1
|
Curthoys IS, Zee DS, Dumas G, Pastras CJ, Dlugaiczyk J. Skull vibration induced nystagmus, velocity storage and self-stability. Front Neurol 2025; 16:1533842. [PMID: 39968451 PMCID: PMC11832403 DOI: 10.3389/fneur.2025.1533842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
In this paper we give an introduction to the area, followed by brief reviews of the neural response to sound and vibration, and then the velocity storage integrator, before putting forward our hypothesis about the neural input to the velocity storage integrator. Finally we discuss some of the implications of our hypothesis. There are two pathways conveying neural information from the vestibular periphery (the semicircular canals and the otoliths) to central neural mechanisms-a direct and an indirect pathway. Within the indirect pathway there is a unique neural mechanism called the velocity storage integrator (VSI) which is part of a neural network generating prolonged nystagmus, afternystagmus and the sensation of self-motion and its converse self-stability. It is our hypothesis that only neural input from primary afferent neurons with irregular resting discharge projects in the direct pathway, whereas the primary afferent input in the indirect pathway consists of neurons with regular resting discharge. The basis for this hypothesis is that vibration is a selective stimulus for vestibular neurons with irregular resting discharge. 100 Hz mastoid vibration, while capable of generating nystagmus (skull vibration induced nystagmus SVIN), is ineffective in generating afternystagmus (in the condition of an encased labyrinth) which is a marker of the action of the VSI, leading to the conclusion that irregular afferents bypass the indirect pathway and the VSI. In order to present this hypothesis we review the evidence that irregular neurons are selectively activated by sound and vibration, whereas regular neurons are not so activated. There are close similarities between the temporal characteristics of the irregular afferent neural response to vibration and the temporal characteristics of SVIN. SVIN is a simple clinical indicator of whether a patient has an imbalance between the two vestibular labyrinths and our hypothesis ties SVIN to irregular primary vestibular neurons.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - David S. Zee
- Departments of Neurology, Neuroscience, Ophthalmology, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Georges Dumas
- Department of Oto-Rhino-Laryngology Head and Neck Surgery, University Hospital, Grenoble, France
- Research Unit DevAH — Development, Adaptation and Handicap, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery & Interdisciplinary Center for Vertigo, Balance and Ocular Motor Disorders, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
2
|
Kjærsgaard JB, Hougaard DD, Kingma H. Thirty years with cervical vestibular myogenic potentials: a critical review on its origin. Front Neurol 2025; 15:1502093. [PMID: 39911743 PMCID: PMC11794123 DOI: 10.3389/fneur.2024.1502093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Myogenic potentials generated by acoustic stimulation of the vestibular system have been reported since 1964. This examination became better known as cervical vestibular evoked myogenic potentials (cVEMPs) and gained increasing clinical application since the nineties. Since its discovery, the saccule has been conceived as the most likely vestibular end-organ driving these myogenic potentials of the neck. As findings from both animal and human studies for a long time uniformly provided evidence supporting this theory, cVEMP assessment has become synonymous with evaluation of saccular and inferior vestibular nerve function. This review of the basic evidence supporting this conclusion, questions if cVEMP may be considered as being predominantly or even exclusively driven by the activation of any single vestibular end-organ. We conclude that the results of this review show that contributions from the crista ampullaris of all three ipsilateral semicircular canals, as well as the ipsilateral utricle cannot be ruled out in clinically conducted cVEMP assessments.
Collapse
Affiliation(s)
- Jonas Bruun Kjærsgaard
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Dan Dupont Hougaard
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Herman Kingma
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Dyball AC, Wu XP, Kwok BYC, Wang C, Nham B, Pogson JM, Kong JHK, Taylor RL, Weber KP, Welgampola MS, Rosengren SM. After the n10: late oVEMP peaks in patients with unilateral vestibular loss and healthy volunteers. Exp Brain Res 2024; 243:10. [PMID: 39617808 DOI: 10.1007/s00221-024-06947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/13/2024] [Indexed: 02/05/2025]
Abstract
The ocular vestibular evoked myogenic potential (oVEMP) is a measure of otolith function. The initial n10 peak follows a contralateral pathway from ipsilateral utricle to contralateral inferior oblique muscle. Following the n10, a series of positive and negative waves are elicited in the inferior oblique, but their characteristics and generators are unknown. This paper therefore investigated the latency, amplitude, and laterality of these late peaks in patients with hearing or vestibular loss compared to healthy volunteers. oVEMPs were elicited to bone-conducted (BC) square wave pulses and air-conducted (AC) clicks in 63 healthy volunteers, 15 patients with profound hearing loss (HL), 45 patients with unilateral vestibular loss (uVL), and 10 patients with bilateral vestibular loss (bVL). In healthy volunteers, up to 5 peaks and troughs were elicited to BC bilaterally. The first two peaks were largest, and amplitude decreased linearly thereafter. In healthy volunteers stimulated with AC clicks and patients with uVL stimulated with either stimulus, the first 2-3 oVEMP waves were significantly larger on the side opposite the healthy/stimulated ear, while the later waves were smaller and had similar amplitude bilaterally. All peaks were absent stimulating ears with no measurable vestibular function. Late peaks were elicited in patients with intact vestibular function regardless of hearing status, demonstrating the vestibular origin of all peaks. Like the clinical n10-p15 waves, the second waves followed a dominant contralateral pathway, while waves 3 onwards appear to have a separate origin and may represent bilateral projections to the extra-ocular muscles.
Collapse
Affiliation(s)
- Alyssa C Dyball
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xiao Ping Wu
- Audiology Department, Macquarie University, Sydney, Australia
| | - Belinda Y C Kwok
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Chao Wang
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Level 8 Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Benjamin Nham
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Level 8 Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Jacob M Pogson
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jonathan H K Kong
- Department of Otolaryngology, Royal Prince Alfred Hospital, Sydney, Australia
- Discipline of Surgery, Sydney Medical School, Sydney, Australia
- Department of Otolaryngology, Head and Neck Surgery, Macquarie University, North Ryde, Australia
| | - Rachael L Taylor
- Department of Physiology, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Konrad P Weber
- Departments of Neurology and Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Miriam S Welgampola
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Level 8 Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Sally M Rosengren
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Neurology Department, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Level 8 Missenden Rd, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
4
|
Lahlou H, Zhu H, Zhou W, Edge AS. Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function. J Clin Invest 2024; 134:e181201. [PMID: 39316439 PMCID: PMC11563683 DOI: 10.1172/jci181201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that together with supporting cells comprise the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.
Collapse
Affiliation(s)
- Hanae Lahlou
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Hong Zhu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wu Zhou
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Harvard Stem Cell Institute; Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Jecko V, Garcia L, Doat E, Leconte V, Liguoro D, Cazalets JR, Guillaud E. Vestibulospinal reflexes elicited with a tone burst method are dependent on spatial orientation. PeerJ 2024; 12:e17056. [PMID: 38436036 PMCID: PMC10906260 DOI: 10.7717/peerj.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Balance involves several sensory modalities including vision, proprioception and the vestibular system. This study aims to investigate vestibulospinal activation elicited by tone burst stimulation in various muscles and how head position influences these responses. We recorded electromyogram (EMG) responses in different muscles (sternocleidomastoid-SCM, cervical erector spinae-ES-C, lumbar erector spinae-ES-L, gastrocnemius-G, and tibialis anterior-TA) of healthy participants using tone burst stimulation applied to the vestibular system. We also evaluated how head position affected the responses. Tone burst stimulation elicited reproducible vestibulospinal reflexes in the SCM and ES-C muscles, while responses in the distal muscles (ES-L, G, and TA) were less consistent among participants. The magnitude and polarity of the responses were influenced by the head position relative to the cervical spine. When the head was rotated or tilted, the polarity of the vestibulospinal responses changed, indicating the integration of vestibular and proprioceptive inputs in generating these reflexes. Overall, our study provides valuable insights into the complexity of vestibulospinal reflexes and their modulation by head position. However, the high variability in responses in some muscles limits their clinical application. These findings may have implications for future research in understanding vestibular function and its role in posture and movement control.
Collapse
Affiliation(s)
- Vincent Jecko
- Department of Neurosurgery A, University Hospital of Bordeaux, Bordeaux, France
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Léa Garcia
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Emilie Doat
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Dominique Liguoro
- Department of Neurosurgery A, University Hospital of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
6
|
Saniasiaya J. Role of Video Head Impulse Test to Assess Noise Exposure. Indian J Otolaryngol Head Neck Surg 2024; 76:1461-1463. [PMID: 38440558 PMCID: PMC10909013 DOI: 10.1007/s12070-023-04244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/21/2023] [Indexed: 03/06/2024] Open
Abstract
Noise exposure has been reported to exert numerous detrimental effects on the human population, although most research has centred around hearing damage. Vestibular and balance loss have been demonstrated among industrial workers, although reports on this are still scarce. Vestibular loss increases the risk of falls, especially among industrial workers who are at constant risk. Nonetheless, the ideal investigation tool to investigate vestibular function remains unknown. We aim to review the available literature to elucidate the effect of noise exposure on semicircular canals using a video head impulse test (vHIT). A literature search identified only three studies involving 137 patients (mean age: 44.4). Semicircular canal deficit was found in 50.4% of the included participants, with lateral canal predominantly affected (71%). We highlight the importance of assessing the effect of noise exposure on vestibular function, especially among those prone to occupation-related vestibular loss.
