.,7 Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Ohio University, Columbus, Ohio, USA
| | - J Douglas Swarts
- 2 Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Miriam S Teixeira
- 2 Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zsuzsanna Csákányi
- 8 Department of Pediatric Otorhinolaryngology, Heim Pal Children's Hospital, Budapest, Hungary
| | - Noam Yehudai
- 4 Department of Otolaryngology Head and Neck Surgery, Bnai Zion Medical Center; Technion-The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Romain Kania
- 9 Department of Otorhinolaryngology-Head and Neck Surgery, Lariboisière Hospital, Diderot University, University Paris Sorbonne, Paris, France
| | - Dennis S Poe
- 10 Department of Otology and Laryngology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA.,11 Department of Otolaryngology and Communications Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Automated analysis of human cochlea shape variability from segmented μ CT images. Comput Med Imaging Graph 2017; 59:1-12. [DOI: 10.1016/j.compmedimag.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/10/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
|
18
|
Rohani SA, Ghomashchi S, Umoh J, Holdsworth DW, Agrawal SK, Ladak HM. Iodine potassium iodide improves the contrast-to-noise ratio of micro-computed tomography images of the human middle ear. J Microsc 2016; 264:334-338. [PMID: 27439684 DOI: 10.1111/jmi.12447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
High-resolution imaging of middle-ear geometry is necessary for finite-element modeling. Although micro-computed tomography (microCT) is widely used because of its ability to image bony structures of the middle ear, it is difficult to visualize soft tissues - including the tympanic membrane and the suspensory ligaments/tendons - because of lack of contrast. The objective of this research is to quantitatively evaluate the efficacy of iodine potassium iodide (IKI) solution as a contrast agent. Six human temporal bones were used in this experiment, which were obtained in right-left pairs, from three cadaveric heads. All bones were fixed using formaldehyde. Three bones (one from each pair) were stained in IKI solution for 2 days, whereas the other three were not stained. Samples were scanned using a microCT system at a resolution of 20 μm. Eight soft tissues in the middle ear were segmented: anterior mallear ligament, incudomallear joint, lateral mallear ligament, posterior incudal ligament, stapedial annular ligament, stapedius muscle, tympanic membrane and tensor tympani muscle. Contrast-to-noise ratios (CNRs) of each soft tissue were calculated for each temporal bone. Combined CNRs of the soft tissues in unstained samples were 6.1 ± 3.0, whereas they were 8.1 ± 2.7 in stained samples. Results from Welch's t-test indicate significant difference between the two groups at a 95% confidence interval. Results for paired t-tests for each of the individual soft tissues also indicated significant improvement of contrast in all tissues after staining. Relatively large soft tissues in the middle ear such as the tympanic membrane and the tensor tympani muscle were impacted by staining more than smaller tissues such as the stapedial annular ligament. The increase in contrast with IKI solution confirms its potential application in automatic segmentation of the middle-ear soft tissues.
Collapse
Affiliation(s)
- S A Rohani
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
| | - S Ghomashchi
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - J Umoh
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - D W Holdsworth
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - S K Agrawal
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - H M Ladak
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada.,Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.,Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Trans-Oval-Window Implants, A New Approach for Drug Delivery to the Inner Ear: Extended Dexamethasone Release From Silicone-based Implants. Otol Neurotol 2016; 36:1572-9. [PMID: 26375981 DOI: 10.1097/mao.0000000000000855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The purpose of this study was to develop a new strategy to deliver drugs to the inner ear from dexamethasone (DXM)-loaded silicone implants and to evaluate the distribution of the drug in the cochlea with confocal microscopy. BACKGROUND Systemic drug administration for the treatment of inner ear disorders is tricky because of the blood-cochlear barrier, a difficult anatomical access, the small size of the cochlea, and can cause significant adverse effects. An effective way to overcome these obstacles is to administer drugs locally. METHODS In vitro, the drug release from DXM-loaded silicone-based thin films and tiny implants into artificial perilymph was thoroughly analyzed by high-performance liquid chromatography. In vivo, a silicone implant loaded with 10% DXM and 5% polyethylene glycol 400 was implanted next to the stapes's footplate of gerbils. Delivery of DXM into the inner ear was proved by confocal microscopy imaging of the whole cochlea and the organ of Corti. RESULTS The study showed a continuous and prolonged release during 90 days in vitro. This was confirmed by confocal microscopy that allowed detection of DXM by fluorescence labeling in the cell body of the hair cells for at least 30 days. Interestingly, fluorescence was already observed after 20 minutes of implantation, reached a climax at day 7, and could still be detected 30 days after implantation. CONCLUSIONS Thus, we developed a new device for local corticosteroids delivery into the oval window with an extended drug release of DXM to the inner ear.
