1
|
Gabela-Zuniga B, Shukla VC, Bobba C, Higuita-Castro N, Powell HM, Englert JA, Ghadiali SN. A micro-scale humanized ventilator-on-a-chip to examine the injurious effects of mechanical ventilation. LAB ON A CHIP 2024; 24:4390-4402. [PMID: 39161999 PMCID: PMC11407794 DOI: 10.1039/d4lc00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Patients with compromised respiratory function frequently require mechanical ventilation to survive. Unfortunately, non-uniform ventilation of injured lungs generates complex mechanical forces that lead to ventilator induced lung injury (VILI). Although investigators have developed lung-on-a-chip systems to simulate normal respiration, modeling the complex mechanics of VILI as well as the subsequent recovery phase is a challenge. Here we present a novel humanized in vitro ventilator-on-a-chip (VOC) model of the lung microenvironment that simulates the different types of injurious forces generated in the lung during mechanical ventilation. We used transepithelial/endothelial electrical impedance measurements to investigate how individual and simultaneous application of mechanical forces alters real-time changes in barrier integrity during and after injury. We find that compressive stress (i.e. barotrauma) does not significantly alter barrier integrity while over-distention (20% cyclic radial strain, volutrauma) results in decreased barrier integrity that quickly recovers upon removal of mechanical stress. Conversely, surface tension forces generated during airway reopening (atelectrauma), result in a rapid loss of barrier integrity with a delayed recovery relative to volutrauma. Simultaneous application of cyclic stretching (volutrauma) and airway reopening (atelectrauma), indicates that the surface tension forces associated with reopening fluid-occluded lung regions are the primary driver of barrier disruption. Thus, our novel VOC system can monitor the effects of different types of injurious forces on barrier disruption and recovery in real-time and can be used to interogate the biomechanical mechanisms of VILI.
Collapse
Affiliation(s)
- Basia Gabela-Zuniga
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Vasudha C Shukla
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Heather M Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Joshua A Englert
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
2
|
Gabela-Zuniga B, Shukla VC, Bobba C, Higuita-Castro N, Powell HM, Englert JA, Ghadiali SN. A Micro-scale Humanized Ventilator-on-a-Chip to Examine the Injurious Effects of Mechanical Ventilation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582200. [PMID: 38464068 PMCID: PMC10925162 DOI: 10.1101/2024.02.26.582200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Patients with compromised respiratory function frequently require mechanical ventilation to survive. Unfortunately, non-uniform ventilation of injured lungs generates complex mechanical forces that lead to ventilator induced lung injury (VILI). Although investigators have developed lung-on-a-chip systems to simulate normal respiration, modeling the complex mechanics of VILI as well as the subsequent recovery phase is a challenge. Here we present a novel humanized in vitro ventilator-on-a-chip (VOC) model of the lung microenvironment that simulates the different types of injurious forces generated in the lung during mechanical ventilation. We used transepithelial/endothelial electrical resistance (TEER) measurements to investigate how individual and simultaneous application of the different mechanical forces alters real-time changes in barrier integrity during and after injury. We find that compressive stress (i.e. barotrauma) does not significantly alter barrier integrity while over-distention (20% cyclic radial strain, volutrauma) results in decreased barrier integrity that quickly recovers upon removal of mechanical stress. Conversely, surface tension forces generated during airway reopening (atelectrauma), result in a rapid loss of barrier integrity with a delayed recovery relative to volutrauma. Simultaneous application of cyclic stretching (volutrauma) and airway reopening (atelectrauma), indicate that the surface tension forces associated with reopening fluid-occluded lung regions is the primary driver of barrier disruption. Thus, our novel VOC system can monitor the effects of different types of injurious forces on barrier disruption and recovery in real-time and can be used to identify the biomechanical mechanisms of VILI.