Collapse
Affiliation(s)
- Jeyasakthy Saniasiaya
- Department of Otorhinolaryngology, Faculty of Medicine, Universiti Malaya, Jalan Universiti, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur 50603 Malaysia
| |
Collapse
|
7
|
Raciti FM, Morales Y, Snapp HA, Rajguru SM. A reliable and reproducible protocol for sound-evoked vestibular myogenic potentials in rattus norvegicus. Front Integr Neurosci 2023; 17:1236642. [PMID: 37731913 PMCID: PMC10508189 DOI: 10.3389/fnint.2023.1236642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Cervical vestibular evoked myogenic potentials (cVEMPs) provide an objective measure of the integrity of the sacculo-collic pathway leading to their widespread use as a clinical tool in the diagnostic vestibular test battery. Though the application of cVEMPs in preclinical models to assess vestibular function, as performed in relevant clinical populations, remains limited. The present study aimed to establish a rodent model of cVEMP with standardized methods and protocols, examine the neural basis of the responses, and characterize and validate important features for interpretation and assessment of vestibular function. Methods We compared air-conducted sound (ACS)-evoked VEMPs from the sternocleidomastoid muscles in naïve Brown Norway rats. A custom setup facilitated repeatable and reliable measurements which were carried out at multiple intensities with ACS between 1 and 16 kHz and over 7 days. The myogenic potentials were identified by the presence of a positive (P1)-negative (N1) waveform at 3-5 ms from the stimulus onset. Threshold, amplitude, and latency were compared with intensity- and frequency-matched responses within and between animals. Results cVEMP responses were repeatedly evoked with stimulus intensities between 50-100 dB SPL with excellent test-retest reliability and across multiple measurements over 7 days for all frequencies tested. Suprathreshold, cVEMP responses at 90 dB SPL for 6-10 kHz stimuli demonstrated significantly larger amplitudes (p < 0.01) and shorter latencies (p < 0.001) compared to cVEMP responses for 1-4 kHz stimuli. Latency of cVEMP showed sex-dependent variability, but no significant differences in threshold or amplitude between males and females was observed. Discussion The results provide a replicable and reliable setup, test protocol, and comprehensive characterization of cVEMP responses in a preclinical model which can be used in future studies to elucidate pathophysiological characteristics of vestibular dysfunctions or test efficacy of therapeutics.
Collapse
Affiliation(s)
- Federica M. Raciti
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Yasniary Morales
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Hillary A. Snapp
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Suhrud M. Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, United States
| |
Collapse
|
8
|
Pastras CJ, Curthoys IS, Rabbitt RD, Brown DJ. Using macular velocity measurements to relate parameters of bone conduction to vestibular compound action potential responses. Sci Rep 2023; 13:10204. [PMID: 37353559 PMCID: PMC10290084 DOI: 10.1038/s41598-023-37102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
To examine mechanisms responsible for vestibular afferent sensitivity to transient bone conducted vibration, we performed simultaneous measurements of stimulus-evoked vestibular compound action potentials (vCAPs), utricular macula velocity, and vestibular microphonics (VMs) in anaesthetized guinea pigs. Results provide new insights into the kinematic variables of transient motion responsible for triggering mammalian vCAPs, revealing synchronized vestibular afferent responses are not universally sensitive to linear jerk as previously thought. For short duration stimuli (< 1 ms), the vCAP increases magnitude in close proportion to macular velocity and temporal bone (linear) acceleration, rather than other kinematic elements. For longer duration stimuli, the vCAP magnitude switches from temporal bone acceleration sensitive to linear jerk sensitive while maintaining macular velocity sensitivity. Frequency tuning curves evoked by tone-burst stimuli show vCAPs increase in proportion to onset macular velocity, while VMs increase in proportion to macular displacement across the entire frequency bandwidth tested between 0.1 and 2 kHz. The subset of vestibular afferent neurons responsible for synchronized firing and vCAPs have been shown previously to make calyceal synaptic contacts with type I hair cells in the striolar region of the epithelium and have irregularly spaced inter-spike intervals at rest. Present results provide new insight into mechanical and neural mechanisms underlying synchronized action potentials in these sensitive afferents, with clinical relevance for understanding the activation and tuning of neurons responsible for driving rapid compensatory reflex responses.
Collapse
Affiliation(s)
- Christopher J Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia.
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Richard D Rabbitt
- Departments of Biomedical Engineering, Otolaryngology and Neuroscience Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Daniel J Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
9
|
Pastras CJ, Gholami N, Jennings S, Zhu H, Zhou W, Brown DJ, Curthoys IS, Rabbitt RD. A mathematical model for mechanical activation and compound action potential generation by the utricle in response to sound and vibration. Front Neurol 2023; 14:1109506. [PMID: 37051057 PMCID: PMC10083375 DOI: 10.3389/fneur.2023.1109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction Calyx bearing vestibular afferent neurons innervating type I hair cells in the striolar region of the utricle are exquisitely sensitive to auditory-frequency air conducted sound (ACS) and bone conducted vibration (BCV). Here, we present experimental data and a mathematical model of utricular mechanics and vestibular compound action potential generation (vCAP) in response to clinically relevant levels of ACS and BCV. Vibration of the otoconial layer relative to the sensory epithelium was simulated using a Newtonian two-degree-of-freedom spring-mass-damper system, action potential timing was simulated using an empirical model, and vCAPs were simulated by convolving responses of the population of sensitive neurons with an empirical extracellular voltage kernel. The model was validated by comparison to macular vibration and vCAPs recorded in the guinea pig, in vivo. Results Transient stimuli evoked short-latency vCAPs that scaled in magnitude and timing with hair bundle mechanical shear rate for both ACS and BCV. For pulse BCV stimuli with durations <0.8 ms, the vCAP magnitude increased in proportion to temporal bone acceleration, but for pulse durations >0.9 ms the magnitude increased in proportion to temporal bone jerk. Once validated using ACS and BCV data, the model was applied to predict blast-induced hair bundle shear, with results predicting acute mechanical damage to bundles immediately upon exposure. Discussion Results demonstrate the switch from linear acceleration to linear jerk as the adequate stimulus arises entirely from mechanical factors controlling the dynamics of sensory hair bundle deflection. The model describes the switch in terms of the mechanical natural frequencies of vibration, which vary between species based on morphology and mechanical factors.
Collapse
Affiliation(s)
- Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nastaran Gholami
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Skyler Jennings
- Communication Sciences and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| | - Hong Zhu
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel J. Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard D. Rabbitt
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Otolaryngology and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Rogers LS, Van Wert JC, Mensinger AF. Response of toadfish ( Opsanus tau) utricular afferents to multimodal inputs. J Neurophysiol 2022; 128:364-377. [PMID: 35830608 DOI: 10.1152/jn.00483.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs (saccule, utricle, and lagena), which encode auditory and vestibular inputs via the deflection of hair cells contained within the sensory epithelia of each organ. However, it remains unclear how the multimodal otolithic end organs of the teleost inner ear simultaneously integrate vestibular and auditory inputs. Therefore, microwire electrodes were chronically implanted using a 3D printed micromanipulator into the utricular nerve of oyster toadfish (Opsanus tau) to determine how utricular afferents respond to conspecific mate vocalizations termed boatwhistles (180 Hz fundamental frequency) during movement. Utricular afferents were recorded while fish were passively moved using a sled system along an underwater track at variable speeds (velocity: 4.0 - 12.5 cm/s; acceleration: 0.2 - 2.6 cm/s2) and while fish freely swam (velocity: 3.5 - 18.6 cm/s; acceleration: 0.8 - 29.8 cm/s2). Afferent fiber activities (spikes/s) increased in response to the onset of passive and active movements; however, afferent fibers differentially adapted to sustained movements. Additionally, utricular afferent fibers remained sensitive to playbacks of conspecific male boatwhistle vocalizations during both passive and active movements. Here, we demonstrate in alert toadfish that utricular afferents exhibit enhanced activity levels (spikes/s) in response to behaviorally-relevant acoustic stimuli during swimming.