Collapse
|
20
|
Lossi L, D’Angelo L, De Girolamo P, Merighi A. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Ann Anat 2016; 204:11-28. [DOI: 10.1016/j.aanat.2015.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023]
|
21
|
3D finite element model of the chinchilla ear for characterizing middle ear functions. Biomech Model Mechanobiol 2016; 15:1263-77. [PMID: 26785845 DOI: 10.1007/s10237-016-0758-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.
Collapse
|
22
|
Abstract
We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses. The umbo response of the model is within the range of variability seen in the experimental data in terms of the low-frequency (i.e., well below the middle-ear resonance) magnitude and phase, the main resonance frequency and magnitude, and the roll-off slope and irregularities in the response above the resonance frequency, but is somewhat high for frequencies above the resonance frequency. At low frequencies, the ossicular axis of rotation of the model appears to correspond to the anatomical axis but the behaviour is more complex at high frequencies (i.e., above the pars-tensa break-up). The behaviour of the pars tensa in the model is similar to what is observed experimentally in terms of magnitudes, phases, the break-up frequency of the spatial vibration pattern, and the bandwidths of the high-frequency response features. A sensitivity analysis showed that the parameters that have the strongest effects on the model results are the Young's modulus, thickness and density of the pars tensa; the Young's modulus of the stapedial annular ligament; and the Young's modulus and density of the malleus. Displacements of the tympanic membrane and manubrium and the low-frequency displacement of the stapes did not show large changes when the material properties of the incus, stapes, incudomallear joint, incudostapedial joint, and posterior incudal ligament were changed by ±10 % from their values in the baseline parameter set.
Collapse
|
23
|
Mason MJ. Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals. J Anat 2015; 228:284-99. [PMID: 26104342 DOI: 10.1111/joa.12313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/26/2022] Open
Abstract
Many species of small desert mammals are known to have expanded auditory bullae. The ears of gerbils and heteromyids have been well described, but much less is known about the middle ear anatomy of other desert mammals. In this study, the middle ears of three gerbils (Meriones, Desmodillus and Gerbillurus), two jerboas (Jaculus) and two sengis (elephant-shrews: Macroscelides and Elephantulus) were examined and compared, using micro-computed tomography and light microscopy. Middle ear cavity expansion has occurred in members of all three groups, apparently in association with an essentially 'freely mobile' ossicular morphology and the development of bony tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small desert mammals have been proposed. However, while Macroscelides was found here to have middle ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are considerably smaller. Why middle ear cavities are enlarged in some desert species but not others remains unclear, but it may relate to microhabitat.
