1
|
Temboury-Gutierrez M, Märcher-Rørsted J, Bille M, Yde J, Encina-Llamas G, Hjortkjær J, Dau T. Electrocochleographic frequency-following responses as a potential marker of age-related cochlear neural degeneration. Hear Res 2024; 446:109005. [PMID: 38598943 DOI: 10.1016/j.heares.2024.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Auditory nerve (AN) fibers that innervate inner hair cells in the cochlea degenerate with advancing age. It has been proposed that age-related reductions in brainstem frequency-following responses (FFR) to the carrier of low-frequency, high-intensity pure tones may partially reflect this neural loss in the cochlea (Märcher-Rørsted et al., 2022). If the loss of AN fibers is the primary factor contributing to age-related changes in the brainstem FFR, then the FFR could serve as an indicator of cochlear neural degeneration. In this study, we employed electrocochleography (ECochG) to investigate the effects of age on frequency-following neurophonic potentials, i.e., neural responses phase-locked to the carrier frequency of the tone stimulus. We compared these findings to the brainstem-generated FFRs obtained simultaneously using the same stimulation. We conducted recordings in young and older individuals with normal hearing. Responses to pure tones (250 ms, 516 and 1086 Hz, 85 dB SPL) and clicks were recorded using both ECochG at the tympanic membrane and traditional scalp electroencephalographic (EEG) recordings of the FFR. Distortion product otoacoustic emissions (DPOAE) were also collected. In the ECochG recordings, sustained AN neurophonic (ANN) responses to tonal stimulation, as well as the click-evoked compound action potential (CAP) of the AN, were significantly reduced in the older listeners compared to young controls, despite normal audiometric thresholds. In the EEG recordings, brainstem FFRs to the same tone stimulation were also diminished in the older participants. Unlike the reduced AN CAP response, the transient-evoked wave-V remained unaffected. These findings could indicate that a decreased number of AN fibers contributes to the response in the older participants. The results suggest that the scalp-recorded FFR, as opposed to the clinical standard wave-V of the auditory brainstem response, may serve as a more reliable indicator of age-related cochlear neural degeneration.
Collapse
Affiliation(s)
- Miguel Temboury-Gutierrez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark.
| | - Jonatan Märcher-Rørsted
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - Michael Bille
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark, Inge Lehmanns Vej 8, DK-2100 København Ø, Denmark
| | - Jesper Yde
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark, Inge Lehmanns Vej 8, DK-2100 København Ø, Denmark
| | - Gerard Encina-Llamas
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark; Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark, Inge Lehmanns Vej 8, DK-2100 København Ø, Denmark; Faculty of Medicine. University of Vic - Central University of Catalonia (UVic-UCC), Vic, 08500, Catalonia - Spain
| | - Jens Hjortkjær
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, DK-2650 Hvidovre, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Temboury-Gutierrez M, Encina-Llamas G, Dau T. Predicting early auditory evoked potentials using a computational model of auditory-nerve processing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1799-1812. [PMID: 38445986 DOI: 10.1121/10.0025136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Non-invasive electrophysiological measures, such as auditory evoked potentials (AEPs), play a crucial role in diagnosing auditory pathology. However, the relationship between AEP morphology and cochlear degeneration remains complex and not well understood. Dau [J. Acoust. Soc. Am. 113, 936-950 (2003)] proposed a computational framework for modeling AEPs that utilized a nonlinear auditory-nerve (AN) model followed by a linear unitary response function. While the model captured some important features of the measured AEPs, it also exhibited several discrepancies in response patterns compared to the actual measurements. In this study, an enhanced AEP modeling framework is presented, incorporating an improved AN model, and the conclusions from the original study were reevaluated. Simulation results with transient and sustained stimuli demonstrated accurate auditory brainstem responses (ABRs) and frequency-following responses (FFRs) as a function of stimulation level, although wave-V latencies remained too short, similar to the original study. When compared to physiological responses in animals, the revised model framework showed a more accurate balance between the contributions of auditory-nerve fibers (ANFs) at on- and off-frequency regions to the predicted FFRs. These findings emphasize the importance of cochlear processing in brainstem potentials. This framework may provide a valuable tool for assessing human AN models and simulating AEPs for various subtypes of peripheral pathologies, offering opportunities for research and clinical applications.
Collapse
Affiliation(s)
- Miguel Temboury-Gutierrez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Gerard Encina-Llamas
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, 08500, Catalonia, Spain
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark
| |
Collapse
|
3
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
4
|
Carney LH. Neural Fluctuation Contrast as a Code for Complex Sounds: The Role and Control of Peripheral Nonlinearities. Hear Res 2024; 443:108966. [PMID: 38310710 PMCID: PMC10923127 DOI: 10.1016/j.heares.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
The nonlinearities of the inner ear are often considered to be obstacles that the central nervous system has to overcome to decode neural responses to sounds. This review describes how peripheral nonlinearities, such as saturation of the inner-hair-cell response and of the IHC-auditory-nerve synapse, are instead beneficial to the neural encoding of complex sounds such as speech. These nonlinearities set up contrast in the depth of neural-fluctuations in auditory-nerve responses along the tonotopic axis, referred to here as neural fluctuation contrast (NFC). Physiological support for the NFC coding hypothesis is reviewed, and predictions of several psychophysical phenomena, including masked detection and speech intelligibility, are presented. Lastly, a framework based on the NFC code for understanding how the medial olivocochlear (MOC) efferent system contributes to the coding of complex sounds is presented. By modulating cochlear gain control in response to both sound energy and fluctuations in neural responses, the MOC system is hypothesized to function not as a simple feedback gain-control device, but rather as a mechanism for enhancing NFC along the tonotopic axis, enabling robust encoding of complex sounds across a wide range of sound levels and in the presence of background noise. Effects of sensorineural hearing loss on the NFC code and on the MOC feedback system are presented and discussed.