Collapse
Affiliation(s)
- Loranzie S Rogers
- Biology Department, University of Minnesota Duluth, Duluth, MN, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Allen F Mensinger
- Biology Department, University of Minnesota Duluth, Duluth, MN, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
11
|
Huang J, Tang X, Xu Y, Zhang C, Chen T, Yu Y, Mustain W, Allison J, Iversen MM, Rabbitt RD, Zhou W, Zhu H. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats. J Assoc Res Otolaryngol 2022; 23:435-453. [DOI: 10.1007/s10162-022-00839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
|
12
|
Sadeghi SG, Géléoc GSG. Editorial: Commonalities and Differences in Vestibular and Auditory Pathways. Front Neurosci 2022; 16:876798. [PMID: 35401079 PMCID: PMC8984178 DOI: 10.3389/fnins.2022.876798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soroush G. Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Science, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Soroush G. Sadeghi
| | - Gwenaëlle S. G. Géléoc
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Gwenaëlle S. G. Géléoc
| |
Collapse
|
13
|
Usefulness of Cervical Vestibular-Evoked Myogenic Potentials for Diagnosing Patients With Superior Canal Dehiscence Syndrome: A Meta-Analysis. Otol Neurotol 2021; 43:146-152. [PMID: 34855686 DOI: 10.1097/mao.0000000000003430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To compare the diagnostic accuracy of cervical vestibular-evoked myogenic potential (cVEMP) for detecting superior canal dehiscence (SCD) syndrome to that of computed tomography (CT) and surgical findings. DATABASES REVIEWED PubMed, SCOPUS, Embase, Web of Science, and the Cochrane database. METHODS Databases were searched up to July 2021. True positives, true negatives, false positives, and false negatives were extracted. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. RESULTS Our search yielded nine studies with 721 patients. Including all cVEMP thresholds, the diagnostic odds ratio (DOR) was 32.8483 (95% confidence interval [CI]: 19.6577, 54.8900; I2 = 49.9%). The area under the summary receiver operating characteristic curve (AUC) was 0.879. Sensitivity and specificity were 0.8278 (95% CI: 0.7517, 0.8842; I2 = 76.4%) and 0.8824 (95% CI: 0.7859, 0.9387; I2 = 92.8%), respectively. However, there was a high degree of heterogeneity (I2 ≥ 70%) due to the different VEMP threshold values used among the studies. In subgroup analysis, higher cVEMP threshold values showed higher sensitivity (threshold ≤ 85: 0.9568; threshold ≤ 65: 0.7691) but lower specificity (threshold ≤ 85: 0.5879; threshold ≤ 65: 0.8913). The threshold ≤75 subgroup showed moderate sensitivity of 0.7455, high specificity of 0.9526, and the highest DOR of 38.9062. The AUC of this subgroup was 0.894. CONCLUSIONS cVEMP is a reliable adjunctive tool for the clinical diagnosis of SCD. Taking the balance between sensitivity and specificity into consideration, a cVEMP threshold value of 75 showed good diagnostic accuracy.
Collapse
|
14
|
Chen T, Huang J, Yu Y, Tang X, Zhang C, Xu Y, Arteaga A, Allison J, Mustain W, Donald MC, Rappai T, Zhang M, Zhou W, Zhu H. Sound-Evoked Responses in the Vestibulo-Ocular Reflex Pathways of Rats. Front Neurosci 2021; 15:741571. [PMID: 34720863 PMCID: PMC8551456 DOI: 10.3389/fnins.2021.741571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Vestibular evoked myogenic potentials (VEMP) have been used to assess otolith function in clinics worldwide. However, there are accumulating evidence suggesting that the clinically used sound stimuli activate not only the otolith afferents, but also the canal afferents, indicating canal contributions to the VEMPs. To better understand the neural mechanisms underlying the VEMPs and develop discriminative VEMP protocols, we further examined sound-evoked responses of the vestibular nucleus neurons and the abducens neurons, which have the interneurons and motoneurons of the vestibulo-ocular reflex (VOR) pathways. Air-conducted clicks (50–80 dB SL re ABR threshold, 0.1 ms duration) or tone bursts (60–80 dB SL, 125–4,000 Hz, 8 ms plateau, 1 ms rise/fall) were delivered to the ears of Sprague-Dawley or Long-Evans rats. Among 425 vestibular nucleus neurons recorded in anesthetized rats and 18 abducens neurons recorded in awake rats, sound activated 35.9% of the vestibular neurons that increased discharge rates for ipsilateral head rotation (Type I neuron), 15.7% of the vestibular neurons that increased discharge rates for contralateral head rotation (Type II neuron), 57.2% of the vestibular neurons that did not change discharge rates during head rotation (non-canal neuron), and 38.9% of the abducens neurons. Sound sensitive vestibular nucleus neurons and abducens neurons exhibited characteristic tuning curves that reflected convergence of canal and otolith inputs in the VOR pathways. Tone bursts also evoked well-defined eye movements that increased with tone intensity and duration and exhibited peak frequency of ∼1,500 Hz. For the left eye, tone bursts evoked upward/rightward eye movements for ipsilateral stimulation, and downward/leftward eye movements for contralateral stimulation. These results demonstrate that sound stimulation results in activation of the canal and otolith VOR pathways that can be measured by eye tracking devices to develop discriminative tests of vestibular function in animal models and in humans.
Collapse
Affiliation(s)
- Tianwen Chen
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jun Huang
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yue Yu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xuehui Tang
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chunming Zhang
- Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Youguo Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alberto Arteaga
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jerome Allison
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - William Mustain
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Matthew C Donald
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Tracy Rappai
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael Zhang
- Summer Undergraduate Research Program, University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Hong Zhu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
15
|
Abstract
Third window syndrome describes a set of vestibular and auditory symptoms that arise when a pathological third mobile window is present in the bony labyrinth of the inner ear. The pathological mobile window (or windows) adds to the oval and round windows, disrupting normal auditory and vestibular function by altering biomechanics of the inner ear. The most commonly occurring third window syndrome arises from superior semicircular canal dehiscence (SSCD), where a section of bone overlying the superior semicircular canal is absent or thinned (near-dehiscence). The presentation of SSCD syndrome is well characterized by clinical audiological and vestibular tests. In this review, we describe how the third compliant window introduced by a SSCD alters the biomechanics of the inner ear and thereby leads to vestibular and auditory symptoms. Understanding the biomechanical origins of SSCD further provides insight into other third window syndromes and the potential of restoring function or reducing symptoms through surgical repair.
Collapse
Affiliation(s)
- Marta M. Iversen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Richard D. Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Otolaryngology, University of Utah, Salt Lake City, UT, United States
- Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
16
|
Lentz JJ, Pan B, Ponnath A, Tran CM, Nist-Lund C, Galvin A, Goldberg H, Robillard KN, Jodelka FM, Farris HE, Huang J, Chen T, Zhu H, Zhou W, Rigo F, Hastings ML, Géléoc GSG. Direct Delivery of Antisense Oligonucleotides to the Middle and Inner Ear Improves Hearing and Balance in Usher Mice. Mol Ther 2020; 28:2662-2676. [PMID: 32818431 PMCID: PMC7704764 DOI: 10.1016/j.ymthe.2020.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/05/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome is a syndromic form of hereditary hearing impairment that includes sensorineural hearing loss and delayed-onset retinitis pigmentosa (RP). Type 1 Usher syndrome (USH1) is characterized by congenital profound sensorineural hearing impairment and vestibular areflexia, with adolescent-onset RP. Systemic treatment with antisense oligonucleotides (ASOs) targeting the human USH1C c.216G>A splicing mutation in a knockin mouse model of USH1 restores hearing and balance. Herein, we explore the effect of delivering ASOs locally to the ear to treat hearing and vestibular dysfunction associated with Usher syndrome. Three localized delivery strategies were investigated in USH1C mice: inner ear injection, trans-tympanic membrane injection, and topical tympanic membrane application. We demonstrate, for the first time, that ASOs delivered directly to the ear correct Ush1c expression in inner ear tissue, improve cochlear hair cell transduction currents, restore vestibular afferent irregularity, spontaneous firing rate, and sensitivity to head rotation, and successfully recover hearing thresholds and balance behaviors in USH1C mice. We conclude that local delivery of ASOs to the middle and inner ear reach hair cells and can rescue both hearing and balance. These results also demonstrate the therapeutic potential of ASOs to treat hearing and balance deficits associated with Usher syndrome and other ear diseases.
Collapse
Affiliation(s)
- Jennifer J Lentz
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Bifeng Pan
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhilash Ponnath
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M Tran
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Galvin
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Goldberg
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn N Robillard
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hamilton E Farris
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jun Huang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Tianwen Chen
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Wu Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gwenaëlle S G Géléoc
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Wu X, Yu S, Liu W, Shen S. Numerical modeling and verification by nystagmus slow-phase velocity of the function of semicircular canals. Biomech Model Mechanobiol 2020; 19:2343-2356. [DOI: 10.1007/s10237-020-01343-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
|
18
|
Mueller AL, Liebmann LB, Petrak MR, Bahner CM, Weberling LM, Weiss AD, Matsuoka AJ. Evaluation of the utricular function with the virtual-subject visual vertical system: comparison with ocular vestibular-evoked myogenic potentials. Acta Otolaryngol 2020; 140:366-372. [PMID: 32022613 DOI: 10.1080/00016489.2020.1718202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The subjective visual vertical (SVV) is the most frequently assessed modality of verticality perception and has been measured in a variety of clinical situations, including peripheral vestibular lesions.Aim: The main objectives are (1) to collect normative data of Virtual SVV™ from healthy subjects, and (2) to study the correlation between Virtual SVV™ and ocular vestibular-evoked myogenic potentials (o-VEMP) on healthy subjects.Materials and methods: Forty-three healthy subjects were recruited. Air conduction (AC)-elicited oVEMPs and bone conduction (BC)-elicited oVEMPs were measured. BC stimuli were produced with a RadioEar B-81 High Output Bone Transducer. Virtual SVV™ were also measured.Results: Virtual SVV™ data from our healthy subjects were consistent with previously published normative SVV data. Normal Virtual SVV™ data did not correlate with normal AC-elicited and BC-elicited oVEMPs.Conclusions: Virtual SVV™ data from our healthy subjects were consistent with previously published normative SVV data. Virtual SVV™ data from our 43 health subjects only had weak correlation with c-VEMP, AC-elicited and BC-elicited oVEMPs. These data serve as a baseline for a future study of patients with unilateral utricular dysfunction.Significance: The Virtual SVV™ can be an attractive substitute for traditional SVV in clinical settings.