Collapse
Affiliation(s)
- Matthew J Mason
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Cvetko E, Čapek M, Damjanovska M, Reina MA, Eržen I, Stopar-Pintarič T. The utility of three-dimensional optical projection tomography in nerve injection injury imaging. Anaesthesia 2015; 70:939-47. [DOI: 10.1111/anae.13066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 12/01/2022]
Affiliation(s)
- E. Cvetko
- Institute of Anatomy; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - M. Čapek
- Institute of Physiology of the Czech Academy of Sciences; Prague Czech Republic
| | - M. Damjanovska
- Clinical Department of Anaesthesiology and Intensive Therapy; University Medical Centre Ljubljana; Ljubljana Slovenia
| | - M. A. Reina
- Department of Clinical Medical Sciences and Applied Molecular Medicine; CEU San Pablo University School of Medicine; Madrid Spain
| | - I. Eržen
- Institute of Anatomy; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - T. Stopar-Pintarič
- Clinical Department of Anaesthesiology and Intensive Therapy; University Medical Centre Ljubljana; Ljubljana Slovenia
| |
Collapse
|
25
|
Buytaert J, Goyens J, De Greef D, Aerts P, Dirckx J. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1208-17. [PMID: 24963987 DOI: 10.1017/s1431927614001329] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two methods are especially suited for tomographic imaging with histological detail of macroscopic samples that consist of multiple tissue types (bone, muscle, nerve or fat): Light sheet (based) fluorescence microscopy (LSFM) and micro-computed tomography (micro-CT). Micro-CT requires staining with heavy chemical elements (and thus fixation and sometimes dehydration) in order to make soft tissue imageable when measured alongside denser structures. LSMF requires fixation, decalcification, dehydration, clearing and staining with a fluorescent dye. The specimen preparation of both imaging methods is prone to shrinkage, which is often not mentioned, let alone quantified. In this paper the presence and degree of shrinkage are quantitatively identified for the selected preparation methods/stains. LSFM delivers a volume shrinkage of 17% for bone, 56% for muscle and 62% for brain tissue. The three most popular micro-CT stains (phosphotungstic acid, iodine with potassium iodide, and iodine in absolute ethanol) deliver a volume shrinkage ranging from 10 to 56% for muscle and 27-66% for brain, while bone does not shrink in micro-CT preparation.
Collapse
Affiliation(s)
- Jan Buytaert
- 1Laboratory of Biomedical Physics,Groenenborgerlaan 171,2020 Antwerpen,Belgium
| | - Jana Goyens
- 1Laboratory of Biomedical Physics,Groenenborgerlaan 171,2020 Antwerpen,Belgium
| | - Daniel De Greef
- 1Laboratory of Biomedical Physics,Groenenborgerlaan 171,2020 Antwerpen,Belgium
| | - Peter Aerts
- 2Laboratory of Functional Morphology,Universiteitsplein 1,2610 Antwerp,Belgium
| | - Joris Dirckx
- 1Laboratory of Biomedical Physics,Groenenborgerlaan 171,2020 Antwerpen,Belgium
| |
Collapse
|
26
|
Böhnke F, Bretan T, Lehner S, Strenger T. Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry with the Floating Mass Transducer. MATERIALS 2013; 6:4675-4688. [PMID: 28788354 PMCID: PMC5452838 DOI: 10.3390/ma6104675] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer) is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.
Collapse
Affiliation(s)
- Frank Böhnke
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Theodor Bretan
- Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Loth Str. 34, Munich 80335, Germany.
| | - Stefan Lehner
- Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Loth Str. 34, Munich 80335, Germany.
| | - Tobias Strenger
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| |
Collapse
|
27
|
Van der Jeught S, Dirckx JJJ, Aerts JRM, Bradu A, Podoleanu AG, Buytaert JAN. Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography. J Assoc Res Otolaryngol 2013; 14:483-94. [PMID: 23673509 PMCID: PMC3705083 DOI: 10.1007/s10162-013-0394-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/24/2013] [Indexed: 11/29/2022] Open
Abstract
The full-field thickness distribution, three-dimensional surface model and general morphological data of six human tympanic membranes are presented. Cross-sectional images were taken perpendicular through the membranes using a high-resolution optical coherence tomography setup. Five normal membranes and one membrane containing a pathological site are included in this study. The thickness varies strongly across each membrane, and a great deal of inter-specimen variability can be seen in the measurement results, though all membranes show similar features in their respective relative thickness distributions. Mean thickness values across the pars tensa ranged between 79 and 97 μm; all membranes were thinnest in the central region between umbo and annular ring (50-70 μm), and thickness increased steeply over a small distance to approximately 100-120 μm when moving from the central region either towards the peripheral rim of the pars tensa or towards the manubrium. Furthermore, a local thickening was noticed in the antero-inferior quadrant of the membranes, and a strong linear correlation was observed between inferior-posterior length and mean thickness of the membrane. These features were combined into a single three-dimensional model to form an averaged representation of the human tympanic membrane. 3D reconstruction of the pathological tympanic membrane shows a structural atrophy with retraction pocket in the inferior portion of the pars tensa. The change of form at the pathological site of the membrane corresponds well with the decreased thickness values that can be measured there.