Collapse
|
3
|
Munir B, Xu Y. The steady motion of microbubbles in bifurcating airways: Role of shear-thinning and surface tension. Respir Physiol Neurobiol 2021; 290:103675. [PMID: 33915302 DOI: 10.1016/j.resp.2021.103675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Mucous fluid is non-Newtonian secretions in the lower lung airways that accumulates when the alveolar-capillary membrane ruptures during acute respiratory distress syndrome. The mucus fluid has, therefore, different types of non-Newtonian properties like shear-thinning, viscoelasticity, and non-zero yield stress. In this paper, we numerically solved the steady Stokes equations along with arbitrary Eulerian-Lagrangian moving mesh techniques to study the microbubble propagation in a two-dimensional asymmetric bifurcating airway filled with non-Newtonian fluid where the fluid has shear-thinning behavior described by the power-law model. Numerical results show that both shear-thinning and surface tension characterized by the behavior index (n) and Capillary number (Ca), respectively, had a significant impact on microbubble flow patterns and the magnitude of the pressure gradient. At low values of both n and Ca, the microbubble leaves a thin film-thickness with the airway wall while a large and sharp peak of the pressure gradient near the thin bubble tip. Interestingly, increasing both n and Ca, leads to an increase in film thickness and a decrease in the pressure gradient magnitude in both the daughter airway walls. It is observed the magnitude of the pressure gradient is more sensitive to Ca compared to n. We concluded that shear-thinning and surface tension not only significantly impact the patterns of microbubble propagation but also the hydrodynamic stress magnitudes at the airway wall.
Collapse
Affiliation(s)
- Bacha Munir
- School of Natural and Applied Sciences, Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710029, People's Republic of China.
| | - Yong Xu
- School of Natural and Applied Sciences, Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710029, People's Republic of China
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Most clinical trials of lung-protective ventilation have tested one-size-fits-all strategies with mixed results. Data are lacking on how best to tailor mechanical ventilation to patient-specific risk of lung injury. RECENT FINDINGS Risk of ventilation-induced lung injury is determined by biological predisposition to biophysical lung injury and physical mechanical perturbations that concentrate stress and strain regionally within the lung. Recent investigations have identified molecular subphenotypes classified as hyperinflammatory and hypoinflammatory acute respiratory distress syndrome (ARDS), which may have dissimilar risk for ventilation-induced lung injury. Mechanically, gravity-dependent atelectasis has long been recognized to decrease total aerated lung volume available for tidal ventilation, a concept termed the 'ARDS baby lung'. Recent studies have demonstrated that the aerated baby lung also has nonuniform stress/strain distribution, with potentially injurious forces concentrated in zones of heterogeneity where aerated alveoli are adjacent to flooded or atelectatic alveoli. The preponderance of evidence also indicates that current standard-of-care tidal volume management is not universally protective in ARDS. When considering escalation of lung-protective interventions, potential benefits of the intervention should be weighed against tradeoffs of accompanying cointerventions required, for example, deeper sedation or neuromuscular blockade. A precision medicine approach to lung-protection would weigh. SUMMARY A precision medicine approach to lung-protective ventilation requires weighing four key factors in each patient: biological predisposition to biophysical lung injury, mechanical predisposition to biophysical injury accounting for spatial mechanical heterogeneity within the lung, anticipated benefits of escalating lung-protective interventions, and potential unintended adverse effects of mandatory cointerventions.
Collapse
|
5
|
Munir B, Xu Y. Effects of gravity and surface tension on steady microbubble propagation in asymmetric bifurcating airways. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2020; 32:072105. [PMID: 35002196 PMCID: PMC8722330 DOI: 10.1063/5.0012796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/03/2020] [Indexed: 05/21/2023]
Abstract
Mechanical ventilation is nowadays a well-developed, safe, and necessary strategy for acute respiratory distress syndrome patients to survive. However, the propagation of microbubbles in airway bifurcations during mechanical ventilation makes the existing lung injury more severe. In this paper, finite element and direct interface tracking techniques were utilized to simulate steady microbubble propagation in a two-dimensional asymmetric bifurcating airway filled with a viscous fluid. Inertial effects were neglected, and the numerical solution of Stokes's equations was used to investigate how gravity and surface tension defined by a Bond (Bo) number and capillary (Ca) number influence the magnitudes of pressure gradients, shear stresses, and shear stress gradients on the bifurcating daughter airway wall. It is found that increasing Bo significantly influenced both the bubble shape and hydrodynamic stresses, where Bo ≥ 0.25 results in a significant increase in bubble elevation and pressure gradient in the upper daughter wall. Although for both Bo and Ca, the magnitude of the pressure gradient is always much larger in the upper daughter airway wall, Ca has a great role in amplifying the magnitude of the pressure gradient. In conclusion, both gravity and surface tension play a key role in the steady microbubble propagation and hydrodynamic stresses in the bifurcating airways.