Collapse
Affiliation(s)
- Amanda L. Mueller
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - Lara B. Liebmann
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | | | | | | | | | - Akihiro J. Matsuoka
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
- Northwestern Medicine, Chicago, IL, USA
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Hugh Knowles Hearing Centre, Evanston, IL, USA
| |
Collapse
|
19
|
Stewart CE, Bauer DS, Kanicki AC, Altschuler RA, King WM. Intense noise exposure alters peripheral vestibular structures and physiology. J Neurophysiol 2020; 123:658-669. [PMID: 31875485 PMCID: PMC7052639 DOI: 10.1152/jn.00642.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
The otolith organs play a critical role in detecting linear acceleration and gravity to control posture and balance. Some afferents that innervate these structures can be activated by sound and are at risk for noise overstimulation. A previous report demonstrated that noise exposure can abolish vestibular short-latency evoked potential (VsEP) responses and damage calyceal terminals. However, the stimuli that were used to elicit responses were weaker than those established in previous studies and may have been insufficient to elicit VsEP responses in noise-exposed animals. The goal of this study was to determine the effect of an established noise exposure paradigm on VsEP responses using large head-jerk stimuli to determine if noise induces a stimulus threshold shift and/or if large head-jerks are capable of evoking VsEP responses in noise-exposed rats. An additional goal is to relate these measurements to the number of calyceal terminals and hair cells present in noise-exposed vs. non-noise-exposed tissue. Exposure to intense continuous noise significantly reduced VsEP responses to large stimuli and abolished VsEP responses to small stimuli. This finding confirms that while measurable VsEP responses can be elicited from noise-lesioned rat sacculi, larger head-jerk stimuli are required, suggesting a shift in the minimum stimulus necessary to evoke the VsEP. Additionally, a reduction in labeled calyx-only afferent terminals was observed without a concomitant reduction in the overall number of calyces or hair cells. This finding supports a critical role of calretinin-expressing calyceal-only afferents in the generation of a VsEP response.NEW & NOTEWORTHY This study identifies a change in the minimum stimulus necessary to evoke vestibular short-latency evoked potential (VsEP) responses after noise-induced damage to the vestibular periphery and reduced numbers of calretinin-labeled calyx-only afferent terminals in the striolar region of the sacculus. These data suggest that a single intense noise exposure may impact synaptic function in calyx-only terminals in the striolar region of the sacculus. Reduced calretinin immunolabeling may provide insight into the mechanism underlying noise-induced changes in VsEP responses.
Collapse
Affiliation(s)
- C E Stewart
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - D S Bauer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - A C Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - R A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - W M King
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Yu Y, Huang J, Tang X, Allison J, Sandlin D, Ding D, Pang Y, Zhang C, Chen T, Yin N, Chen L, Mustain W, Zhou W, Zhu H. Exposure to blast shock waves via the ear canal induces deficits in vestibular afferent function in rats. J Otol 2020; 15:77-85. [PMID: 32884557 PMCID: PMC7451608 DOI: 10.1016/j.joto.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The ears are air-filled structures that are directly impacted during blast exposure. In addition to hearing loss and tinnitus, blast victims often complain of vertigo, dizziness and unsteady posture, suggesting that blast exposure induces damage to the vestibular end organs in the inner ear. However, the underlying mechanisms remain to be elucidated. In this report, single vestibular afferent activity and the vestibulo-ocular reflex (VOR) were investigated before and after exposure to blast shock waves (∼20 PSI) delivered into the left external ear canals of anesthetized rats. Single vestibular afferent activity was recorded from the superior branch of the left vestibular nerves of the blast-treated and control rats one day after blast exposure. Blast exposure reduced the spontaneous discharge rates of the otolith and canal afferents. Blast exposure also reduced the sensitivity of irregular canal afferents to sinusoidal head rotation at 0.5-2Hz. Blast exposure, however, resulted in few changes in the VOR responses to sinusoidal head rotation and translation. To the best of our knowledge, this is the first study that reports blast exposure-induced damage to vestibular afferents in an animal model. These results provide insights that may be helpful in developing biomarkers for early diagnosis of blast-induced vestibular deficits in military and civilian populations.
Collapse
Affiliation(s)
- Yue Yu
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jun Huang
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xuehui Tang
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome Allison
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - David Sandlin
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Yi Pang
- Department of Pediatric, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chunming Zhang
- Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, Taiyuan Shanxi, 030001, China
| | - Tianwen Chen
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Yin
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lan Chen
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - William Mustain
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wu Zhou
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hong Zhu
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
21
|
Evidence of a Vestibular Origin for Crossed-Sternocleidomastoid Muscle Responses to Air-Conducted Sound. Ear Hear 2019; 41:896-906. [PMID: 31688318 DOI: 10.1097/aud.0000000000000813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Small, excitatory surface potentials can sometimes be recorded from the contralateral sternocleidomastoid muscle (SCM) following monaural acoustic stimulation. Little is known about the physiological properties of these crossed reflexes. In this study, we sought the properties of crossed SCM responses and through comparison with other cochlear and vestibular myogenic potentials, their likely receptor origin. DESIGN Surface potentials were recorded from the ipsilateral and contralateral SCM and postauricular (PAM) muscles of 11 healthy volunteers, 4 patients with superior canal dehiscence and 1 with profound hearing loss. Air-conducted clicks of 105 dB nHL and tone bursts (250 to 4000 Hz) of 100 dB nHL were presented monaurally through TDH 49 headphones during head elevation. Click-evoked responses were recorded under two conditions of gaze in random order: gaze straight ahead and rotated hard toward the contralateral recording electrodes. Amplitudes (corrected and uncorrected) and latencies for crossed SCM responses were compared with vestibular (ipsilateral SCM) and cochlear (PAM) responses between groups and across the different recording conditions. RESULTS Surface waveforms were biphasic; positive-negative for the ipsilateral SCM, and negative-positive for the contralateral SCM and PAM. There were significant differences in the amplitudes and latencies (p = 0.004) for click responses of healthy controls across recording sites. PAM responses had the largest mean-corrected amplitudes (2.3 ± 2.8) and longest latencies (13.0 ± 1.2 msec), compared with ipsilateral (1.6 ± 0.5; 12.0 ± 0.7 msec) and contralateral (0.8 ± 0.3; 10.4 ± 1.0 msec) SCM responses. Uncorrected amplitudes and muscle activation for PAM increased by 104.4% and 46.8% with lateral gaze respectively, whereas SCM responses were not significantly affected. Click responses of patients with superior canal dehiscence followed a similar latency, amplitude, and gaze modulation trend as controls. SCM responses were preserved in the patient with profound hearing loss, yet all PAM were absent. There were significant differences in the frequency tuning of the three reflexes (p < 0.001). Tuning curves of healthy controls were flat for PAM and down sloping for ipsilateral and contralateral SCM responses. For superior canal dehiscence, they were rising for PAM and slightly down sloping for SCM responses. CONCLUSIONS Properties of crossed SCM responses were similar, though not identical, to those of ipsilateral SCM responses and are likely to be predominantly vestibular in origin. They are unlikely to represent volume conduction from the PAM as they were unaffected by lateral gaze, were shorter in latency, and had different tuning properties. The influence of crossed vestibulo-collic pathways should be considered when interpreting cervical vestibular-evoked myogenic potentials recorded under conditions of binaural stimulation.