Collapse
Affiliation(s)
- Sam Van der Jeught
- />Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Joris J. J. Dirckx
- />Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Johan R. M. Aerts
- />Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Adrian Bradu
- />Applied Optics Group, School of Physical Sciences, University of Kent, CT2 7NH Canterbury, UK
| | - Adrian Gh Podoleanu
- />Applied Optics Group, School of Physical Sciences, University of Kent, CT2 7NH Canterbury, UK
| | - Jan A. N. Buytaert
- />Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
28
|
Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear. Int J Comput Assist Radiol Surg 2013; 8:481-509. [PMID: 23633112 PMCID: PMC3702969 DOI: 10.1007/s11548-013-0825-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/27/2013] [Indexed: 11/02/2022]
Abstract
PURPOSE This paper presents a highly accurate cross-sectional preparation technique. The research aim was to develop an adequate imaging modality for both soft and bony tissue structures featuring high contrast and high resolution. Therefore, the advancement of an already existing micro-grinding procedure was pursued. The central objectives were to preserve spatial relations and to ensure the accurate three-dimensional reconstruction of histological sections. METHODS Twelve human temporal bone specimens including middle and inner ear structures were utilized. They were embedded in epoxy resin, then dissected by serial grinding and finally digitalized. The actual abrasion of each grinding slice was measured using a tactile length gauge with an accuracy of one micrometre. The cross-sectional images were aligned with the aid of artificial markers and by applying a feature-based, custom-made auto-registration algorithm. To determine the accuracy of the overall reconstruction procedure, a well-known reference object was used for comparison. To ensure the compatibility of the histological data with conventional clinical image data, the image stacks were finally converted into the DICOM standard. RESULTS The image fusion of data from temporal bone specimens' and from non-destructive flat-panel-based volume computed tomography confirmed the spatial accuracy achieved by the procedure, as did the evaluation using the reference object. CONCLUSION This systematic and easy-to-follow preparation technique enables the three-dimensional (3D) histological reconstruction of complex soft and bony tissue structures. It facilitates the creation of detailed and spatially correct 3D anatomical models. Such models are of great benefit for image-based segmentation and planning in the field of computer-assisted surgery as well as in finite element analysis. In the context of human inner ear surgery, three-dimensional histology will improve the experimental evaluation and determination of intra-cochlear trauma after the insertion of an electrode array of a cochlear implant system.
Collapse
|
29
|
Buytaert JAN, Johnson SB, Dierick M, Salih WHM, Santi PA. MicroCT versus sTSLIM 3D imaging of the mouse cochlea. J Histochem Cytochem 2013; 61:382-95. [PMID: 23360693 DOI: 10.1369/0022155413478613] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We made a qualitative and quantitative comparison between a state-of-the-art implementation of micro-Computed Tomography (microCT) and the scanning Thin-Sheet Laser Imaging Microscopy (sTSLIM) method, applied to mouse cochleae. Both imaging methods are non-destructive and perform optical sectioning, respectively, with X-rays and laser light. MicroCT can be used on fresh or fixed tissue samples and is primarily designed to image bone rather than soft tissues. It requires complex back-projection algorithms to produce a two-dimensional image, and it is an expensive instrument. sTSLIM requires that a specimen be chemically fixed, decalcified, and cleared; but it produces high-resolution images of soft and bony tissues with minimum image postprocessing and is less expensive than microCT. In this article, we discuss the merits and disadvantages of each method individually and when combined.