Collapse
Affiliation(s)
- Laurel H Carney
- Depts. of Biomedical Engineering, Neuroscience, and Electrical & Computer Engineering University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Cederroth C. Editorial: Views on JARO 2023. J Assoc Res Otolaryngol 2024; 25:1-3. [PMID: 38345701 PMCID: PMC10907323 DOI: 10.1007/s10162-024-00931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024] Open
Affiliation(s)
- Christopher Cederroth
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Marchetta P, Dapper K, Hess M, Calis D, Singer W, Wertz J, Fink S, Hage SR, Alam M, Schwabe K, Lukowski R, Bourien J, Puel JL, Jacob MH, Munk MHJ, Land R, Rüttiger L, Knipper M. Dysfunction of specific auditory fibers impacts cortical oscillations, driving an autism phenotype despite near-normal hearing. FASEB J 2024; 38:e23411. [PMID: 38243766 DOI: 10.1096/fj.202301995r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Steffen R Hage
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Mesbah Alam
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jerome Bourien
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Michele H Jacob
- Department of Neuroscience, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Matthias H J Munk
- Department of Psychiatry & Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, Hannover, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Wertz J, Rüttiger L, Bender B, Klose U, Stark RS, Dapper K, Saemisch J, Braun C, Singer W, Dalhoff E, Bader K, Wolpert SM, Knipper M, Munk MHJ. Differential cortical activation patterns: pioneering sub-classification of tinnitus with and without hyperacusis by combining audiometry, gamma oscillations, and hemodynamics. Front Neurosci 2024; 17:1232446. [PMID: 38239827 PMCID: PMC10794389 DOI: 10.3389/fnins.2023.1232446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024] Open
Abstract
The ongoing controversies about the neural basis of tinnitus, whether linked with central neural gain or not, may hamper efforts to develop therapies. We asked to what extent measurable audiometric characteristics of tinnitus without (T) or with co-occurrence of hyperacusis (TH) are distinguishable on the level of cortical responses. To accomplish this, electroencephalography (EEG) and concurrent functional near-infrared spectroscopy (fNIRS) were measured while patients performed an attentionally demanding auditory discrimination task using stimuli within the individual tinnitus frequency (fTin) and a reference frequency (fRef). Resting-state-fMRI-based functional connectivity (rs-fMRI-bfc) in ascending auditory nuclei (AAN), the primary auditory cortex (AC-I), and four other regions relevant for directing attention or regulating distress in temporal, parietal, and prefrontal cortex was compiled and compared to EEG and concurrent fNIRS activity in the same brain areas. We observed no group differences in pure-tone audiometry (PTA) between 10 and 16 kHz. However, the PTA threshold around the tinnitus pitch was positively correlated with the self-rated tinnitus loudness and also correlated with distress in T-groups, while TH experienced their tinnitus loudness at minimal loudness levels already with maximal suffering scores. The T-group exhibited prolonged auditory brain stem (ABR) wave I latency and reduced ABR wave V amplitudes (indicating reduced neural synchrony in the brainstem), which were associated with lower rs-fMRI-bfc between AAN and the AC-I, as observed in previous studies. In T-subjects, these features were linked with elevated spontaneous and reduced evoked gamma oscillations and with reduced deoxygenated hemoglobin (deoxy-Hb) concentrations in response to stimulation with lower frequencies in temporal cortex (Brodmann area (BA) 41, 42, 22), implying less synchronous auditory responses during active auditory discrimination of reference frequencies. In contrast, in the TH-group gamma oscillations and hemodynamic responses in temporoparietal regions were reversed during active discrimination of tinnitus frequencies. Our findings suggest that T and TH differ in auditory discrimination and memory-dependent directed attention during active discrimination at either tinnitus or reference frequencies, offering a test paradigm that may allow for more precise sub-classification of tinnitus and future improved treatment approaches.
Collapse
Affiliation(s)
- Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Robert S. Stark
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Jörg Saemisch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katharina Bader
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Stephan M. Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Henry KS, Guo AA, Abrams KS. Normal behavioral discrimination of envelope statistics in budgerigars with kainate-induced cochlear synaptopathy. Hear Res 2024; 441:108927. [PMID: 38096707 PMCID: PMC10775186 DOI: 10.1016/j.heares.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| | - Anna A Guo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
10
|
Bramhall NF, Theodoroff SM, McMillan GP, Kampel SD, Buran BN. Associations Between Physiological Correlates of Cochlear Synaptopathy and Tinnitus in a Veteran Population. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4635-4652. [PMID: 37889209 DOI: 10.1044/2023_jslhr-23-00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE Animal models and human temporal bones indicate that noise exposure is a risk factor for cochlear synaptopathy, a possible etiology of tinnitus. Veterans are exposed to high levels of noise during military service. Therefore, synaptopathy may explain the high rates of noise-induced tinnitus among Veterans. Although synaptopathy cannot be directly evaluated in living humans, animal models indicate that several physiological measures are sensitive to synapse loss, including the auditory brainstem response (ABR), the middle ear muscle reflex (MEMR), and the envelope following response (EFR). The purpose of this study was to determine whether tinnitus is associated with reductions in physiological correlates of synaptopathy that parallel animal studies. METHOD Participants with normal audiograms were grouped according to Veteran status and tinnitus report (Veterans with tinnitus, Veterans without tinnitus, and non-Veteran controls). The effects of being a Veteran with tinnitus on ABR, MEMR, and EFR measurements were independently modeled using Bayesian regression analysis. RESULTS Modeled point estimates of MEMR and EFR magnitude showed reductions for Veterans with tinnitus compared with non-Veterans, with the most evident reduction observed for the EFR. Two different approaches were used to provide context for the Veteran tinnitus effect on the EFR by comparing to age-related reductions in EFR magnitude and synapse numbers observed in previous studies. These analyses suggested that EFR magnitude/synapse counts were reduced in Veterans with tinnitus by roughly the same amount as over 20 years of aging. CONCLUSION These findings suggest that cochlear synaptopathy may contribute to tinnitus perception in noise-exposed Veterans. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24347761.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sarah M Theodoroff
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Brad N Buran
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
11
|
Alamri Y, Jennings SG. Computational modeling of the human compound action potential. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2376. [PMID: 37092943 PMCID: PMC10119875 DOI: 10.1121/10.0017863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The auditory nerve (AN) compound action potential (CAP) is an important tool for assessing auditory disorders and monitoring the health of the auditory periphery during surgical procedures. The CAP has been mathematically conceptualized as the convolution of a unit response (UR) waveform with the firing rate of a population of AN fibers. Here, an approach for predicting experimentally recorded CAPs in humans is proposed, which involves the use of human-based computational models to simulate AN activity. CAPs elicited by clicks, chirps, and amplitude-modulated carriers were simulated and compared with empirically recorded CAPs from human subjects. In addition, narrowband CAPs derived from noise-masked clicks and tone bursts were simulated. Many morphological, temporal, and spectral aspects of human CAPs were captured by the simulations for all stimuli tested. These findings support the use of model simulations of the human CAP to refine existing human-based models of the auditory periphery, aid in the design and analysis of auditory experiments, and predict the effects of hearing loss, synaptopathy, and other auditory disorders on the human CAP.