Collapse
Affiliation(s)
- Bacha Munir
- Author to whom correspondence should be addressed:
| | | |
Collapse
|
6
|
Ghita M, Copot D, Ghita M, Derom E, Ionescu C. Low Frequency Forced Oscillation Lung Function Test Can Distinguish Dynamic Tissue Non-linearity in COPD Patients. Front Physiol 2019; 10:1390. [PMID: 31803060 PMCID: PMC6877497 DOI: 10.3389/fphys.2019.01390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/25/2019] [Indexed: 01/11/2023] Open
Abstract
This paper introduces the use of low frequencies forced oscillation technique (FOT) in the presence of breathing signal. The hypothesis tested is to evaluate the sensitivity of FOT to various degrees of obstruction in COPD patients. The measurements were performed in the frequency range 0–2 Hz. The use of FOT to evaluate respiratory impedance has been broadly recognized and its complementary use next to standardized method as spirometry and body plethysmography has been well-documented. Typical use of FOT uses frequencies between 4–32 Hz and above. However, interesting information at frequencies below 4 Hz is related to viscoelastic properties of parenchyma. Structural changes in COPD affect viscoelastic properties and we propose to investigate the use of FOT at low frequencies with a fourth generation fan-based FOT device. The generator non-linearity introduced by the device is separated from the linear approximation of the impedance before evaluating the results on patients. Three groups of COPD obstruction, GOLD II, III, and IV are evaluated. We found significant differences in mechanical parameters (tissue damping, tissue elasticity, hysteresivity) and increased degrees of non-linear dynamic contributions in the impedance data with increasing degree of obstruction (p < 0.01). The results obtained suggest that the non-linear index correlates better with degrees of heterogeneity linked to COPD GOLD stages, than the currently used hysteresivity index. The protocol and method may prove useful to improve current diagnosis percentages for various COPD phenotypes.
Collapse
Affiliation(s)
- Maria Ghita
- Dynamical Systems and Control Research Group, Ghent University, Ghent, Belgium.,EEDT Core Lab on Decision and Control, Flanders Make Consortium, Ghent, Belgium
| | - Dana Copot
- Dynamical Systems and Control Research Group, Ghent University, Ghent, Belgium.,EEDT Core Lab on Decision and Control, Flanders Make Consortium, Ghent, Belgium
| | - Mihaela Ghita
- Dynamical Systems and Control Research Group, Ghent University, Ghent, Belgium.,EEDT Core Lab on Decision and Control, Flanders Make Consortium, Ghent, Belgium
| | - Eric Derom
- Department of Respiratory Diseases, Ghent University Hospital, Ghent, Belgium
| | - Clara Ionescu
- Dynamical Systems and Control Research Group, Ghent University, Ghent, Belgium.,EEDT Core Lab on Decision and Control, Flanders Make Consortium, Ghent, Belgium.,Department of Automation, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Malik J, Ghadiali SN. Multi-scale modeling of an upper respiratory airway: Effect of mucosal adhesion on Eustachian tube function in young children. Clin Biomech (Bristol, Avon) 2019; 66:11-19. [PMID: 29395489 PMCID: PMC6067987 DOI: 10.1016/j.clinbiomech.2018.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Eustachian tube is a collapsible upper respiratory airway that is periodically opened to maintain a healthy middle ear. Young children, <10 years old, exhibit reduced Eustachian tube opening efficiency and are at risk for developing middle ear infections. Although these infections increase mucosal adhesion, it is not known how adhesion forces alters the biomechanics of Eustachian tube opening in young children. This study uses computational techniques to investigate how increased mucosal adhesion alters Eustachian tube function in young children. METHODS Multi-scale finite element models were used to simulate the muscle-assisted opening of the Eustachian tube in healthy adults and young children. Airflow during opening was quantified as a function of adhesion strength, muscle forces and tissue mechanics. FINDINGS Although Eustachian tube function was sensitive to increased mucosal adhesion in both adults and children, young children developed Eustachian tube dysfunction at significantly lower values of mucosal adhesion. Specifically, the critical adhesion value was 2 orders of magnitude lower in young children as compared to healthy adults. Although increased adhesion did not alter the sensitivity of Eustachian tube function to tensor and levator veli palatini muscles forces, increased adhesion in young children did reduced the sensitivity of Eustachian tube function to changes in cartilage and mucosal tissue stiffness. INTERPRETATIONS These results indicate that increased mucosal adhesion can significantly alter the biomechanical mechanisms of Eustachian tube function in young children and that clinical assessment of adhesion levels may be important in therapy selection.