Collapse
|
22
|
Papathanasiou E, Straumann D. Why and when to refer patients for vestibular evoked myogenic potentials: A critical review. Clin Neurophysiol 2019; 130:1539-1556. [DOI: 10.1016/j.clinph.2019.04.719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
|
23
|
Curthoys IS, Grant JW, Pastras CJ, Brown DJ, Burgess AM, Brichta AM, Lim R. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J Neurophysiol 2019; 122:259-276. [DOI: 10.1152/jn.00031.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Older studies of mammalian otolith physiology have focused mainly on sustained responses to low-frequency (<50 Hz) or maintained linear acceleration. So the otoliths have been regarded as accelerometers. Thus evidence of otolithic activation and high-precision phase locking to high-frequency sound and vibration appears to be very unusual. However, those results are exactly in accord with a substantial body of knowledge of otolith function in fish and frogs. It is likely that phase locking of otolith afferents to vibration is a general property of all vertebrates. This review examines the literature about the activation and phase locking of single otolithic neurons to air-conducted sound and bone-conducted vibration, in particular the high precision of phase locking shown by mammalian irregular afferents that synapse on striolar type I hair cells by calyx endings. Potassium in the synaptic cleft between the type I hair cell receptor and the calyx afferent ending may be responsible for the tight phase locking of these afferents even at very high discharge rates. Since frogs and fish do not possess full calyx endings, it is unlikely that they show phase locking with such high precision and to such high frequencies as has been found in mammals. The high-frequency responses have been modeled as the otoliths operating in a seismometer mode rather than an accelerometer mode. These high-frequency otolithic responses constitute the neural basis for clinical vestibular-evoked myogenic potential tests of otolith function.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - J. Wally Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - Christopher J. Pastras
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Daniel J. Brown
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ann M. Burgess
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - Alan M. Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| |
Collapse
|
24
|
Rosengren SM, Weber KP, Govender S, Welgampola MS, Dennis DL, Colebatch JG. Sound-evoked vestibular projections to the splenius capitis in humans: comparison with the sternocleidomastoid muscle. J Appl Physiol (1985) 2019; 126:1619-1629. [DOI: 10.1152/japplphysiol.00711.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The short-latency vestibulo-collic reflex in humans is well defined for only the sternocleidomastoid (SCM) neck muscle. However, other neck muscles also receive input from the balance organs and participate in neck stabilization. We therefore investigated the sound-evoked vestibular projection to the splenius capitis (SC) muscles by comparing surface and single motor unit responses in the SC and SCM muscles in 10 normal volunteers. We also recorded surface responses in patients with unilateral vestibular loss but preserved hearing and hearing loss but preserved vestibular function. The single motor unit responses were predominantly inhibitory, and the strongest responses were recorded in the contralateral SC and ipsilateral SCM. In both cases there was a significant decrease or gap in single motor unit activity, in SC at 11.7 ms for 46/66 units and in SCM at 12.7 ms for 51/58 motor units. There were fewer significant responses in the ipsilateral SC and contralateral SCM muscles, and they consisted primarily of weak increases in activity. Surface responses recorded over the contralateral SC were positive-negative during neck rotation, similar to the ipsilateral cervical vestibular evoked myogenic potential in SCM. Responses in SC were present in the patients with hearing loss and absent in the patient with vestibular loss, confirming their vestibular origin. The results describe a pattern of inhibition consistent with the synergistic relationship between these muscles for axial head rotation, with the crossed vestibular projection to the contralateral SC being weaker than the ipsilateral projection to the SCM. NEW & NOTEWORTHY We used acoustic vestibular stimulation to investigate the saccular projections to the splenius capitis (SC) and sternocleidomastoid (SCM) muscles in humans. Single motor unit recordings from within the muscles demonstrated strong inhibitory projections to the contralateral SC and ipsilateral SCM muscles and weak excitatory projections to the opposite muscle pair. This synergistic pattern of activation is consistent with a role for the reflex in axial rotation of the head.
Collapse
Affiliation(s)
- Sally M. Rosengren
- Neurology Department, Royal Prince Alfred Hospital, Camperdown, Australia
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Konrad P. Weber
- Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Switzerland
| | - Sendhil Govender
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | | | - Danielle L. Dennis
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - James G. Colebatch
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Curthoys I, Burgess AM, Goonetilleke SC. Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration. Hear Res 2019; 373:59-70. [DOI: 10.1016/j.heares.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
26
|
Rosengren SM, Colebatch JG, Young AS, Govender S, Welgampola MS. Vestibular evoked myogenic potentials in practice: Methods, pitfalls and clinical applications. Clin Neurophysiol Pract 2019; 4:47-68. [PMID: 30949613 PMCID: PMC6430081 DOI: 10.1016/j.cnp.2019.01.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
Vestibular evoked myogenic potentials (VEMPs) are used to test the otolith organs in patients with vertigo and imbalance. This review discusses the optimal procedures for recording VEMPs and the pitfalls commonly encountered by clinicians. Better understanding of VEMP methodology should lead to improved quality of recordings.
Vestibular evoked myogenic potentials (VEMPs) are a useful and increasingly popular component of the neuro-otology test battery. These otolith-dependent reflexes are produced by stimulating the ears with air-conducted sound or skull vibration and recorded from surface electrodes placed over the neck (cervical VEMPs) and eye muscles (ocular VEMPs). VEMP abnormalities have been reported in various diseases of the ear and vestibular system, and VEMPs have a clear role in the diagnosis of superior semicircular canal dehiscence. However there is significant variability in the methods used to stimulate the otoliths and record the reflexes. This review discusses VEMP methodology and provides a detailed theoretical background for the techniques that are typically used. The review also outlines the common pitfalls in VEMP recording and the clinical applications of VEMPs.
Collapse
Key Words
- AC, air-conducted
- AR, asymmetry ratio
- AVS, acute vestibular syndrome
- BAER, brainstem auditory evoked potential
- BC, bone-conducted
- BPV, benign positioning vertigo
- BVP, bilateral vestibulopathy
- CANVAS, cerebellar ataxia, neuropathy and vestibular areflexia syndrome
- Deg, degrees
- ECG, electrocardiographic
- EEG, electroencephalographic
- EMG, electromyographic activity/electromyogram
- FL, force level
- HL, hearing level
- IO, inferior oblique
- MD, Meniere’s disease
- Method
- NIOSH, National Institutes of Occupational Safety and Health
- Otolith
- PCS, posterior circulation stroke
- PICA, posterior inferior cerebellar artery
- PP, peak-to-peak
- RMS, root mean square
- SCC, semicircular canal
- SCD, superior canal dehiscence
- SCM, sternocleidomastoid
- SL, sensation level
- SPL, sound pressure level, being the RMS value for a sinusoid
- SVH, subjective visual horizontal
- Sound
- UW, unilateral weakness
- VEMP
- VEMP, vestibular evoked myogenic potential
- VM, vestibular migraine
- VN, vestibular neuritis
- VS, vestibular schwannoma
- Vestibular
- Vibration
- cVEMP, cervical vestibular evoked myogenic potential
- dB, decibels, the logarithm of the relative power versus a reference
- dBA, decibels, measured using an “A” weighting
- nHL, normal hearing level
- oVEMP, ocular vestibular evoked myogenic potential
- pkFL, peak force level
- pkSPL, peak sound pressure level (3 dB higher than RMS for a sinusoid)
- vHIT, video head impulse test
Collapse
Affiliation(s)
- Sally M Rosengren
- Neurology Department and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, Australia.,Central Clinical School, University of Sydney, Sydney, Australia
| | - James G Colebatch
- Prince of Wales Hospital Clinical School and Neuroscience Research Australia, Randwick, Sydney, NSW, Australia
| | - Allison S Young
- Neurology Department and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, Australia.,Central Clinical School, University of Sydney, Sydney, Australia
| | - Sendhil Govender
- Neurology Department and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, Australia.,Prince of Wales Hospital Clinical School and Neuroscience Research Australia, Randwick, Sydney, NSW, Australia
| | - Miriam S Welgampola
- Neurology Department and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, Australia.,Central Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Iversen MM, Zhu H, Zhou W, Della Santina CC, Carey JP, Rabbitt RD. Sound abnormally stimulates the vestibular system in canal dehiscence syndrome by generating pathological fluid-mechanical waves. Sci Rep 2018; 8:10257. [PMID: 29980716 PMCID: PMC6035247 DOI: 10.1038/s41598-018-28592-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Individuals suffering from Tullio phenomena experience dizziness, vertigo, and reflexive eye movements (nystagmus) when exposed to seemingly benign acoustic stimuli. The most common cause is a defect in the bone enclosing the vestibular semicircular canals of the inner ear. Surgical repair often corrects the problem, but the precise mechanisms underlying Tullio phenomenon are not known. In the present work we quantified the phenomenon in an animal model of the condition by recording fluid motion in the semicircular canals and neural activity evoked by auditory-frequency stimulation. Results demonstrate short-latency phase-locked afferent neural responses, slowly developing sustained changes in neural discharge rate, and nonlinear fluid pumping in the affected semicircular canal. Experimental data compare favorably to predictions of a nonlinear computational model. Results identify the biophysical origin of Tullio phenomenon in pathological sound-evoked fluid-mechanical waves in the inner ear. Sound energy entering the inner ear at the oval window excites fluid motion at the location of the defect, giving rise to traveling waves that subsequently excite mechano-electrical transduction in the vestibular sensory organs by vibration and nonlinear fluid pumping.