Collapse
Affiliation(s)
- Jan A N Buytaert
- Laboratory of BioMedical Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Gan RZ, Nakmali D, Zhang X. Dynamic properties of round window membrane in guinea pig otitis media model measured with electromagnetic stimulation. Hear Res 2013; 301:125-36. [PMID: 23333258 DOI: 10.1016/j.heares.2013.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/05/2012] [Accepted: 01/07/2013] [Indexed: 11/29/2022]
Abstract
The round window, one of two openings into the cochlea from the middle ear, plays an important role in hearing and is known to be structurally altered during otitis media. However, there have been no published studies systematically describing the changes in biomechanical properties of the round window membrane (RWM) that accompany bacterial otitis media. Here we describe the occurrence of significant changes in the dynamic properties of the RWM between normal guinea pigs and those with acute otitis media (AOM) that are detectable by electromagnetic force stimulation and laser Doppler vibrometry (LDV) measurements. AOM was induced by transbullar injection of streptococcus pneumoniae into the middle ear, and RWM specimens were prepared three days after challenge. Vibration of the RWM induced by coil-magnet coupling was measured by LDV over frequencies of 0.2-40 kHz. The experiment was then simulated in a finite element model, and the inverse-problem solving method was used to determine the complex modulus in the frequency domain and the relaxation modulus in the time domain. Results from 18 ears (9 control ears and 9 AOM ears) established that both the storage modulus and loss modulus of the RWM from ears with AOM were significantly lower than those of RWM from uninfected ears. The average decrease of the storage modulus in AOM ears ranged from 1.5 to 2.2 MPa and the average decrease of the loss modulus was 0.025-0.48 MPa. Our findings suggest that middle ear infection primarily affects the stiffness of the RWM due to the morphological changes that occur in AOM ears. We also conclude that the coil-magnet coupling method for assessment of RWM function may provide a valuable new approach to characterizing the mechanical response of the RWM when reverse driving is selected for middle ear implantable devices. This article is part of a special issue entitled "MEMRO 2012".
Collapse
Affiliation(s)
- Rong Z Gan
- School of Aerospace and Mechanical Engineering and Bioengineering Center, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|
31
|
Sim JH, Röösli C, Chatzimichalis M, Eiber A, Huber AM. Characterization of stapes anatomy: investigation of human and guinea pig. J Assoc Res Otolaryngol 2013; 14:159-73. [PMID: 23299488 DOI: 10.1007/s10162-012-0369-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022] Open
Abstract
The accuracy of any stapes model relies on the accuracy of the anatomical information upon which it is based. In many previous models and measurements of the stapes, the shape of the stapes has been considered as symmetric with respect to the long and short axes of the footplate. Therefore, the reference frame has been built based upon this assumption. This study aimed to provide detailed anatomical information on the dimensions of the stapes, including its asymmetries. High-resolution microcomputed tomography data from 53 human stapes and 11 guinea pig stapes were collected, and their anatomical features were analyzed. Global dimensions of the stapes, such as the size of the footplate, height, and volume, were compared between human and guinea pig specimens, and asymmetric features of the stapes were quantitatively examined. Further, dependence of the stapes dimensions on demographic characteristics of the subjects was explored. The height of the stapes relative to the footplate size in the human stapes was found to be larger than the corresponding value in guinea pig. The stapes showed asymmetry of the footplate with respect to the long axis and offset of the stapes head from the centroid of the medial surface of the footplate for both humans and guinea pigs. The medial surface of the footplate was curved, and the longitudinal arches of the medial surface along the long axis of the footplate were shaped differently between humans and guinea pigs. The dimension of the footplate was gender-dependent, with the size greater in men than in women.