Collapse
Affiliation(s)
- Jennifer Malik
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, United States of America
| | - Samir N Ghadiali
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, United States of America,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, United States of America,Department of Internal Medicine (Division of Pulmonary, Critical Care and Sleep Medicine), Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, United States of America
| |
Collapse
|
8
|
High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells. Sci Rep 2019; 9:5742. [PMID: 30952895 PMCID: PMC6450875 DOI: 10.1038/s41598-019-42008-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/08/2019] [Indexed: 11/09/2022] Open
Abstract
Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices.
Collapse
|
9
|
Higuita-Castro N, Nelson MT, Shukla V, Agudelo-Garcia PA, Zhang W, Duarte-Sanmiguel SM, Englert JA, Lannutti JJ, Hansford DJ, Ghadiali SN. Using a Novel Microfabricated Model of the Alveolar-Capillary Barrier to Investigate the Effect of Matrix Structure on Atelectrauma. Sci Rep 2017; 7:11623. [PMID: 28912466 PMCID: PMC5599538 DOI: 10.1038/s41598-017-12044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 11/25/2022] Open
Abstract
The alveolar-capillary barrier is composed of epithelial and endothelial cells interacting across a fibrous extracelluar matrix (ECM). Although remodeling of the ECM occurs during several lung disorders, it is not known how fiber structure and mechanics influences cell injury during cyclic airway reopening as occurs during mechanical ventilation (atelectrauma). We have developed a novel in vitro platform that mimics the micro/nano-scale architecture of the alveolar microenvironment and have used this system to investigate how ECM microstructural properties influence epithelial cell injury during airway reopening. In addition to epithelial-endothelial interactions, our platform accounts for the fibrous topography of the basal membrane and allows for easy modulation of fiber size/diameter, density and stiffness. Results indicate that fiber stiffness and topography significantly influence epithelial/endothelial barrier function where increased fiber stiffness/density resulted in altered cytoskeletal structure, increased tight junction (TJ) formation and reduced barrier permeability. However, cells on rigid/dense fibers were also more susceptible to injury during airway reopening. These results indicate that changes in the mechanics and architecture of the lung microenvironment can significantly alter cell function and injury and demonstrate the importance of implementing in vitro models that more closely resemble the natural conditions of the lung microenvironment.
Collapse
Affiliation(s)
- N Higuita-Castro
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - M T Nelson
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States
| | - V Shukla
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - P A Agudelo-Garcia
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States
| | - W Zhang
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - S M Duarte-Sanmiguel
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States.,Human Nutrition Program, The Ohio State University, Columbus, Ohio, United States
| | - J A Englert
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - J J Lannutti
- Department of Material Sciences and Engineering, The Ohio State University, Columbus, Ohio, United States
| | - D J Hansford
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States
| | - S N Ghadiali
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio, United States. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States. .,Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States.
| |
Collapse
|
10
|
Higuita-Castro N, Shukla VC, Mihai C, Ghadiali SN. Simvastatin Treatment Modulates Mechanically-Induced Injury and Inflammation in Respiratory Epithelial Cells. Ann Biomed Eng 2016; 44:3632-3644. [PMID: 27411707 DOI: 10.1007/s10439-016-1693-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
Mechanical forces in the respiratory system, including surface tension forces during airway reopening and high transmural pressures, can result in epithelial cell injury, barrier disruption and inflammation. In this study, we investigated if a clinically relevant pharmaceutical agent, Simvastatin, could mitigate mechanically induced injury and inflammation in respiratory epithelia. Pulmonary alveolar epithelial cells (A549) were exposed to either cyclic airway reopening forces or oscillatory transmural pressure in vitro and treated with a wide range of Simvastatin concentrations. Simvastatin induced reversible depolymerization of the actin cytoskeleton and a statistically significant reduction the cell's elastic modulus. However, Simvastatin treatment did not result in an appreciable change in the cell's viscoelastic properties. Simvastatin treated cells did exhibit a reduced height-to-width aspect ratio and these changes in cell morphology resulted in a significant decrease in epithelial cell injury during airway reopening. Interestingly, although very high concentrations (25-50 µM) of Simvastatin resulted in dramatically less IL-6 and IL-8 pro-inflammatory cytokine secretion, 2.5 µM Simvastatin did not reduce the total amount of pro-inflammatory cytokines secreted during mechanical stimulation. These results indicate that although Simvastatin treatment may be useful in reducing cell injury during airway reopening, elevated local concentrations of Simvastatin might be needed to reduce mechanically-induced injury and inflammation in respiratory epithelia.