Collapse
Affiliation(s)
- Yousef Alamri
- Department of Biomedical Engineering, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| | - Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| |
Collapse
|
12
|
Hunter LL, Blankenship CM, Shinn-Cunningham B, Hood L, Zadeh LM, Moore DR. Brainstem auditory physiology in children with listening difficulties . Hear Res 2023; 429:108705. [PMID: 36709582 PMCID: PMC10152893 DOI: 10.1016/j.heares.2023.108705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Children who have listening difficulties (LiD) despite having normal audiometry are often diagnosed as having an auditory processing disorder. A lack of evidence regarding involvement of specific auditory mechanisms has limited development of effective treatments for these children. Here, we examined electrophysiologic evidence for brainstem pathway mechanisms in children with and without defined LiD. We undertook a prospective controlled study of 132 children aged 6-14 years with normal pure tone audiometry, grouped into LiD (n = 63) or Typically Developing (TD; n = 69) based on scores on the Evaluation of Children's Listening and Processing Skills (ECLiPS), a validated caregiver report. The groups were matched on age at test, sex, race, and ethnicity. Neither group had diagnoses of major neurologic disorder, intellectual disability, or brain injuries. Both groups received a test battery including a measure of receptive speech perception against distractor speech, Listening in Spatialized Noise - Sentences (LiSN-S), along with multiple neurophysiologic measures that tap afferent and efferent auditory subcortical pathways. Group analysis showed that participants with LiD performed significantly poorer on all subtests of the LiSN-S. The LiD group had significantly greater wideband middle ear muscle reflex (MEMR) growth functions in the left ear, and shorter Wave III and Wave V latencies in auditory brainstem responses (ABR). Across individual participants, shorter latency ABR Wave V correlated significantly with poorer parent report of LiD (ECLiPS composite). Greater MEMR growth functions also correlated with poorer ECLiPS scores and reduced LiSN-S talker advantage. The LiD and TD groups had equivalent summating potentials, compound action potentials, envelope-following responses, and binaurally activated medial olivocochlear reflexes. In conclusion, there was no evidence for auditory synaptopathy for LiD. Evidence for brainstem differences in the LiD group was interpreted as increased central gain, with shorter ABR Wave III and V latencies and steeper MEMR growth curves. These differences were related to poorer parent report and speech perception in competing speech ability.
Collapse
Affiliation(s)
- Lisa L Hunter
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; College of Medicine, Otolaryngology and College of Allied Health Sciences, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio, USA; College of Allied Health Sciences, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Chelsea M Blankenship
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Linda Hood
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lina Motlagh Zadeh
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David R Moore
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; College of Medicine, Otolaryngology and College of Allied Health Sciences, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio, USA; Manchester Centre for Audiology and Deafness, University of Manchester, U.K
| |
Collapse
|
13
|
Stoll TJ, Maddox RK. Enhanced Place Specificity of the Parallel Auditory Brainstem Response: A Modeling Study. Trends Hear 2023; 27:23312165231205719. [PMID: 37807857 PMCID: PMC10563492 DOI: 10.1177/23312165231205719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
While each place on the cochlea is most sensitive to a specific frequency, it will generally respond to a sufficiently high-level stimulus over a wide range of frequencies. This spread of excitation can introduce errors in clinical threshold estimation during a diagnostic auditory brainstem response (ABR) exam. Off-frequency cochlear excitation can be mitigated through the addition of masking noise to the test stimuli, but introducing a masker increases the already long test times of the typical ABR exam. Our lab has recently developed the parallel ABR (pABR) paradigm to speed up test times by utilizing randomized stimulus timing to estimate the thresholds for multiple frequencies simultaneously. There is reason to believe parallel presentation of multiple frequencies provides masking effects and improves place specificity while decreasing test times. Here, we use two computational models of the auditory periphery to characterize the predicted effect of parallel presentation on place specificity in the auditory nerve. We additionally examine the effect of stimulus rate and level. Both models show the pABR is at least as place specific as standard methods, with an improvement in place specificity for parallel presentation (vs. serial) at high levels, especially at high stimulus rates. When simulating hearing impairment in one of the models, place specificity was also improved near threshold. Rather than a tradeoff, this improved place specificity would represent a secondary benefit to the pABR's faster test times.
Collapse
Affiliation(s)
- Thomas J. Stoll
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
14
|
Modeling temporal information encoding by the population of fibers in the healthy and synaptopathic auditory nerve. Hear Res 2022; 426:108621. [PMID: 36182814 DOI: 10.1016/j.heares.2022.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
We report a theoretical study aimed at investigating the impact of cochlear synapse loss (synaptopathy) on the encoding of the envelope (ENV) and temporal fine structure (TFS) of sounds by the population of auditory nerve fibers. A computational model was used to simulate auditory-nerve spike trains evoked by sinusoidally amplitude-modulated (AM) tones at 10 Hz with various carrier frequencies and levels. The model included 16 cochlear channels with characteristic frequencies (CFs) from 250 Hz to 8 kHz. Each channel was innervated by 3, 4 and 10 fibers with low (LSR), medium (MSR), and high spontaneous rates (HSR), respectively. For each channel, spike trains were collapsed into three separate 'population' post-stimulus time histograms (PSTHs), one per fiber type. Information theory was applied to reconstruct the stimulus waveform, ENV, and TFS from one or more PSTHs in a mathematically optimal way. The quality of the reconstruction was regarded as an estimate of the information present in the used PSTHs. Various synaptopathy scenarios were simulated by removing fibers of specific types and/or cochlear regions before stimulus reconstruction. We found that the TFS was predominantly encoded by HSR fibers at all stimulus carrier frequencies and levels. The encoding of the ENV was more complex. At lower levels, the ENV was predominantly encoded by HSR fibers with CFs near the stimulus carrier frequency. At higher levels, the ENV was equally well or better encoded by HSR fibers with CFs different from the AM carrier frequency as by LSR fibers with CFs at the carrier frequency. Altogether, findings suggest that a healthy population of HSR fibers (i.e., including fibers with CFs around and remote from the AM carrier frequency) might be sufficient to encode the ENV and TFS over a wide range of stimulus levels. Findings are discussed regarding their relevance for diagnosing synaptopathy using non-invasive ENV- and TFS-based measures.