Collapse
Affiliation(s)
- M M Iversen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - H Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - W Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - C C Della Santina
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J P Carey
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R D Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
- Department of Otolaryngology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Program, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Rosengren SM, Colebatch JG. The Contributions of Vestibular Evoked Myogenic Potentials and Acoustic Vestibular Stimulation to Our Understanding of the Vestibular System. Front Neurol 2018; 9:481. [PMID: 30013504 PMCID: PMC6037197 DOI: 10.3389/fneur.2018.00481] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Vestibular-evoked myogenic potentials (VEMPs) are short-latency muscle reflexes typically recorded from the neck or eye muscles with surface electrodes. They are used clinically to assess otolith function, but are also interesting as they can provide information about the vestibular system and its activation by sound and vibration. Since the introduction of VEMPs more than 25 years ago, VEMPs have inspired animal and human research on the effects of acoustic vestibular stimulation on the vestibular organs, their projections and the postural muscles involved in vestibular reflexes. Using a combination of recording techniques, including single motor unit recordings, VEMP studies have enhanced our understanding of the excitability changes underlying the sound-evoked vestibulo-collic and vestibulo-ocular reflexes. Studies in patients with diseases of the vestibular system, such as superior canal dehiscence and Meniere's disease, have shown how acoustic vestibular stimulation is affected by physical changes in the vestibule, and how sound-evoked reflexes can detect these changes and their resolution in clinical contexts. This review outlines the advances in our understanding of the vestibular system that have occurred following the renewed interest in sound and vibration as a result of the VEMP.
Collapse
Affiliation(s)
- Sally M Rosengren
- Neurology Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - James G Colebatch
- Prince of Wales Hospital Clinical School and Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Curthoys IS, Grant JW, Burgess AM, Pastras CJ, Brown DJ, Manzari L. Otolithic Receptor Mechanisms for Vestibular-Evoked Myogenic Potentials: A Review. Front Neurol 2018; 9:366. [PMID: 29887827 PMCID: PMC5980960 DOI: 10.3389/fneur.2018.00366] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Air-conducted sound and bone-conduced vibration activate otolithic receptors and afferent neurons in both the utricular and saccular maculae, and trigger small electromyographic (EMG) responses [called vestibular-evoked myogenic potentials (VEMPs)] in various muscle groups throughout the body. The use of these VEMPs for clinical assessment of human otolithic function is built on the following logical steps: (1) that high-frequency sound and vibration at clinically effective stimulus levels activate otolithic receptors and afferents, rather than semicircular canal afferents, (2) that there is differential anatomical projection of otolith afferents to eye muscles and neck muscles, and (3) that isolated stimulation of the utricular macula induces short latency responses in eye muscles, and that isolated stimulation of the saccular macula induces short latency responses in neck motoneurons. Evidence supports these logical steps, and so VEMPs are increasingly being used for clinical assessment of otolith function, even differential evaluation of utricular and saccular function. The proposal, originally put forward by Curthoys in 2010, is now accepted: that the ocular vestibular-evoked myogenic potential reflects predominantly contralateral utricular function and the cervical vestibular-evoked myogenic potential reflects predominantly ipsilateral saccular function. So VEMPs can provide differential tests of utricular and saccular function, not because of stimulus selectivity for either of the two maculae, but by measuring responses which are predominantly determined by the differential neural projection of utricular as opposed to saccular neural information to various muscle groups. The major question which this review addresses is how the otolithic sensory system, with such a high density otoconial layer, can be activated by individual cycles of sound and vibration and show such tight locking of the timing of action potentials of single primary otolithic afferents to a particular phase angle of the stimulus cycle even at frequencies far above 1,000 Hz. The new explanation is that it is due to the otoliths acting as seismometers at high frequencies and accelerometers at low frequencies. VEMPs are an otolith-dominated response, but in a particular clinical condition, semicircular canal dehiscence, semicircular canal receptors are also activated by sound and vibration, and act to enhance the otolith-dominated VEMP responses.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - J. Wally Grant
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, United States
| | - Ann M. Burgess
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Chris J. Pastras
- The Menière’s Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Daniel J. Brown
- The Menière’s Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Rosengren SM, Welgampola MS, Taylor RL. Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy. Front Neurol 2018; 9:252. [PMID: 29719527 PMCID: PMC5913369 DOI: 10.3389/fneur.2018.00252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 12/03/2022] Open
Abstract
Bilateral vestibulopathy (BVP) is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs) are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function.
Collapse
Affiliation(s)
- Sally M Rosengren
- Neurology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Miriam S Welgampola
- Central Clinical School, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Rachael L Taylor
- Audiology Department, Whangarei Hospital, Whangarei, New Zealand.,New Zealand Dizziness and Balance Centre, Auckland, New Zealand
| |
Collapse
|
31
|
Iversen MM, Rabbitt RD. Wave Mechanics of the Vestibular Semicircular Canals. Biophys J 2017; 113:1133-1149. [PMID: 28877495 DOI: 10.1016/j.bpj.2017.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
The semicircular canals are biomechanical sensors responsible for detecting and encoding angular motion of the head in 3D space. Canal afferent neurons provide essential inputs to neural circuits responsible for representation of self-position/orientation in space, and to compensatory circuits including the vestibulo-ocular and vestibulo-collic reflex arcs. In this work we derive, to our knowledge, a new 1D mathematical model quantifying canal biomechanics based on the morphology, dynamics of the inner ear fluids, and membranous labyrinth deformability. The model takes the form of a dispersive wave equation and predicts canal responses to angular motion, sound, and mechanical stimulation. Numerical simulations were carried out for the morphology of the human lateral canal using known physical properties of the endolymph and perilymph in three diverse conditions: surgical plugging, rotation, and mechanical indentation. The model reproduces frequency-dependent attenuation and phase shift in cases of canal plugging. During rotation, duct deformability extends the frequency bandwidth and enhances the high frequency gain. Mechanical indentation of the membranous duct at high frequencies evokes traveling waves that move away from the location of indentation and at low frequencies compels endolymph displacement along the canal. These results demonstrate the importance of the conformal perilymph-filled bony labyrinth to pressure changes and to high frequency sound and vibration.
Collapse
Affiliation(s)
- Marta M Iversen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah.
| | - Richard D Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah; Department of Otolaryngology, University of Utah, Salt Lake City, Utah; Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
32
|
Maxwell AK, Banakis Hartl RM, Greene NT, Benichoux V, Mattingly JK, Cass SP, Tollin DJ. Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation. Otol Neurotol 2017; 38:1043-1051. [PMID: 28570420 PMCID: PMC6561339 DOI: 10.1097/mao.0000000000001456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. BACKGROUND High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. METHODS Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. RESULTS Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. CONCLUSION High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.
Collapse
Affiliation(s)
| | | | - Nathaniel T. Greene
- 2. Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Victor Benichoux
- 2. Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | - Daniel J. Tollin
- 1. Department of Otolaryngology
- 2. Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
33
|
Iversen MM, Christensen DA, Parker DL, Holman HA, Chen J, Frerck MJ, Rabbitt RD. Low-intensity ultrasound activates vestibular otolith organs through acoustic radiation force. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4209. [PMID: 28618821 PMCID: PMC5552392 DOI: 10.1121/1.4984287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 06/03/2023]
Abstract
The present study examined the efficacy of 5 MHz low-intensity focused ultrasound (LiFU) as a stimulus to remotely activate inner ear vestibular otolith organs. The otolith organs are the primary sensory apparati responsible for detecting orientation of the head relative to gravity and linear acceleration in three-dimensional space. These organs also respond to loud sounds and vibration of the temporal bone. The oyster toadfish, Opsanus tau, was used to facilitate unobstructed acoustic access to the otolith organs in vivo. Single-unit responses to amplitude-modulated LiFU were recorded in afferent neurons identified as innervating the utricle or the saccule. Neural responses were equivalent to direct mechanical stimulation, and arose from the nonlinear acoustic radiation force acting on the otolithic mass. The magnitude of the acoustic radiation force acting on the otolith was measured ex vivo. Results demonstrate that LiFU stimuli can be tuned to mimic directional forces occurring naturally during physiological movements of the head, loud air conducted sound, or bone conducted vibration.
Collapse
Affiliation(s)
- M M Iversen
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - D A Christensen
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - D L Parker
- Department of Radiology, University of Utah, 30 North 1900 East, Salt Lake City, Utah 84132, USA
| | - H A Holman
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - J Chen
- Communication Sciences and Disorders, University of Utah, 390 South 1530 East, Salt Lake City, Utah 84112, USA
| | - M J Frerck
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - R D Rabbitt
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| |
Collapse
|
34
|
Brown DJ, Pastras CJ, Curthoys IS. Electrophysiological Measurements of Peripheral Vestibular Function-A Review of Electrovestibulography. Front Syst Neurosci 2017; 11:34. [PMID: 28620284 PMCID: PMC5450778 DOI: 10.3389/fnsys.2017.00034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system.