Collapse
Affiliation(s)
- N Higuita-Castro
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - V C Shukla
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - C Mihai
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA
| | - S N Ghadiali
- Biomedical Engineering Department, The Ohio State University, 270 Bevis Hall, 1080 Carmack Rd., Columbus, OH, 43221, USA. .,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
11
|
Chen X, Zielinski R, Ghadiali SN. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension. J Biomech Eng 2014; 136:101007. [PMID: 25068642 PMCID: PMC4151161 DOI: 10.1115/1.4028097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 07/20/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023]
Abstract
Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
| | - Rachel Zielinski
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
| | - Samir N. Ghadiali
- Department of Biomedical Engineering,The Ohio State University,Columbus, OH 43210
- Department of Internal Medicine,Division of Pulmonary, Allergy, Critical Care andSleep Medicine,Dorothy M. Davis Heart &Lung Research Institute,The Ohio State University,Columbus, OH 43210e-mail:
| |
Collapse
|
12
|
Higuita-Castro N, Mihai C, Hansford DJ, Ghadiali SN. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. J Appl Physiol (1985) 2014; 117:1231-42. [PMID: 25213636 DOI: 10.1152/japplphysiol.00752.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation.
Collapse
Affiliation(s)
| | - Cosmin Mihai
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio
| | - Derek J Hansford
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio; Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
13
|
Niu T, Cao G. Power-law rheology characterization of biological cell properties under AFM indentation measurement. RSC Adv 2014. [DOI: 10.1039/c4ra03111c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Zielinski R, Mihai C, Kniss D, Ghadiali SN. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology. J Biomech Eng 2014; 135:71009. [PMID: 23720059 DOI: 10.1115/1.4024467] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 02/04/2023]
Abstract
The interactions between adherent cells and their extracellular matrix (ECM) have been shown to play an important role in many biological processes, such as wound healing, morphogenesis, differentiation, and cell migration. Cells attach to the ECM at focal adhesion sites and transmit contractile forces to the substrate via cytoskeletal actin stress fibers. This contraction results in traction stresses within the substrate/ECM. Traction force microscopy (TFM) is an experimental technique used to quantify the contractile forces generated by adherent cells. In TFM, cells are seeded on a flexible substrate and displacements of the substrate caused by cell contraction are tracked and converted to a traction stress field. The magnitude of these traction stresses are normally used as a surrogate measure of internal cell contractile force or contractility. We hypothesize that in addition to contractile force, other biomechanical properties including cell stiffness, adhesion energy density, and cell morphology may affect the traction stresses measured by TFM. In this study, we developed finite element models of the 2D and 3D TFM techniques to investigate how changes in several biomechanical properties alter the traction stresses measured by TFM. We independently varied cell stiffness, cell-ECM adhesion energy density, cell aspect ratio, and contractility and performed a sensitivity analysis to determine which parameters significantly contribute to the measured maximum traction stress and net contractile moment. Results suggest that changes in cell stiffness and adhesion energy density can significantly alter measured tractions, independent of contractility. Based on a sensitivity analysis, we developed a correction factor to account for changes in cell stiffness and adhesion and successfully applied this correction factor algorithm to experimental TFM measurements in invasive and noninvasive cancer cells. Therefore, application of these types of corrections to TFM measurements can yield more accurate estimates of cell contractility.