Collapse
|
15
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
16
|
Bramhall NF, Reavis KM, Feeney MP, Kampel SD. The Impacts of Noise Exposure on the Middle Ear Muscle Reflex in a Veteran Population. Am J Audiol 2022; 31:126-142. [PMID: 35050699 PMCID: PMC10831927 DOI: 10.1044/2021_aja-21-00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Human studies of noise-induced cochlear synaptopathy using physiological indicators identified in animal models (auditory brainstem response [ABR] Wave I amplitude, envelope following response [EFR], and middle ear muscle reflex [MEMR]) have yielded mixed findings. Differences in the population studied may have contributed to the differing results. For example, due to differences in the intensity level of the noise exposure, noise-induced synaptopathy may be easier to detect in a military Veteran population than in populations with recreational noise exposure. We previously demonstrated a reduction in ABR Wave I amplitude and EFR magnitude for young Veterans with normal audiograms reporting high levels of noise exposure compared to non-Veteran controls. In this article, we expand on the previous analysis in the same population to determine if MEMR magnitude is similarly reduced. METHOD Contralateral MEMR growth functions were obtained in 92 young Veterans and non-Veterans with normal audiograms, and the relationship between noise exposure history and MEMR magnitude was assessed. Associations between MEMR magnitude and distortion product otoacoustic emission, EFR, and ABR measurements collected in the same sample were also evaluated. RESULTS The results of the statistical analysis, although not conventionally statistically significant, suggest a reduction in mean MEMR magnitude for Veterans reporting high noise exposure compared with non-Veteran controls. In addition, the MEMR appears relatively insensitive to subclinical outer hair cell dysfunction, as measured by distortion product otoacoustic emissions, and is not well correlated with ABR and EFR measurements. CONCLUSIONS When combined with our previous ABR and EFR findings in the same population, these results suggest that noise-induced synaptopathy occurs in humans. In addition, the findings indicate that the MEMR may be a good candidate for noninvasive diagnosis of cochlear synaptopathy/deafferentation and that the MEMR may reflect the integrity of different neural populations than the ABR and EFR. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.18665645.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Kelly M Reavis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| | - M Patrick Feeney
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
17
|
Buran BN, McMillan GP, Keshishzadeh S, Verhulst S, Bramhall NF. Predicting synapse counts in living humans by combining computational models with auditory physiology. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:561. [PMID: 35105019 PMCID: PMC8800592 DOI: 10.1121/10.0009238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Aging, noise exposure, and ototoxic medications lead to cochlear synapse loss in animal models. As cochlear function is highly conserved across mammalian species, synaptopathy likely occurs in humans as well. Synaptopathy is predicted to result in perceptual deficits including tinnitus, hyperacusis, and difficulty understanding speech-in-noise. The lack of a method for diagnosing synaptopathy in living humans hinders studies designed to determine if noise-induced synaptopathy occurs in humans, identify the perceptual consequences of synaptopathy, or test potential drug treatments. Several physiological measures are sensitive to synaptopathy in animal models including auditory brainstem response (ABR) wave I amplitude. However, it is unclear how to translate these measures to synaptopathy diagnosis in humans. This work demonstrates how a human computational model of the auditory periphery, which can predict ABR waveforms and distortion product otoacoustic emissions (DPOAEs), can be used to predict synaptic loss in individual human participants based on their measured DPOAE levels and ABR wave I amplitudes. Lower predicted synapse numbers were associated with advancing age, higher noise exposure history, increased likelihood of tinnitus, and poorer speech-in-noise perception. These findings demonstrate the utility of this modeling approach in predicting synapse counts from physiological data in individual human subjects.
Collapse
Affiliation(s)
- Brad N Buran
- Oregon Hearing Research Center (OHRC), Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Garnett P McMillan
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| | - Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
18
|
Carcagno S, Plack CJ. Relations between speech-reception, psychophysical temporal processing, and subcortical electrophysiological measures of auditory function in humans. Hear Res 2022; 417:108456. [PMID: 35149333 PMCID: PMC8935383 DOI: 10.1016/j.heares.2022.108456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
|
19
|
Märcher-Rørsted J, Encina-Llamas G, Dau T, Liberman MC, Wu PZ, Hjortkjær J. Age-related reduction in frequency-following responses as a potential marker of cochlear neural degeneration. Hear Res 2021; 414:108411. [PMID: 34929535 DOI: 10.1016/j.heares.2021.108411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Healthy aging may be associated with neural degeneration in the cochlea even before clinical hearing loss emerges. Reduction in frequency-following responses (FFRs) to tonal carriers in older clinically normal-hearing listeners has previously been reported, and has been argued to reflect an age-dependent decline in temporal processing in the central auditory system. Alternatively, age-dependent loss of auditory nerve fibers (ANFs) may have little effect on audiometric sensitivity and yet compromise the precision of neural phase-locking relying on joint activity across populations of fibers. This peripheral loss may, in turn, contribute to reduced neural synchrony in the brainstem as reflected in the FFR. Here, we combined human electrophysiology and auditory nerve (AN) modeling to investigate whether age-related changes in the FFR would be consistent with peripheral neural degeneration. FFRs elicited by pure tones and frequency sweeps at carrier frequencies between 200 and 1200 Hz were obtained in older (ages 48-76) and younger (ages 20-30) listeners, both groups having clinically normal audiometric thresholds up to 6 kHz. The same stimuli were presented to a computational model of the AN in which age-related loss of hair cells or ANFs was modelled using human histopathological data. In the older human listeners, the measured FFRs to both sweeps and pure tones were found to be reduced across the carrier frequencies examined. These FFR reductions were consistent with model simulations of age-related ANF loss. In model simulations, the phase-locked response produced by the population of remaining fibers decreased proportionally with increasing loss of the ANFs. Basal-turn loss of inner hair cells also reduced synchronous activity at lower frequencies, albeit to a lesser degree. Model simulations of age-related threshold elevation further indicated that outer hair cell dysfunction had no negative effect on phase-locked AN responses. These results are consistent with a peripheral source of the FFR reductions observed in older normal-hearing listeners, and indicate that FFRs at lower carrier frequencies may potentially be a sensitive marker of peripheral neural degeneration.
Collapse
Affiliation(s)
- Jonatan Märcher-Rørsted
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - Gerard Encina-Llamas
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - M Charles Liberman
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114 USA
| | - Pei-Zhe Wu
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114 USA
| | - Jens Hjortkjær
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, DK-2650 Hvidovre, Denmark.
| |
Collapse
|
20
|
Fuglsang SA, Madsen KH, Puonti O, Hjortkjær J, Siebner HR. Mapping cortico-subcortical sensitivity to 4 Hz amplitude modulation depth in human auditory system with functional MRI. Neuroimage 2021; 246:118745. [PMID: 34808364 DOI: 10.1016/j.neuroimage.2021.118745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
Temporal modulations in the envelope of acoustic waveforms at rates around 4 Hz constitute a strong acoustic cue in speech and other natural sounds. It is often assumed that the ascending auditory pathway is increasingly sensitive to slow amplitude modulation (AM), but sensitivity to AM is typically considered separately for individual stages of the auditory system. Here, we used blood oxygen level dependent (BOLD) fMRI in twenty human subjects (10 male) to measure sensitivity of regional neural activity in the auditory system to 4 Hz temporal modulations. Participants were exposed to AM noise stimuli varying parametrically in modulation depth to characterize modulation-depth effects on BOLD responses. A Bayesian hierarchical modeling approach was used to model potentially nonlinear relations between AM depth and group-level BOLD responses in auditory regions of interest (ROIs). Sound stimulation activated the auditory brainstem and cortex structures in single subjects. BOLD responses to noise exposure in core and belt auditory cortices scaled positively with modulation depth. This finding was corroborated by whole-brain cluster-level inference. Sensitivity to AM depth variations was particularly pronounced in the Heschl's gyrus but also found in higher-order auditory cortical regions. None of the sound-responsive subcortical auditory structures showed a BOLD response profile that reflected the parametric variation in AM depth. The results are compatible with the notion that early auditory cortical regions play a key role in processing low-rate modulation content of sounds in the human auditory system.