Collapse
Affiliation(s)
- Jae Hoon Sim
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Frauenkliniksrasse 24, 8091, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Volandri G, Di Puccio F, Forte P, Manetti S. Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear. Med Eng Phys 2012; 34:1339-55. [PMID: 22472525 DOI: 10.1016/j.medengphy.2012.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 12/26/2022]
|
33
|
Mason MJ. Of mice, moles and guinea pigs: functional morphology of the middle ear in living mammals. Hear Res 2012; 301:4-18. [PMID: 23099208 DOI: 10.1016/j.heares.2012.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/26/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
Abstract
The middle ear apparatus varies considerably among living mammals. Body size, phylogeny and acoustic environment all play roles in shaping ear structure and function, but experimental studies aimed ultimately at improving our understanding of human hearing can sometimes overlook these important species differences. This review focuses on three groups of mammals, bringing together anatomical, zoological and physiological information in order to highlight unusual features of their middle ears and attempt to interpret their function. "Microtype" ears, found in species such as mice and bats, are associated with high-frequency hearing. The orbicular apophysis, the focus of some recent developmental studies on mouse ears, is characteristic of microtype mallei but is not found in humans or other "freely mobile" species. The apophysis increases ossicular inertia about the anatomical axis of rotation: its adaptive purpose in a high-frequency ear is still not clear. Subterranean mammals have convergently evolved a "freely mobile" ossicular morphology which appears to favour lower-frequency sound transmission. More unusual features found in some of these animals include acoustically coupled middle ear cavities, the loss of middle ear muscles and hypertrophied ossicles which are believed to subserve a form of inertial bone conduction. Middle ears of the rodent group Ctenohystrica (which includes guinea pigs and chinchillas, important models in hearing research) show some striking characteristics which together comprise a unique type of auditory apparatus requiring a classification of its own, referred to here as the "Ctenohystrica type". These characteristics include a distinctive malleus morphology, fusion of the malleus and incus, reduction or loss of the stapedius muscle, a synovial stapedio-vestibular articulation and, in chinchillas, enormously expanded middle ear cavities. These characteristics may be functionally linked and associated with the excellent low-frequency hearing found in these animals. The application of new experimental and imaging data into increasingly sophisticated models continues to improve our understanding of middle ear function. However, a more rigorous comparative approach and a better appreciation of the complex patterns of convergent and divergent evolution reflected in the middle ear structures of living mammals are also needed, in order to put findings from different species into the appropriate context. This article is part of a special issue entitled "MEMRO 2012".
Collapse
Affiliation(s)
- Matthew J Mason
- University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
34
|
Open access high-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains. Hear Res 2012; 284:1-5. [DOI: 10.1016/j.heares.2011.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/07/2011] [Accepted: 12/03/2011] [Indexed: 11/17/2022]
|
35
|
The OPFOS Microscopy Family: High-Resolution Optical Sectioning of Biomedical Specimens. ANATOMY RESEARCH INTERNATIONAL 2011; 2012:206238. [PMID: 22567307 PMCID: PMC3335623 DOI: 10.1155/2012/206238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/12/2011] [Indexed: 11/17/2022]
Abstract
We report on the recently emerging (laser) light-sheet-based fluorescence microscopy field (LSFM). The techniques used in this field allow to study and visualize biomedical objects nondestructively in high resolution through virtual optical sectioning with sheets of laser light. Fluorescence originating in the cross-section of the sheet and sample is recorded orthogonally with a camera. In this paper, the first implementation of LSFM to image biomedical tissue in three dimensions-orthogonal-plane fluorescence optical sectioning microscopy (OPFOS)-is discussed. Since then many similar and derived methods have surfaced, (SPIM, ultramicroscopy, HR-OPFOS, mSPIM, DSLM, TSLIM, etc.) which we all briefly discuss. All these optical sectioning methods create images showing histological detail. We illustrate the applicability of LSFM on several specimen types with application in biomedical and life sciences.
Collapse
|