Collapse
Affiliation(s)
- Rachel Zielinski
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
15
|
Patel B, Gauvin R, Absar S, Gupta V, Gupta N, Nahar K, Khademhosseini A, Ahsan F. Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. Am J Physiol Lung Cell Mol Physiol 2012; 303:L733-47. [PMID: 22886505 DOI: 10.1152/ajplung.00076.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Development of lung models for testing a drug substance or delivery system has been an intensive area of research. However, a model that mimics physiological and anatomical features of human lungs is yet to be established. Although in vitro lung models, developed and fine-tuned over the past few decades, were instrumental for the development of many commercially available drugs, they are suboptimal in reproducing the physiological microenvironment and complex anatomy of human lungs. Similarly, intersubject variability and high costs have been major limitations of using animals in the development and discovery of drugs used in the treatment of respiratory disorders. To address the complexity and limitations associated with in vivo and in vitro models, attempts have been made to develop in silico and tissue-engineered lung models that allow incorporation of various mechanical and biological factors that are otherwise difficult to reproduce in conventional cell or organ-based systems. The in silico models utilize the information obtained from in vitro and in vivo models and apply computational algorithms to incorporate multiple physiological parameters that can affect drug deposition, distribution, and disposition upon administration via the lungs. Bioengineered lungs, on the other hand, exhibit significant promise due to recent advances in stem or progenitor cell technologies. However, bioengineered approaches have met with limited success in terms of development of various components of the human respiratory system. In this review, we summarize the approaches used and advancements made toward the development of in silico and tissue-engineered lung models and discuss potential challenges associated with the development and efficacy of these models.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hubmayr RD. Does oxygen tune cellular mechanotransduction? Am J Physiol Lung Cell Mol Physiol 2012; 302:L1233-4. [PMID: 22523279 DOI: 10.1152/ajplung.00121.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Zhou EH, Xu F, Quek ST, Lim CT. A power-law rheology-based finite element model for single cell deformation. Biomech Model Mechanobiol 2012; 11:1075-84. [PMID: 22307682 DOI: 10.1007/s10237-012-0374-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
Physical forces can elicit complex time- and space-dependent deformations in living cells. These deformations at the subcellular level are difficult to measure but can be estimated using computational approaches such as finite element (FE) simulation. Existing FE models predominantly treat cells as spring-dashpot viscoelastic materials, while broad experimental data are now lending support to the power-law rheology (PLR) model. Here, we developed a large deformation FE model that incorporated PLR and experimentally verified this model by performing micropipette aspiration on fibroblasts under various mechanical loadings. With a single set of rheological properties, this model recapitulated the diverse micropipette aspiration data obtained using three protocols and with a range of micropipette sizes. More intriguingly, our analysis revealed that decreased pipette size leads to increased pressure gradient, potentially explaining our previous counterintuitive finding that decreased pipette size leads to increased incidence of cell blebbing and injury. Taken together, our work leads to more accurate rheological interpretation of micropipette aspiration experiments than previous models and suggests pressure gradient as a potential determinant of cell injury.
Collapse
Affiliation(s)
- E H Zhou
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
18
|
Influence of Transmural Pressure and Cytoskeletal Structure on NF-κB Activation in Respiratory Epithelial Cells. Cell Mol Bioeng 2010; 3:415-427. [PMID: 22956984 DOI: 10.1007/s12195-010-0138-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory epithelial cells are exposed to complex mechanical forces which are often modulated during pathological conditions such as Otitis Media and acute lung injury. The transduction of these mechanical forces into altered inflammatory signaling may play an important role in the persistence of disease conditions and inflammation. In this study, we investigated how static and oscillatory pressures altered the activation of NF-κB inflammatory pathways and how changes in the actin cytoskeleton influenced the mechanotransduction of pressure into NF-κB activation. An in vitro system was used to apply static and oscillatory pressures to alveolar epithelial cells cultured at an air-liquid interface. Latrunculin A and Jasplakinolide were used to alter the cytoskeleton and tight-junction structure and ELISA was used to monitor activation of NF-κB. Results indicate that both static and oscillatory pressures can activate NF-κB and that this activation is magnitude-dependent at low oscillation frequencies only. Jasplakinolide treated cells did not exhibit significant changes in normalized NF-κB activation compared to unloaded controls while Latrunculin treated cells exhibited increases in normalized NF-κB activation only at low frequency or static pressures. These results indicate that altering the actin cytoskeleton may be a useful way to mitigate the mechanotransduction of pressure forces into inflammatory signaling.
Collapse
|
19
|
Mechanobiology and Finite Element Analysis of Cellular Injury During Microbubble Flows. CELLULAR AND BIOMOLECULAR MECHANICS AND MECHANOBIOLOGY 2010. [DOI: 10.1007/8415_2010_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|