Collapse
Affiliation(s)
- Søren A Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark.
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jens Hjortkjær
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Settibhaktini H, Heinz MG, Chintanpalli A. Modeling the effects of age and hearing loss on concurrent vowel scores. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:3581. [PMID: 34852572 PMCID: PMC8594952 DOI: 10.1121/10.0007046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
A difference in fundamental frequency (F0) between two vowels is an important segregation cue prior to identifying concurrent vowels. To understand the effects of this cue on identification due to age and hearing loss, Chintanpalli, Ahlstrom, and Dubno [(2016). J. Acoust. Soc. Am. 140, 4142-4153] collected concurrent vowel scores across F0 differences for younger adults with normal hearing (YNH), older adults with normal hearing (ONH), and older adults with hearing loss (OHI). The current modeling study predicts these concurrent vowel scores to understand age and hearing loss effects. The YNH model cascaded the temporal responses of an auditory-nerve model from Bruce, Efrani, and Zilany [(2018). Hear. Res. 360, 40-45] with a modified F0-guided segregation algorithm from Meddis and Hewitt [(1992). J. Acoust. Soc. Am. 91, 233-245] to predict concurrent vowel scores. The ONH model included endocochlear-potential loss, while the OHI model also included hair cell damage; however, both models incorporated cochlear synaptopathy, with a larger effect for OHI. Compared with the YNH model, concurrent vowel scores were reduced across F0 differences for ONH and OHI models, with the lowest scores for OHI. These patterns successfully captured the age and hearing loss effects in the concurrent-vowel data. The predictions suggest that the inability to utilize an F0-guided segregation cue, resulting from peripheral changes, may reduce scores for ONH and OHI listeners.
Collapse
Affiliation(s)
- Harshavardhan Settibhaktini
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Michael G Heinz
- Department of Speech, Language and Hearing Sciences, and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2028, USA
| | - Ananthakrishna Chintanpalli
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| |
Collapse
|
22
|
Sanchez-Lopez R, Nielsen SG, El-Haj-Ali M, Bianchi F, Fereczkowski M, Cañete OM, Wu M, Neher T, Dau T, Santurette S. Auditory Tests for Characterizing Hearing Deficits in Listeners With Various Hearing Abilities: The BEAR Test Battery. Front Neurosci 2021; 15:724007. [PMID: 34658768 PMCID: PMC8512168 DOI: 10.3389/fnins.2021.724007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
The Better hEAring Rehabilitation (BEAR) project aims to provide a new clinical profiling tool-a test battery-for hearing loss characterization. Although the loss of sensitivity can be efficiently measured using pure-tone audiometry, the assessment of supra-threshold hearing deficits remains a challenge. In contrast to the classical "attenuation-distortion" model, the proposed BEAR approach is based on the hypothesis that the hearing abilities of a given listener can be characterized along two dimensions, reflecting independent types of perceptual deficits (distortions). A data-driven approach provided evidence for the existence of different auditory profiles with different degrees of distortions. Ten tests were included in a test battery, based on their clinical feasibility, time efficiency, and related evidence from the literature. The tests were divided into six categories: audibility, speech perception, binaural processing abilities, loudness perception, spectro-temporal modulation sensitivity, and spectro-temporal resolution. Seventy-five listeners with symmetric, mild-to-severe sensorineural hearing loss were selected from a clinical population. The analysis of the results showed interrelations among outcomes related to high-frequency processing and outcome measures related to low-frequency processing abilities. The results showed the ability of the tests to reveal differences among individuals and their potential use in clinical settings.
Collapse
Affiliation(s)
- Raul Sanchez-Lopez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark,Interacoustics Research Unit, Kgs. Lyngby, Denmark,*Correspondence: Raul Sanchez-Lopez
| | - Silje Grini Nielsen
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mouhamad El-Haj-Ali
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Federica Bianchi
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark,Oticon Medical, Smørum, Denmark
| | - Michal Fereczkowski
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Oscar M. Cañete
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mengfan Wu
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Tobias Neher
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark,Research Unit for ORL-Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark,Torsten Dau
| | - Sébastien Santurette
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark,Centre for Applied Audiology Research, Oticon A/S, Smørum, Denmark,Sébastien Santurette
| |
Collapse
|
23
|
Patro C, Kreft HA, Wojtczak M. The search for correlates of age-related cochlear synaptopathy: Measures of temporal envelope processing and spatial release from speech-on-speech masking. Hear Res 2021; 409:108333. [PMID: 34425347 PMCID: PMC8424701 DOI: 10.1016/j.heares.2021.108333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Older adults often experience difficulties understanding speech in adverse listening conditions. It has been suggested that for listeners with normal and near-normal audiograms, these difficulties may, at least in part, arise from age-related cochlear synaptopathy. The aim of this study was to assess if performance on auditory tasks relying on temporal envelope processing reveal age-related deficits consistent with those expected from cochlear synaptopathy. Listeners aged 20 to 66 years were tested using a series of psychophysical, electrophysiological, and speech-perception measures using stimulus configurations that promote coding by medium- and low-spontaneous-rate auditory-nerve fibers. Cognitive measures of executive function were obtained to control for age-related cognitive decline. Results from the different tests were not significantly correlated with each other despite a presumed reliance on common mechanisms involved in temporal envelope processing. Only gap-detection thresholds for a tone in noise and spatial release from speech-on-speech masking were significantly correlated with age. Increasing age was related to impaired cognitive executive function. Multivariate regression analyses showed that individual differences in hearing sensitivity, envelope-based measures, and scores from nonauditory cognitive tests did not significantly contribute to the variability in spatial release from speech-on-speech masking for small target/masker spatial separation, while age was a significant contributor.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA.