Collapse
Affiliation(s)
- Daniel J Brown
- Neurotology Laboratory, Sydney Medical School, The University of SydneySydney, NSW, Australia
| | - Christopher J Pastras
- Neurotology Laboratory, Sydney Medical School, The University of SydneySydney, NSW, Australia
| | - Ian S Curthoys
- Department of Psychology, The University of SydneySydney, NSW, Australia
| |
Collapse
|
35
|
Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg 2017; 46:41. [PMID: 28535812 PMCID: PMC5442866 DOI: 10.1186/s40463-017-0219-x] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Noise-induced hearing loss is one of the most common forms of sensorineural hearing loss, is a major health problem, is largely preventable and is probably more widespread than revealed by conventional pure tone threshold testing. Noise-induced damage to the cochlea is traditionally considered to be associated with symmetrical mild to moderate hearing loss with associated tinnitus; however, there is a significant number of patients with asymmetrical thresholds and, depending on the exposure, severe to profound hearing loss as well. MAIN BODY Recent epidemiology and animal studies have provided further insight into the pathophysiology, clinical findings, social and economic impacts of noise-induced hearing loss. Furthermore, it is recently shown that acoustic trauma is associated with vestibular dysfunction, with associated dizziness that is not always measurable with current techniques. Deliberation of the prevalence, treatment and prevention of noise-induced hearing loss is important and timely. Currently, prevention and protection are the first lines of defence, although promising protective effects are emerging from multiple different pharmaceutical agents, such as steroids, antioxidants and neurotrophins. CONCLUSION This review provides a comprehensive update on the pathophysiology, investigations, prevalence of asymmetry, associated symptoms, and current strategies on the prevention and treatment of noise-induced hearing loss.
Collapse
Affiliation(s)
- Trung N. Le
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Louise V. Straatman
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Jane Lea
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Brian Westerberg
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
36
|
Curthoys IS, MacDougall HG, Vidal PP, de Waele C. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function. Front Neurol 2017; 8:117. [PMID: 28424655 PMCID: PMC5371610 DOI: 10.3389/fneur.2017.00117] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/14/2017] [Indexed: 01/17/2023] Open
Abstract
Otolithic afferents with regular resting discharge respond to gravity or low-frequency linear accelerations, and we term these the static or sustained otolithic system. However, in the otolithic sense organs, there is anatomical differentiation across the maculae and corresponding physiological differentiation. A specialized band of receptors called the striola consists of mainly type I receptors whose hair bundles are weakly tethered to the overlying otolithic membrane. The afferent neurons, which form calyx synapses on type I striolar receptors, have irregular resting discharge and have low thresholds to high frequency (e.g., 500 Hz) bone-conducted vibration and air-conducted sound. High-frequency sound and vibration likely causes fluid displacement which deflects the weakly tethered hair bundles of the very fast type I receptors. Irregular vestibular afferents show phase locking, similar to cochlear afferents, up to stimulus frequencies of kilohertz. We term these irregular afferents the transient system signaling dynamic otolithic stimulation. A 500-Hz vibration preferentially activates the otolith irregular afferents, since regular afferents are not activated at intensities used in clinical testing, whereas irregular afferents have low thresholds. We show how this sustained and transient distinction applies at the vestibular nuclei. The two systems have differential responses to vibration and sound, to ototoxic antibiotics, to galvanic stimulation, and to natural linear acceleration, and such differential sensitivity allows probing of the two systems. A 500-Hz vibration that selectively activates irregular otolithic afferents results in stimulus-locked eye movements in animals and humans. The preparatory myogenic potentials for these eye movements are measured in the new clinical test of otolith function—ocular vestibular-evoked myogenic potentials. We suggest 500-Hz vibration may identify the contribution of the transient system to vestibular controlled responses, such as vestibulo-ocular, vestibulo-spinal, and vestibulo-sympathetic responses. The prospect of particular treatments targeting one or the other of the transient or sustained systems is now being realized in the clinic by the use of intratympanic gentamicin which preferentially attacks type I receptors. We suggest that it is valuable to view vestibular responses by this sustained-transient distinction.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Hamish G MacDougall
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Pierre-Paul Vidal
- Cognition and Action Group, CNRS UMR8257, Centre Universitaire des Saints-Pères, University Paris Descartes, Paris, France
| | | |
Collapse
|
37
|
Curthoys IS. The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence. Exp Brain Res 2017; 235:957-972. [PMID: 28130556 DOI: 10.1007/s00221-017-4874-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
The classical view of the otoliths-as flat plates of fairly uniform receptors activated by linear acceleration dragging on otoconia and so deflecting the receptor hair bundles-has been replaced by new anatomical and physiological evidence which shows that the maculae are much more complex. There is anatomical spatial differentiation across the macula in terms of receptor types, hair bundle heights, stiffness and attachment to the overlying otolithic membrane. This anatomical spatial differentiation corresponds to the neural spatial differentiation of response dynamics from the receptors and afferents from different regions of the otolithic maculae. Specifically, receptors in a specialized band of cells, the striola, are predominantly type I receptors, with short, stiff hair bundles and looser attachment to the overlying otoconial membrane than extrastriolar receptors. At the striola the hair bundles project into holes in the otolithic membrane, allowing for fluid displacement to deflect the hair bundles and activate the cell. This review shows the anatomical and physiological evidence supporting the hypothesis that fluid displacement, generated by sound or vibration, deflects the short stiff hair bundles of type I receptors at the striola, resulting in neural activation of the irregular afferents innervating them. So these afferents are activated by sound or vibration and show phase-locking to individual cycles of the sound or vibration stimulus up to frequencies above 2000 Hz, underpinning the use of sound and vibration for clinical tests of vestibular function.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, A 18, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
38
|
The Cervical Vestibular-Evoked Myogenic Potentials (cVEMPs) Recorded Along the Sternocleidomastoid Muscles During Head Rotation and Flexion in Normal Human Subjects. J Assoc Res Otolaryngol 2016; 17:303-11. [PMID: 27105980 DOI: 10.1007/s10162-016-0566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Tone burst-evoked myogenic potentials recorded from tonically contracted sternocleidomastoid muscles (SCM) (cervical VEMP or cVEMP) are widely used to assess the vestibular function. Since the cVEMP response is mediated by the vestibulo-collic reflex (VCR) pathways, it is important to understand how the cVEMPs are determined by factors related to either the sensory components (vestibular end organs) or the motor components (SCM) of the VCR pathways. Compared to the numerous studies that have investigated effects of sound parameters on the cVEMPs, there are few studies that have examined effects of SCM-related factors on the cVEMPs. The goal of the present study is to fill this knowledge gap by testing three SCM-related hypotheses. The first hypothesis is that contrary to the current view, the cVEMP response is only present in the SCM ipsilateral to the stimulated ear. The second hypothesis is that the cVEMP response is not only dependent on tonic level of the SCM, but also on how the tonic level is achieved, i.e., by head rotation or head flexion. The third hypothesis is that the SCM is compartmented and the polarity of the cVEMP response is dependent on the recording site. Seven surface electrodes were positioned along the left SCMs in 12 healthy adult subjects, and tone bursts were delivered to the ipsilateral or contralateral ear (8 ms plateau, 1 ms rise/fall, 130 dB SPL, 50-4000 Hz) while subjects activated their SCMs by head rotation (HR condition) or chin downward head flexion (CD condition). The first hypothesis was confirmed by the finding that the contralateral cVEMPs were minimal at all recording sites for all the tested tones during both HR and CD conditions. The second hypothesis was confirmed by the finding that the ipsilateral cVEMPs were larger in HR condition than in CD condition at recording sites above and below the SCM midpoint. Finally, the third hypothesis was confirmed by the finding that the cVEMPs exhibit reversed polarities at the sites near the mastoid and the sternal head. These results improve understanding of the cVEMP generation and suggest that the SCM-related factors should be taken into consideration when developing standardized clinical cVEMP testing protocols.
Collapse
|
39
|
Stewart C, Yu Y, Huang J, Maklad A, Tang X, Allison J, Mustain W, Zhou W, Zhu H. Effects of high intensity noise on the vestibular system in rats. Hear Res 2016; 335:118-127. [PMID: 26970474 DOI: 10.1016/j.heares.2016.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Some individuals with noise-induced hearing loss (NIHL) also report balance problems. These accompanying vestibular complaints are not well understood. The present study used a rat model to examine the effects of noise exposure on the vestibular system. Rats were exposed to continuous broadband white noise (0-24 kHz) at an intensity of 116 dB sound pressure level (SPL) via insert ear phones in one ear for three hours under isoflurane anesthesia. Seven days after the exposure, a significant increase in ABR threshold (43.3 ± 1.9 dB) was observed in the noise-exposed ears, indicating hearing loss. Effects of noise exposure on vestibular function were assessed by three approaches. First, fluorescein-conjugated phalloidin staining was used to assess vestibular stereocilia following noise exposure. This analysis revealed substantial sensory stereocilia bundle loss in the saccular and utricular maculae as well as in the anterior and horizontal semicircular canal cristae, but not in the posterior semicircular canal cristae. Second, single unit recording of vestibular afferent activity was performed under pentobarbital anesthesia. A total of 548 afferents were recorded from 10 noise-treated rats and 12 control rats. Noise exposure produced a moderate reduction in baseline firing rates of regular otolith afferents and anterior semicircular canal afferents. Also a moderate change was noted in the gain and phase of the horizontal and anterior semicircular canal afferent's response to sinusoidal head rotation (1 and 2 Hz, 45°/s peak velocity). Third, noise exposure did not result in significant changes in gain or phase of the horizontal rotational and translational vestibulo-ocular reflex (VOR). These results suggest that noise exposure not only causes hearing loss, but also causes substantial damage in the peripheral vestibular system in the absence of immediate clinically measurable vestibular signs. These peripheral deficits, however, may lead to vestibular disorders over time.