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Magdalena Wojtczak
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Bramhall NF, McMillan GP, Kampel SD. Envelope following response measurements in young veterans are consistent with noise-induced cochlear synaptopathy. Hear Res 2021; 408:108310. [PMID: 34293505 PMCID: PMC10857793 DOI: 10.1016/j.heares.2021.108310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Animal studies have demonstrated that noise exposure can lead to the loss of the synapses between the inner hair cells and their afferent auditory nerve fiber targets without impacting auditory thresholds. Although several non-invasive physiological measures appear to be sensitive to cochlear synaptopathy in animal models, including auditory brainstem response (ABR) wave I amplitude, the envelope following response (EFR), and the middle ear muscle reflex (MEMR), human studies of these measures in samples that are expected to vary in terms of the degree of noise-induced synaptopathy have resulted in mixed findings. One possible explanation for the differing results is that synaptopathy risk is lower for recreational noise exposure than for occupational or military noise exposure. The goal of this analysis was to determine if EFR magnitude and ABR wave I amplitude are reduced among young Veterans with a history of military noise exposure compared with non-Veteran controls with minimal noise exposure. EFRs and ABRs were obtained in a sample of young (19-35 years) Veterans and non-Veterans with normal audiograms and robust distortion product otoacoustic emissions (DPOAEs). The statistical analysis is consistent with a reduction in mean EFR magnitude and ABR wave I amplitude (at 90 dB peSPL) for Veterans with a significant history of noise exposure compared with non-Veteran controls. These findings are in agreement with previous ABR wave I amplitude findings in young Veterans and are consistent with animal models of noise-induced cochlear synaptopathy.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
25
|
Mai G, Howell P. Causal Relationship between the Right Auditory Cortex and Speech-Evoked Envelope-Following Response: Evidence from Combined Transcranial Stimulation and Electroencephalography. Cereb Cortex 2021; 32:1437-1454. [PMID: 34424956 PMCID: PMC8971082 DOI: 10.1093/cercor/bhab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Speech-evoked envelope-following response (EFR) reflects brain encoding of speech periodicity that serves as a biomarker for pitch and speech perception and various auditory and language disorders. Although EFR is thought to originate from the subcortex, recent research illustrated a right-hemispheric cortical contribution to EFR. However, it is unclear whether this contribution is causal. This study aimed to establish this causality by combining transcranial direct current stimulation (tDCS) and measurement of EFR (pre- and post-tDCS) via scalp-recorded electroencephalography. We applied tDCS over the left and right auditory cortices in right-handed normal-hearing participants and examined whether altering cortical excitability via tDCS causes changes in EFR during monaural listening to speech syllables. We showed significant changes in EFR magnitude when tDCS was applied over the right auditory cortex compared with sham stimulation for the listening ear contralateral to the stimulation site. No such effect was found when tDCS was applied over the left auditory cortex. Crucially, we further observed a hemispheric laterality where aftereffect was significantly greater for tDCS applied over the right than the left auditory cortex in the contralateral ear condition. Our finding thus provides the first evidence that validates the causal relationship between the right auditory cortex and EFR.
Collapse
Affiliation(s)
- Guangting Mai
- Hearing Theme, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG1 5DU, UK.,Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Peter Howell
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
26
|
Perugia E, Plack CJ, Stone MA. Low-sound-level auditory processing in noise-exposed adults. Hear Res 2021; 409:108309. [PMID: 34340022 DOI: 10.1016/j.heares.2021.108309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023]
Abstract
Early signs of noise-induced hearing damage are difficult to identify, as they are often confounded by factors such as age, audiometric thresholds, or even music experience. Much previous research has focused on deficits observed at high intensity levels. In contrast, the present study was designed to test the hypothesis that noise exposure causes a degradation in low-sound-level auditory processing in humans, as a consequence of dysfunction of the inner hair cell pathway. Frequency difference limens (FDLs) and amplitude modulation depth discrimination (MDD) were measured for five center frequencies (0.75, 1, 3, 4 and 6 kHz) at 15 and 25 dB sensation level (SL), as a function of noise exposure, age, audiometric hearing loss, and music experience. Forty participants, aged 33-75 years, with normal hearing up to 1 kHz and mild-to-moderate hearing loss above 2 kHz, were tested. Participants had varying degrees of self-reported noise exposure, and varied in music experience. FDL worsened as a function of age. Participants with music experience outperformed the non-experienced in both the FDL and MDD tasks. MDD thresholds were significantly better for high-noise-exposed, than for low-noise-exposed, participants at 25 dB SL, particularly at 6 kHz. No effects of age or hearing loss were observed in the MDD. It is possible that the association between MDD thresholds and noise exposure was not causal, but instead was mediated by other factors that were not measured in the study. The association is consistent, qualitatively, with a hypothesized loss of compression due to outer hair cell dysfunction.
Collapse
Affiliation(s)
- Emanuele Perugia
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK..
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| | - Michael A Stone
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK.
| |
Collapse
|
27
|
Encina-Llamas G, Dau T, Epp B. On the use of envelope following responses to estimate peripheral level compression in the auditory system. Sci Rep 2021; 11:6962. [PMID: 33772043 PMCID: PMC7997911 DOI: 10.1038/s41598-021-85850-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Individual estimates of cochlear compression may provide complementary information to traditional audiometric hearing thresholds in disentangling different types of peripheral cochlear damage. Here we investigated the use of the slope of envelope following response (EFR) magnitude-level functions obtained from four simultaneously presented amplitude modulated tones with modulation frequencies of 80-100 Hz as a proxy of peripheral level compression. Compression estimates in individual normal hearing (NH) listeners were consistent with previously reported group-averaged compression estimates based on psychoacoustical and distortion-product oto-acoustic emission (DPOAE) measures in human listeners. They were also similar to basilar membrane (BM) compression values measured invasively in non-human mammals. EFR-based compression estimates in hearing-impaired listeners were less compressive than those for the NH listeners, consistent with a reduction of BM compression. Cochlear compression was also estimated using DPOAEs in the same NH listeners. DPOAE estimates were larger (less compressive) than EFRs estimates, showing no correlation. Despite the numerical concordance between EFR-based compression estimates and group-averaged estimates from other methods, simulations using an auditory nerve (AN) model revealed that compression estimates based on EFRs might be highly influenced by contributions from off-characteristic frequency (CF) neural populations. This compromises the possibility to estimate on-CF (i.e., frequency-specific or "local") peripheral level compression with EFRs.
Collapse
Affiliation(s)
- Gerard Encina-Llamas
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Bastian Epp
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Mepani AM, Verhulst S, Hancock KE, Garrett M, Vasilkov V, Bennett K, de Gruttola V, Liberman MC, Maison SF. Envelope following responses predict speech-in-noise performance in normal-hearing listeners. J Neurophysiol 2021; 125:1213-1222. [PMID: 33656936 DOI: 10.1152/jn.00620.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Permanent threshold elevation after noise exposure or aging is caused by loss of sensory cells; however, animal studies show that hair cell loss is often preceded by degeneration of the synapses between sensory cells and auditory nerve fibers. Silencing these neurons is likely to degrade auditory processing and may contribute to difficulties understanding speech in noisy backgrounds. Reduction of suprathreshold ABR amplitudes can be used to quantify synaptopathy in inbred mice. However, ABR amplitudes are highly variable in humans, and thus more challenging to use. Since noise-induced neuropathy preferentially targets fibers with high thresholds and low spontaneous rate and because phase locking to temporal envelopes is particularly strong in these fibers, measuring envelope following responses (EFRs) might be a more robust measure of cochlear synaptopathy. A recent auditory model further suggests that modulation of carrier tones with rectangular envelopes should be less sensitive to cochlear amplifier dysfunction and, therefore, a better metric of cochlear neural damage than sinusoidal amplitude modulation. In this study, we measure performance scores on a variety of difficult word-recognition tasks among listeners with normal audiograms and assess correlations with EFR magnitudes to rectangular versus sinusoidal modulation. Higher harmonics of EFR magnitudes evoked by a rectangular-envelope stimulus were significantly correlated with word scores, whereas those evoked by sinusoidally modulated tones did not. These results support previous reports that individual differences in synaptopathy may be a source of speech recognition variability despite the presence of normal thresholds at standard audiometric frequencies.NEW & NOTEWORTHY Recent studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear. This study examines electrophysiological responses to stimuli designed to improve detection of neural damage in subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with a contribution of cochlear neural damage to deficits in hearing in noise abilities.
Collapse
Affiliation(s)
- Anita M Mepani
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Ghent, Belgium
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Markus Garrett
- Department of Information Technology, Ghent University, Ghent, Belgium.,Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany
| | | | - Kara Bennett
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Victor de Gruttola
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, Massachusetts
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, Massachusetts
| |
Collapse
|
29
|
Lucchetti F, Nonclercq A, Avan P, Giraudet F, Fan X, Deltenre P. Subcortical neural generators of the envelope-following response in sleeping children: A transfer function analysis. Hear Res 2020; 401:108157. [PMID: 33360182 DOI: 10.1016/j.heares.2020.108157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Multiple auditory structures, from cochlea to cortex, phase-lock to the envelope of complex stimuli. The relative contributions of these structures to the human surface-recorded envelope-following response (EFR) are still uncertain. Identification of the active contributor(s) is complicated by the fact that even the simplest two-tone (f1&f2) stimulus, targeting its (f2-f1) envelope, evokes additional linear (f1&f2) and non-linear (2f1-f2) phase-locked components as well as a transient auditory brainstem response (ABR). Here, we took advantage of the generalized primary tone phase variation method to isolate each predictable component in the time domain, allowing direct measurements of onset latency, duration and phase discontinuity values from which the involved generators were inferred. Targeting several envelope frequencies (0.22-1 kHz), we derived the EFR transfer functions along a vertical vertex-to-neck and a horizontal earlobe-to-earlobe recording channels, yielding respectively EFR-V and EFR-H waveforms. Subjects (N= 30) were sleeping children with normal electrophysiological thresholds and normal oto-acoustic emissions. Both EFR-H and EFR-V phase-locking values (PLV) transfer functions had a low-pass profile, EFR-V showing a lower cut-off frequency than EFR-H. We also computed the frequency-latency relationships of both EFRs onset latencies. EFR-H data fitted a power-law function incorporating a frequency-dependent traveling wave delay and a fixed one amounting to 1.2 ms. The fitted function nicely fell within five published estimations of the latency-frequency function of the ABR wave-I, thus pointing to a cochlear nerve origin. The absence of phase discontinuity and overall response durations that were equal to that of the stimulus indicated no contribution from a later generator. The recording of an entirely similar EFR-H response in a patient who had severe brainstem encephalitis with a normal, isolated, ABR wave-I but complete absence of later waves, further substantiated a cochlear nerve origin. Modeling of the EFR-V latency-frequency functions indicated a fixed transport time of 2 ms with respect to EFR-H onset, suggesting a cochlear nucleus (CN) origin, here also, without indication for multiple generators. Other features of the EFR-V response pointing to the CN were, at least for the EFR frequency below the cut-off values of the transfer functions, higher PLVs coupled with increased harmonic distortion. Such a behavior has been described in the so-called highly-synchronized neurons of the ventral cochlear nucleus (VCN). The present study compellingly demonstrated the advantage of isolating the EFR in the temporal domain so as to extract detailed spectro-temporal parameters that, combined with orthogonal recording channels, shed new light on the involved neural generators.
Collapse
Affiliation(s)
- Federico Lucchetti
- Bio-, Electro- and Mechanical Systems, CP165/56, Université Libre de Bruxelles, Avenue F. D. Roosevelt, 50, Brussels 1050, Belgium; Laboratoire de Neurophysiologie Sensorielle et Cognitive, CP403/22, Brugmann Hospital, Place Van Gehuchten 4, Brussels 1020, Belgium.
| | - Antoine Nonclercq
- Bio-, Electro- and Mechanical Systems, CP165/56, Université Libre de Bruxelles, Avenue F. D. Roosevelt, 50, Brussels 1050, Belgium; Laboratoire de Neurophysiologie Sensorielle et Cognitive, CP403/22, Brugmann Hospital, Place Van Gehuchten 4, Brussels 1020, Belgium; Laboratory of Neurosensory Biophysics Unité mixte de recherche, Institut national de la santé et de la recherche médicale, University Clermont Auvergne, 28 Place Henri Dunant, BP38, Clermont-Ferrand F63001, France.
| | - Paul Avan
- Laboratory of Neurosensory Biophysics Unité mixte de recherche, Institut national de la santé et de la recherche médicale, University Clermont Auvergne, 28 Place Henri Dunant, BP38, Clermont-Ferrand F63001, France.
| | - Fabrice Giraudet
- Laboratory of Neurosensory Biophysics Unité mixte de recherche, Institut national de la santé et de la recherche médicale, University Clermont Auvergne, 28 Place Henri Dunant, BP38, Clermont-Ferrand F63001, France.
| | - Xiaoya Fan
- Bio-, Electro- and Mechanical Systems, CP165/56, Université Libre de Bruxelles, Avenue F. D. Roosevelt, 50, Brussels 1050, Belgium.
| | - Paul Deltenre
- Laboratoire de Neurophysiologie Sensorielle et Cognitive, CP403/22, Brugmann Hospital, Place Van Gehuchten 4, Brussels 1020, Belgium.