Collapse
Affiliation(s)
- Courtney Stewart
- PhD Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA; Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yue Yu
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jun Huang
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Adel Maklad
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xuehui Tang
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome Allison
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - William Mustain
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wu Zhou
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hong Zhu
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
40
|
Rosengren SM, Colebatch JG, Borire A, Straumann D, Weber KP. cVEMP morphology changes with recording electrode position, but single motor unit activity remains constant. J Appl Physiol (1985) 2016; 120:833-42. [PMID: 26796756 DOI: 10.1152/japplphysiol.00917.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
Cervical vestibular evoked myogenic potentials (cVEMPs) recorded over the lower quarter of the sternocleidomastoid (SCM) muscle in normal subjects may have opposite polarity to those recorded over the midpoint. It has thus been suggested that vestibular projections to the lower part of SCM might be excitatory rather than inhibitory. We tested the hypothesis that the SCM muscle receives both inhibitory and excitatory vestibular inputs. We recorded cVEMPs in 10 normal subjects with surface electrodes placed at multiple sites along the anterior (sternal) component of the SCM muscle. We compared several reference sites: sternum, ipsilateral and contralateral earlobes, and contralateral wrist. In five subjects, single motor unit responses were recorded at the upper, middle, and lower parts of the SCM muscle using concentric needle electrodes. The surface cVEMP had the typical positive-negative polarity at the midpoint of the SCM muscle. In all subjects, as the recording electrode was moved toward each insertion point, p13 amplitude became smaller and p13 latency increased, then the polarity inverted to a negative-positive waveform (n1-p1). Changing the reference site did not affect reflex polarity. There was a significant short-latency change in activity in 61/63 single motor units, and in each case this was a decrease or gap in firing, indicating an inhibitory reflex. Single motor unit recordings showed that the reflex was inhibitory along the entire SCM muscle. The cVEMP surface waveform inversion near the mastoid and sternal insertion points likely reflects volume conduction of the potential occurring with increasing distance from the motor point.
Collapse
Affiliation(s)
- Sally M Rosengren
- Neurology Department, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; Central Clinical School, University of Sydney, Sydney, New South Wales, Australia;
| | - James G Colebatch
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
| | - Adeniyi Borire
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Neurology Department, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Dominik Straumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; and
| | - Konrad P Weber
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; and Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Colebatch JG, Rosengren SM, Welgampola MS. Vestibular-evoked myogenic potentials. HANDBOOK OF CLINICAL NEUROLOGY 2016; 137:133-155. [PMID: 27638068 DOI: 10.1016/b978-0-444-63437-5.00010-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vestibular-evoked myogenic potential (VEMP) is a short-latency potential evoked through activation of vestibular receptors using sound or vibration. It is generated by modulated electromyographic signals either from the sternocleidomastoid muscle for the cervical VEMP (cVEMP) or the inferior oblique muscle for the ocular VEMP (oVEMP). These reflexes appear to originate from the otolith organs and thus complement existing methods of vestibular assessment, which are mainly based upon canal function. This review considers the basis, methodology, and current applications of the cVEMP and oVEMP in the assessment and diagnosis of vestibular disorders, both peripheral and central.
Collapse
Affiliation(s)
- J G Colebatch
- Neuroscience Research Australia and Department of Neurology, Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, Australia.
| | - S M Rosengren
- Neurology Department, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney, Australia
| | - M S Welgampola
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney Australia
| |
Collapse
|
42
|
The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). Hear Res 2015; 331:131-43. [PMID: 26626360 DOI: 10.1016/j.heares.2015.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023]
Abstract
UNLABELLED This study sought to characterize the response of mammalian primary otolithic neurons to sound and vibration by measuring the resting discharge rates, thresholds for increases in firing rate and supra-threshold sensitivity functions of guinea pig single primary utricular and saccular afferents. Neurons with irregular resting discharge were activated in response to bone conducted vibration (BCV) and air conducted sound (ACS) for frequencies between 100 Hz and 3000 Hz. The location of neurons was verified by labelling with neurobiotin. Many afferents from both maculae have very low or zero resting discharge, with saccular afferents having on average, higher resting rates than utricular afferents. Most irregular utricular and saccular afferents can be evoked by both BCV and ACS. For BCV stimulation: utricular and saccular neurons show similar low thresholds for increased firing rate (around 0.02 g on average) for frequencies from 100 Hz to 750 Hz. There is a steep increase in rate change threshold for BCV frequencies above 750 Hz. The suprathreshold sensitivity functions for BCV were similar for both utricular and saccular neurons, with, at low frequencies, very steep increases in firing rate as intensity increased. For ACS stimulation: utricular and saccular neurons can be activated by high intensity stimuli for frequencies from 250 Hz to 3000 Hz with similar flattened U-shaped tuning curves with lowest thresholds for frequencies around 1000-2000 Hz. The average ACS thresholds for saccular afferents across these frequencies is about 15-20 dB lower than for utricular neurons. The suprathreshold sensitivity functions for ACS were similar for both utricular and saccular neurons. Both utricular and saccular afferents showed phase-locking to BCV and ACS, extending up to frequencies of at least around 1500 Hz for BCV and 3000 Hz for ACS. Phase-locking at low frequencies (e.g. 100 Hz) imposes a limit on the neural firing rate evoked by the stimulus since the neurons usually fire one spike per cycle of the stimulus. CONCLUSION These results are in accord with the hypothesis put forward by Young et al. (1977) that each individual cycle of the waveform, either BCV or ACS, is the effective stimulus to the receptor hair cells on either macula. We suggest that each cycle of the BCV or ACS stimulus causes fluid displacement which deflects the short, stiff, hair bundles of type I receptors at the striola and so triggers the phase-locked neural response of primary otolithic afferents.
Collapse
|
43
|
Weber KP, Rosengren SM. Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs). Curr Neurol Neurosci Rep 2015; 15:22. [PMID: 25773001 DOI: 10.1007/s11910-015-0548-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the last years, vestibular-evoked myogenic potentials (VEMPs) have been established as clinical tests of otolith function. Complementary to the cervical VEMPs, which assess mainly saccular function, ocular VEMPs (oVEMPs) test predominantly utricular otolith function. oVEMPs are elicited either with air-conducted (AC) sound or bone-conducted (BC) skull vibration and are recorded from beneath the eyes during up-gaze. They assess the vestibulo-ocular reflex and are a crossed excitatory response originating from the inferior oblique eye muscle. Enlarged oVEMPs have proven to be sensitive for screening of superior canal dehiscence, while absent oVEMPs indicate a loss of superior vestibular nerve otolith function, often seen in vestibular neuritis (VN) or vestibular Schwannoma.
Collapse
Affiliation(s)
- Konrad P Weber
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland,
| | | |
Collapse
|
44
|
Highstein SM, Mann MA, Holstein GR, Rabbitt RD. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx. J Neurophysiol 2015; 113:3827-35. [PMID: 25878150 DOI: 10.1152/jn.00055.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼ 42 pA, a rise time constant of τ(0) ∼ 229 μs, decayed to baseline with a time constant of τ(R) ∼ 690 μs, and carried ∼ 46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼ 23 pA. The unitary charge was ∼ 26 fC for EPSCs with a simple exponential decay and increased to ∼ 48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses.
Collapse
Affiliation(s)
| | | | - Gay R Holstein
- Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Richard D Rabbitt
- Marine Biological Laboratory, Woods Hole, Massachusetts; University of Utah, Salt Lake City, Utah
| |
Collapse
|
45
|
Huwe JA, Logan GJ, Williams B, Rowe MH, Peterson EH. Utricular afferents: morphology of peripheral terminals. J Neurophysiol 2015; 113:2420-33. [PMID: 25632074 DOI: 10.1152/jn.00481.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/23/2015] [Indexed: 11/22/2022] Open
Abstract
The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset.
Collapse
Affiliation(s)
- J A Huwe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - G J Logan
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - B Williams
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - M H Rowe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - E H Peterson
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| |
Collapse
|
46
|
Curthoys IS, Grant JW. How does high-frequency sound or vibration activate vestibular receptors? Exp Brain Res 2015; 233:691-9. [PMID: 25567092 DOI: 10.1007/s00221-014-4192-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 01/08/2023]
Abstract
The mechanism by which vestibular neural phase locking occurs and how it relates to classical otolith mechanics is unclear. Here, we put forward the hypothesis that sound and vibration both cause fluid pressure waves in the inner ear and that it is these pressure waves which displace the hair bundles on vestibular receptor hair cells and result in activation of type I receptor hair cells and phase locking of the action potentials in the irregular vestibular afferents, which synapse on type I receptors. This idea has been suggested since the early neural recordings and recent results give it greater credibility.
Collapse
Affiliation(s)
- I S Curthoys
- Vestibular Research Laboratory, School of Psychology A 18, University of Sydney, Sydney, NSW, 2006, Australia,
| | | |
Collapse
|
47
|
Normalization Reduces Intersubject Variability in Cervical Vestibular Evoked Myogenic Potentials. Otol Neurotol 2014; 35:e222-7. [DOI: 10.1097/mao.0000000000000449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|