| |
Collapse
|
30
|
Enhancing the sensitivity of the envelope-following response for cochlear synaptopathy screening in humans: The role of stimulus envelope. Hear Res 2020; 400:108132. [PMID: 33333426 DOI: 10.1016/j.heares.2020.108132] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Auditory de-afferentation, a permanent reduction in the number of inner-hair-cells and auditory-nerve synapses due to cochlear damage or synaptopathy, can reliably be quantified using temporal bone histology and immunostaining. However, there is an urgent need for non-invasive markers of synaptopathy to study its perceptual consequences in live humans and to develop effective therapeutic interventions. While animal studies have identified candidate auditory-evoked-potential (AEP) markers for synaptopathy, their interpretation in humans has suffered from translational issues related to neural generator differences, unknown hearing-damage histopathologies or lack of measurement sensitivity. To render AEP-based markers of synaptopathy more sensitive and differential to the synaptopathy aspect of sensorineural hearing loss, we followed a combined computational and experimental approach. Starting from the known characteristics of auditory-nerve physiology, we optimized the stimulus envelope to stimulate the available auditory-nerve population optimally and synchronously to generate strong envelope-following-responses (EFRs). We further used model simulations to explore which stimuli evoked a response that was sensitive to synaptopathy, while being maximally insensitive to possible co-existing outer-hair-cell pathologies. We compared the model-predicted trends to AEPs recorded in younger and older listeners (N=44, 24f) who had normal or impaired audiograms with suspected age-related synaptopathy in the older cohort. We conclude that optimal stimulation paradigms for EFR-based quantification of synaptopathy should have sharply rising envelope shapes, a minimal plateau duration of 1.7-2.1 ms for a 120-Hz modulation rate, and inter-peak intervals which contain near-zero amplitudes. From our recordings, the optimal EFR-evoking stimulus had a rectangular envelope shape with a 25% duty cycle and a 95% modulation depth. Older listeners with normal or impaired audiometric thresholds showed significantly reduced EFRs, which were consistent with how (age-induced) synaptopathy affected these responses in the model.
Collapse
|
31
|
Carcagno S, Plack CJ. Effects of age on electrophysiological measures of cochlear synaptopathy in humans. Hear Res 2020; 396:108068. [PMID: 32979760 PMCID: PMC7593961 DOI: 10.1016/j.heares.2020.108068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022]
Abstract
Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal noise exposure, and has been hypothesized to play a crucial role in age-related hearing declines in humans. Because CS affects mainly low-spontaneous rate auditory nerve fibers, differential electrophysiological measures such as the ratio of the amplitude of wave I of the auditory brainstem response (ABR) at high to low click levels (WIH/WIL), and the difference between frequency following response (FFR) levels to shallow and deep amplitude modulated tones (FFRS-FFRD), have been proposed as CS markers. However, age-related audiometric threshold shifts, particularly prominent at high frequencies, may confound the interpretation of these measures in cross-sectional studies of age-related CS. To address this issue, we measured WIH/WIL and FFRS-FFRD using highpass masking (HP) noise to eliminate the contribution of high-frequency cochlear regions to the responses in a cross-sectional sample of 102 subjects (34 young, 34 middle-aged, 34 older). WIH/WIL in the presence of the HP noise did not decrease as a function of age. However, in the absence of HP noise, WIH/WIL showed credible age-related decreases even after partialing out the effects of audiometric threshold shifts. No credible age-related decreases of FFRS-FFRD were found. Overall, the results do not provide evidence of age-related CS in the low-frequency region where the responses were restricted by the HP noise, but are consistent with the presence of age-related CS in higher frequency regions.
Collapse
Affiliation(s)
- Samuele Carcagno
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom; Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, United Kingdom
| |
Collapse
|
32
|
Saiz-Alía M, Reichenbach T. Computational modeling of the auditory brainstem response to continuous speech. J Neural Eng 2020; 17:036035. [DOI: 10.1088/1741-2552/ab970d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Garrett M, Verhulst S. Applicability of subcortical EEG metrics of synaptopathy to older listeners with impaired audiograms. Hear Res 2019; 380:150-165. [DOI: 10.1016/j.heares.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
|
34
|
Encina-Llamas G, Harte JM, Dau T, Shinn-Cunningham B, Epp B. Investigating the Effect of Cochlear Synaptopathy on Envelope Following Responses Using a Model of the Auditory Nerve. J Assoc Res Otolaryngol 2019; 20:363-382. [PMID: 31102010 PMCID: PMC6646444 DOI: 10.1007/s10162-019-00721-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
The healthy auditory system enables communication in challenging situations with high levels of background noise. Yet, despite normal sensitivity to pure tones, many listeners complain about having difficulties in such situations. Recent animal studies demonstrated that noise overexposure that produces temporary threshold shifts can cause the loss of auditory nerve (AN) fiber synapses (i.e., cochlear synaptopathy, CS), which appears to predominantly affect medium- and low-spontaneous rate (SR) fibers. In the present study, envelope following response (EFR) magnitude-level functions were recorded in normal hearing (NH) threshold and mildly hearing-impaired (HI) listeners with thresholds elevated above 2 kHz. EFRs were elicited by sinusoidally amplitude modulated (SAM) tones presented in quiet with a carrier frequency of 2 kHz, modulated at 93 Hz, and modulation depths of 0.85 (deep) and 0.25 (shallow). While EFR magnitude-level functions for deeply modulated tones were similar for all listeners, EFR magnitudes for shallowly modulated tones were reduced at medium stimulation levels in some NH threshold listeners and saturated in all HI listeners for the whole level range. A phenomenological model of the AN was used to investigate the extent to which hair-cell dysfunction and/or CS could explain the trends observed in the EFR data. Hair-cell dysfunction alone, including postulated elevated hearing thresholds at extended high frequencies (EHF) beyond 8 kHz, could not account for the recorded EFR data. Postulated CS led to simulations generally consistent with the recorded data, but a loss of all types of AN fibers was required within the model framework. The effects of off-frequency contributions (i.e., away from the characteristic place of the stimulus) and the differential loss of different AN fiber types on EFR magnitude-level functions were analyzed. When using SAM tones in quiet as the stimulus, model simulations suggested that (1) EFRs are dominated by the activity of high-SR fibers at all stimulus intensities, and (2) EFRs at medium-to-high stimulus levels are dominated by off-frequency contributions.
Collapse
Affiliation(s)
- Gerard Encina-Llamas
- Hearing Systems section, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| | - James M Harte
- Interacoustics Research Unit, Kongens Lyngby, Denmark
| | - Torsten Dau
- Hearing Systems section, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Barbara Shinn-Cunningham
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bastian Epp
- Hearing Systems section, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|